| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 | /* ***** BEGIN LICENSE BLOCK *****   * Source last modified: $Id: dct4.c,v 1.1 2005/02/26 01:47:34 jrecker Exp $  *    * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.   *        * The contents of this file, and the files included with this file,  * are subject to the current version of the RealNetworks Public  * Source License (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the current version of the RealNetworks Community  * Source License (the "RCSL") available at  * http://www.helixcommunity.org/content/rcsl, in which case the RCSL  * will apply. You may also obtain the license terms directly from  * RealNetworks.  You may not use this file except in compliance with  * the RPSL or, if you have a valid RCSL with RealNetworks applicable  * to this file, the RCSL.  Please see the applicable RPSL or RCSL for  * the rights, obligations and limitations governing use of the  * contents of the file.  *    * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the  * portions it created.  *    * This file, and the files included with this file, is distributed  * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY  * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS  * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET  * ENJOYMENT OR NON-INFRINGEMENT.  *   * Technology Compatibility Kit Test Suite(s) Location:   *    http://www.helixcommunity.org/content/tck   *   * Contributor(s):   *    * ***** END LICENSE BLOCK ***** */  /************************************************************************************** * Fixed-point HE-AAC decoder * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com) * February 2005 * * dct4.c - optimized DCT-IV **************************************************************************************/#include "coder.h"#include "assembly.h"static const int nmdctTab[NUM_IMDCT_SIZES] PROGMEM = {128, 1024};static const int postSkip[NUM_IMDCT_SIZES] PROGMEM = {15, 1};/************************************************************************************** * Function:    PreMultiply * * Description: pre-twiddle stage of DCT4 * * Inputs:      table index (for transform size) *              buffer of nmdct samples * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       minimum 1 GB in, 2 GB out, gains 5 (short) or 8 (long) frac bits *              i.e. gains 2-7= -5 int bits (short) or 2-10 = -8 int bits (long) *              normalization by -1/N is rolled into tables here (see trigtabs.c) *              uses 3-mul, 3-add butterflies instead of 4-mul, 2-add **************************************************************************************/static void PreMultiply(int tabidx, int *zbuf1){	int i, nmdct, ar1, ai1, ar2, ai2, z1, z2;	int t, cms2, cps2a, sin2a, cps2b, sin2b;	int *zbuf2;	const int *csptr;	nmdct = nmdctTab[tabidx];			zbuf2 = zbuf1 + nmdct - 1;	csptr = cos4sin4tab + cos4sin4tabOffset[tabidx];	/* whole thing should fit in registers - verify that compiler does this */	for (i = nmdct >> 2; i != 0; i--) {		/* cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin) */		cps2a = *csptr++;		sin2a = *csptr++;		cps2b = *csptr++;		sin2b = *csptr++;		ar1 = *(zbuf1 + 0);		ai2 = *(zbuf1 + 1);		ai1 = *(zbuf2 + 0);		ar2 = *(zbuf2 - 1);		/* gain 2 ints bit from MULSHIFT32 by Q30, but drop 7 or 10 int bits from table scaling of 1/M		 * max per-sample gain (ignoring implicit