cs4265.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
  1. /*
  2. * Squeezelite for esp32
  3. *
  4. * (c) Sebastien 2019
  5. * Philippe G. 2019, philippe_44@outlook.com
  6. *
  7. * This software is released under the MIT License.
  8. * https://opensource.org/licenses/MIT
  9. *
  10. */
  11. #include <string.h>
  12. #define LOG_LOCAL_LEVEL ESP_LOG_INFO
  13. #include "Config.h"
  14. #include "adac.h"
  15. #include "driver/gpio.h"
  16. #include "driver/i2c.h"
  17. #include "driver/i2s.h"
  18. #include "esp_log.h"
  19. #include "freertos/FreeRTOS.h"
  20. #include "freertos/task.h"
  21. #include "math.h"
  22. #include "stdio.h"
  23. #define CS4265_PULL_UP (0x4F)
  24. #define CS4265_PULL_DOWN (0x4E)
  25. #ifndef ARRAY_SIZE
  26. #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
  27. #endif
  28. static const char TAG[] = "CS4265";
  29. static bool init(sys_dac_config * config, i2s_config_t* i2s_config, bool* mck);
  30. static void speaker(bool active);
  31. static void headset(bool active);
  32. static bool volume(unsigned left, unsigned right);
  33. static void power(adac_power_e mode);
  34. static esp_err_t cs4265_update_bit(uint8_t reg_no, uint8_t mask, uint8_t val);
  35. static esp_err_t set_clock();
  36. const struct adac_s dac_cs4265 = {
  37. sys_dac_models_CS4265, init, adac_deinit, power, speaker, headset, volume};
  38. struct cs4265_cmd_s {
  39. uint8_t reg;
  40. uint8_t value;
  41. };
  42. struct cs4265_private {
  43. uint8_t format;
  44. uint32_t sysclk;
  45. i2s_config_t* i2s_config;
  46. i2c_port_t port;
  47. };
  48. struct cs4265_private cs4265;
  49. #define CS4265_CHIP_ID 0x1
  50. #define CS4265_CHIP_ID_VAL 0xD0
  51. #define CS4265_CHIP_ID_MASK 0xF0
  52. #define CS4265_REV_ID_MASK 0x0F
  53. #define CS4265_PWRCTL 0x02
  54. #define CS4265_PWRCTL_PDN (1 << 0)
  55. #define CS4265_PWRCTL_PDN_DAC (1 << 1)
  56. #define CS4265_PWRCTL_PDN_ADC (1 << 2)
  57. #define CS4265_PWRCTL_PDN_MIC (1 << 3)
  58. #define CS4265_PWRCTL_FREEZE (1 << 7)
  59. #define CS4265_PWRCTL_PDN_ALL \
  60. CS4265_PWRCTL_PDN | CS4265_PWRCTL_PDN_ADC | CS4265_PWRCTL_PDN_DAC | CS4265_PWRCTL_PDN_MIC
  61. #define CS4265_DAC_CTL 0x3
  62. // De-Emphasis Control (Bit 1)
  63. // The standard 50/15 i2s digital de-emphasis filter response may be implemented for a sample
  64. // rate of 44.1 kHz when the DeEmph bit is set. NOTE: De-emphasis is available only in Single-Speed
  65. // Mode.
  66. #define CS4265_DAC_CTL_DEEMPH (1 << 1)
  67. // MUTE DAC
  68. // The DAC outputs will mute and the MUTEC pin will become active when this bit is set. Though this
  69. // bit is active high, it should be noted that the MUTEC pin is active low. The common mode voltage
  70. // on the outputs will be retained when this bit is set. The muting function is effected, similar to
  71. // attenuation changes, by the DACSoft and DACZero bits in the DAC Control 2 register.
  72. #define CS4265_DAC_CTL_MUTE (1 << 2)
  73. // The required relationship between LRCK, SCLK and SDIN for the DAC is defined by the DAC Digital
  74. // Interface DAC_DIF1 DAC_DIF0 Description Format Figure 0 0 Left
  75. // Justified, up to 24-bit data (default) 0 5 0 1 I²S, up to 24-bit data 1 6
  76. // 1 0 Right-Justified, 16-bit Data 2 7
  77. // 1 1 Right-Justified, 24-bit Data 3 7
  78. #define CS4265_DAC_CTL_DIF0 (1 << 4)
  79. // The required relationship between LRCK, SCLK and SDIN for the DAC is defined by the DAC Digital
  80. // Interface DAC_DIF1 DAC_DIF0 Description Format Figure 0 0 Left
  81. // Justified, up to 24-bit data (default) 0 5 0 1 I²S, up to 24-bit data 1 6
  82. // 1 0 Right-Justified, 16-bit Data 2 7
  83. // 1 1 Right-Justified, 24-bit Data 3 7
  84. #define CS4265_DAC_CTL_DIF1 (1 << 5)
  85. #define CS4265_ADC_CTL 0x4
  86. #define CS4265_ADC_MASTER 1
  87. #define CS4265_ADC_CTL_MUTE (1 << 2)
  88. #define CS4265_ADC_DIF (1 << 4)
  89. #define CS4265_ADC_FM (3 << 6)
  90. // Master Clock Dividers (Bits 6:4)
  91. // Sets the frequency of the supplied MCLK signal.
  92. //
  93. // MCLK Divider MCLK Freq2 MCLK Freq1 MCLK Freq0
  94. // ÷ 1 0 0 0
  95. // ÷ 1.5 0 0 1
  96. // ÷ 2 0 1 0
  97. // ÷ 3 0 1 1
  98. // ÷ 4 1 0 0
  99. // NA 1 0 1
  100. // NA 1 1 x
  101. #define CS4265_MCLK_FREQ 0x5
  102. #define CS4265_MCLK_FREQ_1_0X (0b000 << 4)
  103. #define CS4265_MCLK_FREQ_1_5X (0b001 << 4)
  104. #define CS4265_MCLK_FREQ_2_0X (0b010 << 4)
  105. #define CS4265_MCLK_FREQ_3_0X (0b011 << 4)
  106. #define CS4265_MCLK_FREQ_4_0X (0b100 << 4)
  107. #define CS4265_MCLK_FREQ_MASK (7 << 4)
  108. #define CS4265_SIG_SEL 0x6
  109. #define CS4265_SIG_SEL_LOOP (1 << 1)
  110. #define CS4265_SIG_SEL_SDIN2 (1 << 7)
  111. #define CS4265_SIG_SEL_SDIN1 (0 << 7)
  112. // Sets the gain or attenuation for the ADC input PGA stage. The gain may be adjusted from -12 dB to
  113. // +12 dB in 0.5 dB steps. The gain bits are in two’s complement with the Gain0 bit set for a 0.5 dB
  114. // step. Register settings outside of the ±12 dB range are reserved and must not be used. See Table
  115. // 13 for example settings
  116. #define CS4265_CHB_PGA_CTL 0x7
  117. // Sets the gain or attenuation for the ADC input PGA stage. The gain may be adjusted from -12 dB to
  118. // +12 dB in 0.5 dB steps. The gain bits are in two’s complement with the Gain0 bit set for a 0.5 dB
  119. // step. Register settings outside of the ±12 dB range are reserved and must not be used. See Table
  120. // 13 for example settings
  121. #define CS4265_CHA_PGA_CTL 0x8
  122. // Gain[5:0] Setting
  123. // 101000 -12 dB
  124. // 000000 0 dB
  125. // 011000 +12 dB
  126. #define CS4265_ADC_CTL2 0x9
  127. // The digital volume control allows the user to attenuate the signal in 0.5 dB increments from 0 to
  128. // -127 dB. The Vol0 bit activates a 0.5 dB attenuation when set, and no attenuation when cleared.
  129. // The Vol[7:1] bits activate attenuation equal to their decimal equivalent (in dB).
  130. // Binary Code Volume Setting
  131. // 00000000 0 dB
  132. // 00000001 -0.5 dB
  133. // 00101000 -20 dB
  134. // 00101001 -20.5 dB
  135. // 11111110 -127 dB
  136. // 11111111 -127.5 dB
  137. #define CS4265_DAC_CHA_VOL 0xA
  138. // The digital volume control allows the user to attenuate the signal in 0.5 dB increments from 0 to
  139. // -127 dB. The Vol0 bit activates a 0.5 dB attenuation when set, and no attenuation when cleared.
  140. // The Vol[7:1] bits activate attenuation equal to their decimal equivalent (in dB).