scaling) = MAX(sin(angle)+cos(angle)) = 1.414		 * i.e. gain 1 GB since worst case is sin(angle) = cos(angle) = 0.707 (Q30), gain 2 from		 *   extra sign bits, and eat one in adding		 */		t  = MULSHIFT32(sin2a, ar1 + ai1);		z2 = MULSHIFT32(cps2a, ai1) - t;		cms2 = cps2a - 2*sin2a;		z1 = MULSHIFT32(cms2, ar1) + t;		*zbuf1++ = z1;	/* cos*ar1 + sin*ai1 */		*zbuf1++ = z2;	/* cos*ai1 - sin*ar1 */		t  = MULSHIFT32(sin2b, ar2 + ai2);		z2 = MULSHIFT32(cps2b, ai2) - t;		cms2 = cps2b - 2*sin2b;		z1 = MULSHIFT32(cms2, ar2) + t;		*zbuf2-- = z2;	/* cos*ai2 - sin*ar2 */		*zbuf2-- = z1;	/* cos*ar2 + sin*ai2 */	}}/************************************************************************************** * Function:    PostMultiply * * Description: post-twiddle stage of DCT4 * * Inputs:      table index (for transform size) *              buffer of nmdct samples * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       minimum 1 GB in, 2 GB out - gains 2 int bits *              uses 3-mul, 3-add butterflies instead of 4-mul, 2-add **************************************************************************************/static void PostMultiply(int tabidx, int *fft1){	int i, nmdct, ar1, ai1, ar2, ai2, skipFactor;	int t, cms2, cps2, sin2;	int *fft2;	const int *csptr;	nmdct = nmdctTab[tabidx];			csptr = cos1sin1tab;	skipFactor = postSkip[tabidx];	fft2 = fft1 + nmdct - 1;	/* load coeffs for first pass	 * cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin)	 */	cps2 = *csptr++;	sin2 = *csptr;	csptr += skipFactor;	cms2 = cps2 - 2*sin2;	for (i = nmdct >> 2; i != 0; i--) {		ar1 = *(fft1 + 0);		ai1 = *(fft1 + 1);		ar2 = *(fft2 - 1);		ai2 = *(fft2 + 0);		/* gain 2 ints bit from MULSHIFT32 by Q30		 * max per-sample gain = MAX(sin(angle)+cos(angle)) = 1.414		 * i.e. gain 1 GB since worst case is sin(angle) = cos(angle) = 0.707 (Q30), gain 2 from		 *   extra sign bits, and eat one in adding		 */		t = MULSHIFT32(sin2, ar1 + ai1);		*fft2-- = t - MULSHIFT32(cps2, ai1);	/* sin*ar1 - cos*ai1 */		*fft1++ = t + MULSHIFT32(cms2, ar1);	/* cos*ar1 + sin*ai1 */		cps2 = *csptr++;		sin2 = *csptr;		csptr += skipFactor;		ai2 = -ai2;		t = MULSHIFT32(sin2, ar2 + ai2);		*fft2-- = t - MULSHIFT32(cps2, ai2);	/* sin*ar1 - cos*ai1 */		cms2 = cps2 - 2*sin2;		*fft1++ = t + MULSHIFT32(cms2, ar2);	/* cos*ar1 + sin*ai1 */	}}/************************************************************************************** * Function:    PreMultiplyRescale * * Description: pre-twiddle stage of DCT4, with rescaling for extra guard bits * * Inputs:      table index (for transform size) *              buffer of nmdct samples *              number of guard bits to add to input before processing * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       see notes on PreMultiply(), above **************************************************************************************/ /* __attribute__ ((section (".data"))) */ static void PreMultiplyRescale(int tabidx, int *zbuf1, int es){	int i, nmdct, ar1, ai1, ar2, ai2, z1, z2;	int t, cms2, cps2a, sin2a, cps2b, sin2b;	int *zbuf2;	const int *csptr;	nmdct = nmdctTab[tabidx];			zbuf2 = zbuf1 + nmdct - 1;	csptr = cos4sin4tab + cos4sin4tabOffset[tabidx];	/* whole thing should fit in registers - verify that compiler does this */	for (i = nmdct >> 2; i != 0; i--) {		/* cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin) */		cps2a = *csptr++;			sin2a = *csptr++;		cps2b = *csptr++;			sin2b = *csptr++;		ar1 = *(zbuf1 + 0) >> es;		ai1 = *(zbuf2 + 0) >> es;		ai2 = *(zbuf1 + 1) >> es;		t  = MULSHIFT32(sin2a, ar1 + ai1);		z2 = MULSHIFT32(cps2a, ai1) - t;		cms2 = cps2a - 2*sin2a;		z1 = MULSHIFT32(cms2, ar1) + t;		*zbuf1++ = z1;		*zbuf1++ = z2;		ar2 = *(zbuf2 - 1) >> es;	/* do here to free up register used for es */		t  = MULSHIFT32(sin2b, ar2 + ai2);		z2 = MULSHIFT32(cps2b, ai2) - t;		cms2 = cps2b - 2*sin2b;		z1 = MULSHIFT32(cms2, ar2) + t;		*zbuf2-- = z2;		*zbuf2-- = z1;	}}/************************************************************************************** * Function:    PostMultiplyRescale * * Description: post-twiddle stage of DCT4, with rescaling for extra guard bits * * Inputs:      table index (for transform size) *              buffer of nmdct samples *              number of guard bits to remove from output * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       clips output to [-2^30, 2^30 - 1], guaranteeing at least 1 guard bit *              see notes on PostMultiply(), above **************************************************************************************/ /* __attribute__ ((section (".data"))) */ static void PostMultiplyRescale(int tabidx, int *fft1, int es){	int i, nmdct, ar1, ai1, ar2, ai2, skipFactor, z;	int t, cs2, sin2;	int *fft2;	const int *csptr;	nmdct = nmdctTab[tabidx];			csptr = cos1sin1tab;	skipFactor = postSkip[tabidx];	fft2 = fft1 + nmdct - 1;	/* load coeffs for first pass	 * cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin)	 */	cs2 = *csptr++;	sin2 = *csptr;	csptr += skipFactor;	for (i = nmdct >> 2; i != 0; i--) {		ar1 = *(fft1 + 0);		ai1 = *(fft1 + 1);		ai2 = *(fft2 + 0);		t = MULSHIFT32(sin2, ar1 + ai1);		z = t - MULSHIFT32(cs2, ai1);			CLIP_2N_SHIFT(z, es);	 		*fft2-- = z;		cs2 -= 2*sin2;		z = t + MULSHIFT32(cs2, ar1);			CLIP_2N_SHIFT(z, es);	 		*fft1++ = z;		cs2 = *csptr++;		sin2 = *csptr;		csptr += skipFactor;		ar2 = *fft2;		ai2 = -ai2;		t = MULSHIFT32(sin2, ar2 + ai2);		z = t - MULSHIFT32(cs2, ai2);			CLIP_2N_SHIFT(z, es);	 		*fft2-- = z;		cs2 -= 2*sin2;		z = t + MULSHIFT32(cs2, ar2);			CLIP_2N_SHIFT(z, es);	 		*fft1++ = z;		cs2 += 2*sin2;	}}/************************************************************************************** * Function:    DCT4 * * Description: type-IV DCT * * Inputs:      table index (for transform size) *              buffer of nmdct samples *              number of guard bits in the input buffer * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       operates in-place *              if number of guard bits in input is < GBITS_IN_DCT4, the input is  *                scaled (>>) before the DCT4 and rescaled (<<, with clipping) after *                the DCT4 (rare) *              the output has FBITS_LOST_DCT4 fewer fraction bits than the input *              the output will always have at least 1 guard bit (GBITS_IN_DCT4 >= 4) *              int bits gained per stage (PreMul + FFT + PostMul) *                 short blocks = (-5 + 4 + 2) = 1 total *                 long blocks =  (-8 + 7 + 2) = 1 total **************************************************************************************/void DCT4(int tabidx, int *coef, int gb){	int es;	/* fast in-place DCT-IV - adds guard bits if necessary */	if (gb < GBITS_IN_DCT4) {		es = GBITS_IN_DCT4 - gb;		PreMultiplyRescale(tabidx, coef, es);		R4FFT(tabidx, coef);		PostMultiplyRescale(tabidx, coef, es);	} else {		PreMultiply(tabidx, coef);		R4FFT(tabidx, coef);		PostMultiply(tabidx, coef);	}}
 |