  141. // Binary Code Volume Setting
  142. // 00000000 0 dB
  143. // 00000001 -0.5 dB
  144. // 00101000 -20 dB
  145. // 00101001 -20.5 dB
  146. // 11111110 -127 dB
  147. // 11111111 -127.5 dB
  148. #define CS4265_DAC_CHB_VOL 0xB
  149. #define CS4265_DAC_VOL_ATT_000_0 0b00000000
  150. #define CS4265_DAC_VOL_ATT_000_5 0b00000001
  151. #define CS4265_DAC_VOL_ATT_020_0 0b00101000
  152. #define CS4265_DAC_VOL_ATT_020_5 0b00101001
  153. #define CS4265_DAC_VOL_ATT_127_0 0b11111110
  154. #define CS4265_DAC_VOL_ATT_127_5 0b11111111
  155. // DAC Soft Ramp or Zero Cross Enable (Bits 7:6)
  156. //
  157. // Soft Ramp Enable
  158. // Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally
  159. // ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8
  160. // left/right clock periods. See Table 17. Zero Cross Enable Zero Cross Enable dictates that
  161. // signal-level changes, either by attenuation changes or muting, will occur on a signal zero
  162. // crossing to minimize audible artifacts. The requested level change will occur after a timeout
  163. // period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the
  164. // signal does not encounter a zero crossing. The zero cross function is independently monitored and
  165. // implemented for each channel. See Table 17. Soft Ramp and Zero Cross Enable Soft Ramp and Zero
  166. // Cross Enable dictate that signal-level changes, either by attenuation changes or muting, will
  167. // occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will
  168. // occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz
  169. // sample rate) if the signal does not encounter a zero crossing. The zero cross function is
  170. // independently monitored and implemented for each channel DACSoft DACZeroCross Mode 0 0 Changes to
  171. // affect immediately 0 1 Zero Cross enabled 1 0 Soft Ramp enabled 1 1 Soft Ramp and Zero Cross
  172. // enabled (default)
  173. #define CS4265_DAC_CTL2 0xC
  174. #define CS4265_DAC_CTL2_ZERO_CROSS_EN (uint8_t)(0b01 << 7)
  175. #define CS4265_DAC_CTL2_SOFT_RAMP_EN (uint8_t)(0b10 << 7)
  176. #define CS4265_DAC_CTL2_SOFT_RAMP_ZERO_CROSS_EN (uint8_t)(0b11 << 7)
  177. #define CS4265_INT_STATUS 0xD
  178. #define CS4265_INT_STATUS_ADC_UNDF (1 << 0)
  179. #define CS4265_INT_STATUS_ADC_OVF (1 << 1)
  180. #define CS4265_INT_STATUS_CLKERR (1 << 3)
  181. #define CS4265_INT_MASK 0xE
  182. #define CS4265_STATUS_MODE_MSB 0xF
  183. #define CS4265_STATUS_MODE_LSB 0x10
  184. // Transmitter Control 1 - Address 11h
  185. #define CS4265_SPDIF_CTL1 0x11
  186. #define CS4265_SPDIF_CTL2 0x12
  187. // Transmitter Digital Interface Format (Bits 7:6)
  188. // Function:
  189. // The required relationship between LRCK, SCLK and SDIN for the transmitter is defined
  190. // Tx_DIF1 Tx_DIF0 Description Format Figure
  191. // 0 0 Left Justified, up to 24-bit data (default) 0 5
  192. // 0 1 I²S, up to 24-bit data 1 6
  193. // 1 0 Right-Justified, 16-bit Data 2 7
  194. // 1 1 Right-Justified, 24-bit Data 3 7
  195. #define CS4265_SPDIF_CTL2_MMTLR (1 << 0)
  196. #define CS4265_SPDIF_CTL2_MMTCS (1 << 1)
  197. #define CS4265_SPDIF_CTL2_MMT (1 << 2)
  198. #define CS4265_SPDIF_CTL2_V (1 << 3)
  199. #define CS4265_SPDIF_CTL2_TXMUTE (1 << 4)
  200. #define CS4265_SPDIF_CTL2_TXOFF (1 << 5)
  201. #define CS4265_SPDIF_CTL2_MUTE (1 << 4)
  202. #define CS4265_SPDIF_CTL2_DIF (3 << 6)
  203. #define CS4265_SPDIF_CTL2_DIF0 (1 << 6)
  204. #define CS4265_SPDIF_CTL2_DIF1 (1 << 7)
  205. #define CS4265_C_DATA_BUFF 0x13
  206. #define CS4265_MAX_REGISTER 0x2A
  207. struct cs4265_clk_para {
  208. uint32_t mclk;
  209. uint32_t rate;
  210. uint8_t fm_mode; /* values 1, 2, or 4 */
  211. uint8_t mclkdiv;
  212. };
  213. static const struct cs4265_clk_para clk_map_table[] = {
  214. /*32k*/
  215. {8192000, 32000, 0, 0},
  216. {12288000, 32000, 0, 1},
  217. {16384000, 32000, 0, 2},
  218. {24576000, 32000, 0, 3},
  219. {32768000, 32000, 0, 4},
  220. /*44.1k*/
  221. {11289600, 44100, 0, 0},
  222. {16934400, 44100, 0, 1},
  223. {22579200, 44100, 0, 2},
  224. {33868000, 44100, 0, 3},
  225. {45158400, 44100, 0, 4},
  226. /*48k*/
  227. {12288000, 48000, 0, 0},
  228. {18432000, 48000, 0, 1},
  229. {24576000, 48000, 0, 2},
  230. {36864000, 48000, 0, 3},
  231. {49152000, 48000, 0, 4},
  232. /*64k*/
  233. {8192000, 64000, 1, 0},
  234. {12288000, 64000, 1, 1},
  235. {16934400, 64000, 1, 2},
  236. {24576000, 64000, 1, 3},
  237. {32768000, 64000, 1, 4},
  238. /* 88.2k */
  239. {11289600, 88200, 1, 0},
  240. {16934400, 88200, 1, 1},
  241. {22579200, 88200, 1, 2},
  242. {33868000, 88200, 1, 3},
  243. {45158400, 88200, 1, 4},
  244. /* 96k */
  245. {12288000, 96000, 1, 0},
  246. {18432000, 96000, 1, 1},
  247. {24576000, 96000, 1, 2},
  248. {36864000, 96000, 1, 3},
  249. {49152000, 96000, 1, 4},
  250. /* 128k */
  251. {8192000, 128000, 2, 0},
  252. {12288000, 128000, 2, 1},
  253. {16934400, 128000, 2, 2},
  254. {24576000, 128000, 2, 3},
  255. {32768000, 128000, 2, 4},
  256. /* 176.4k */
  257. {11289600, 176400, 2, 0},
  258. {16934400, 176400, 2, 1},
  259. {22579200, 176400, 2, 2},
  260. {33868000, 176400, 2, 3},
  261. {49152000, 176400, 2, 4},
  262. /* 192k */
  263. {12288000, 192000, 2, 0},
  264. {18432000, 192000, 2, 1},
  265. {24576000, 192000, 2, 2},
  266. {36864000, 192000, 2, 3},
  267. {49152000, 192000, 2, 4},
  268. };
  269. static const struct cs4265_cmd_s cs4265_init_sequence[] = {
  270. {CS4265_PWRCTL, CS4265_PWRCTL_PDN_ADC | CS4265_PWRCTL_FREEZE | CS4265_PWRCTL_PDN_DAC |
  271. CS4265_PWRCTL_PDN_MIC},
  272. {CS4265_DAC_CTL, CS4265_DAC_CTL_DIF0 | CS4265_DAC_CTL_MUTE},
  273. {CS4265_SIG_SEL, CS4265_SIG_SEL_SDIN1}, /// SDIN1
  274. {CS4265_SPDIF_CTL2, CS4265_SPDIF_CTL2_DIF0}, //
  275. {CS4265_ADC_CTL, 0x00}, // // Set the serial audio port in slave mode
  276. {CS4265_MCLK_FREQ, CS4265_MCLK_FREQ_1_0X}, // // no divider
  277. {CS4265_CHB_PGA_CTL, 0x00}, // // sets the gain to 0db on channel B
  278. {CS4265_CHA_PGA_CTL, 0x00}, // // sets the gain to 0db on channel A
  279. {CS4265_ADC_CTL2, 0x19}, //
  280. {CS4265_DAC_CHA_VOL, CS4265_DAC_VOL_ATT_000_0}, // Full volume out
  281. {CS4265_DAC_CHB_VOL, CS4265_DAC_VOL_ATT_000_0}, // // Full volume out
  282. {CS4265_DAC_CTL2, CS4265_DAC_CTL2_SOFT_RAMP_ZERO_CROSS_EN}, //
  283. {CS4265_SPDIF_CTL1, 0x00}, //
  284. {CS4265_INT_MASK, 0x00}, //
  285. {CS4265_STATUS_MODE_MSB, 0x00}, //
  286. {CS4265_STATUS_MODE_LSB, 0x00}, //
  287. {0xff, 0xff}};
  288. // matching orders
  289. typedef enum {
  290. cs4265_ACTIVE = 0,
  291. cs4265_STANDBY,
  292. cs4265_DOWN,
  293. cs4265_ANALOGUE_OFF,
  294. cs4265_ANALOGUE_ON,
  295. cs4265_VOLUME
  296. } dac_cmd_e;
  297. static int cs4265_addr;
  298. static void dac_cmd(dac_cmd_e cmd, ...);
  299. static int cs4265_detect(void);
  300. static uint32_t calc_rnd_mclk_freq() {
  301. float m_scale =
  302. (cs4265.i2s_config->sample_rate > 96000 && cs4265.i2s_config->bits_per_sample > 16) ? 4 : 8;
  303. float num_channels = cs4265.i2s_config->channel_format < I2S_CHANNEL_FMT_ONLY_RIGHT ? 2 : 1;
  304. return (uint32_t)round(cs4265.i2s_config->bits_per_sample * i2s_get_clk(cs4265.port) *
  305. m_scale * num_channels / 100) *
  306. 100;
  307. }
  308. static int cs4265_get_clk_index(int mclk, int rate) {
  309. for (int i = 0; i < ARRAY_SIZE(clk_map_table); i++) {
  310. if (clk_map_table[i].rate == rate && clk_map_table[i].mclk == mclk) return i;
  311. }
  312. return -1;
  313. }
  314. static esp_err_t set_clock() {
  315. esp_err_t err = ESP_OK;
  316. uint32_t mclk = calc_rnd_mclk_freq();
  317. int index = cs4265_get_clk_index(mclk, cs4265.i2s_config->sample_rate);
  318. if (index >= 0) {
  319. ESP_LOGD(TAG, "Setting clock for mclk %u, rate %u (fm mode:%u, clk div:%u))", mclk,
  320. cs4265.i2s_config->sample_rate, clk_map_table[index].fm_mode,
  321. clk_map_table[index].mclkdiv);
  322. err = cs4265_update_bit(CS4265_ADC_CTL, CS4265_ADC_FM, clk_map_table[index].fm_mode << 6);
  323. err |= cs4265_update_bit(
  324. CS4265_MCLK_FREQ, CS4265_MCLK_FREQ_MASK, clk_map_table[index].mclkdiv << 4);
  325. } else {
  326. ESP_LOGE(TAG, "can't get correct mclk for ");
  327. return -1;
  328. }
  329. return err;
  330. }
  331. static void get_status() {
  332. uint8_t sts1 = adac_read_byte(cs4265_addr, CS4265_INT_STATUS);
  333. ESP_LOGD(TAG, "Status: %s", sts1 & CS4265_INT_STATUS_CLKERR ? "CLK Error" : "CLK OK");
  334. }
  335. /****************************************************************************************
  336. * init
  337. */
  338. static bool init(sys_dac_config * config, i2s_config_t* i2s_config, bool* mck) {
  339. // find which CS4265 we are using (if any)
  340. cs4265_addr = adac_init(config);
  341. cs4265.i2s_config = i2s_config;
  342. if (!cs4265_addr) cs4265_addr = cs4265_detect();
  343. if (!cs4265_addr) {
  344. ESP_LOGE(TAG, "No cs4265 detected");
  345. adac_deinit();
  346. return false;
  347. }
  348. cs4265.port = config->i2c.port-sys_i2c_port_PORT0;
  349. #if BYTES_PER_FRAME == 8
  350. ESP_LOGE(TAG, "The CS4265 does not support 32 bits mode. ");
  351. adac_deinit();
  352. return false;
  353. #endif
  354. // we need mclk for this DAC
  355. *mck = true;
  356. // Initialize the chip
  357. i2c_cmd_handle_t i2c_cmd = i2c_cmd_link_create();
  358. for (int i = 0; cs4265_init_sequence[i].reg != 0xff; i++) {
  359. i2c_master_start(i2c_cmd);
  360. i2c_master_write_byte(i2c_cmd, (cs4265_addr << 1) | I2C_MASTER_WRITE, I2C_MASTER_NACK);
  361. i2c_master_write_byte(i2c_cmd, cs4265_init_sequence[i].reg, I2C_MASTER_NACK);
  362. i2c_master_write_byte(i2c_cmd, cs4265_init_sequence[i].value, I2C_MASTER_NACK);
  363. ESP_LOGD(
  364. TAG, "i2c write %x at %u", cs4265_init_sequence[i].reg, cs4265_init_sequence[i].value);
  365. }
  366. i2c_master_stop(i2c_cmd);
  367. esp_err_t res = i2c_master_cmd_begin(cs4265.port, i2c_cmd, 500 / portTICK_RATE_MS);
  368. i2c_cmd_link_delete(i2c_cmd);
  369. if (res != ESP_OK) {
  370. ESP_LOGE(TAG, "could not intialize cs4265 %d", res);
  371. return false;
  372. }
  373. return true;
  374. }
  375. static esp_err_t cs4265_update_bit(uint8_t reg_no, uint8_t mask, uint8_t val) {
  376. esp_err_t ret = ESP_OK;
  377. uint8_t old = adac_read_byte(cs4265_addr, reg_no);
  378. uint8_t newval = (old & ~mask) | (val & mask);
  379. bool change = old != newval;
  380. if (change) {
  381. ret = adac_write_byte(cs4265_addr, reg_no, newval);
  382. if (ret != ESP_OK) {
  383. ESP_LOGE(TAG,
  384. "Unable to change dac register 0x%02x [0x%02x->0x%02x] from value 0x%02x, mask "
  385. "0x%02x ",
  386. reg_no, old, newval, val, mask);
  387. } else {
  388. ESP_LOGD(TAG,
  389. "Changed dac register 0x%02x [0x%02x->0x%02x] from value 0x%02x, mask 0x%02x ",
  390. reg_no, old, newval, val, mask);
  391. }
  392. }
  393. return ret;
  394. }
  395. /****************************************************************************************
  396. * change volume
  397. */
  398. static bool volume(unsigned left, unsigned right) { return false; }
  399. /****************************************************************************************
  400. * power
  401. */
  402. static void power(adac_power_e mode) {
  403. switch (mode) {
  404. case ADAC_STANDBY:
  405. dac_cmd(cs4265_STANDBY);
  406. break;
  407. case ADAC_ON:
  408. dac_cmd(cs4265_ACTIVE);
  409. break;
  410. case ADAC_OFF:
  411. dac_cmd(cs4265_DOWN);
  412. break;
  413. default:
  414. ESP_LOGW(TAG, "unknown DAC command");
  415. break;
  416. }
  417. }
  418. /****************************************************************************************
  419. * speaker
  420. */
  421. static void speaker(bool active) {
  422. if (active)
  423. dac_cmd(cs4265_ANALOGUE_ON);
  424. else
  425. dac_cmd(cs4265_ANALOGUE_OFF);
  426. }
  427. /****************************************************************************************
  428. * headset
  429. */
  430. static void headset(bool active) {}
  431. /****************************************************************************************
  432. * DAC specific commands
  433. */
  434. void dac_cmd(dac_cmd_e cmd, ...) {
  435. va_list args;
  436. esp_err_t ret = ESP_OK;
  437. va_start(args, cmd);
  438. switch (cmd) {
  439. case cs4265_VOLUME:
  440. ESP_LOGE(TAG, "DAC volume not handled yet");
  441. break;
  442. case cs4265_ACTIVE:
  443. ESP_LOGD(TAG, "Activating DAC");
  444. adac_write_byte(cs4265_addr, CS4265_PWRCTL, 0);
  445. cs4265_update_bit(CS4265_SPDIF_CTL2, CS4265_SPDIF_CTL2_TXOFF, 0);
  446. cs4265_update_bit(CS4265_SPDIF_CTL2, CS4265_SPDIF_CTL2_TXMUTE, 0);
  447. cs4265_update_bit(CS4265_DAC_CTL, CS4265_DAC_CTL_MUTE, 0);
  448. break;
  449. case cs4265_STANDBY:
  450. ESP_LOGD(TAG, "DAC Stand-by");
  451. cs4265_update_bit(CS4265_SPDIF_CTL2, CS4265_SPDIF_CTL2_TXOFF, CS4265_SPDIF_CTL2_TXOFF);
  452. cs4265_update_bit(CS4265_SPDIF_CTL2, CS4265_SPDIF_CTL2_TXMUTE, CS4265_SPDIF_CTL2_TXMUTE);
  453. cs4265_update_bit(CS4265_DAC_CTL, CS4265_DAC_CTL_MUTE, CS4265_DAC_CTL_MUTE);
  454. break;
  455. case cs4265_DOWN:
  456. ESP_LOGD(TAG, "DAC Power Down");
  457. adac_write_byte(cs4265_addr, CS4265_PWRCTL, CS4265_PWRCTL_PDN_ALL);
  458. break;
  459. case cs4265_ANALOGUE_OFF:
  460. ESP_LOGD(TAG, "DAC Analog off");
  461. cs4265_update_bit(CS4265_SPDIF_CTL2, CS4265_SPDIF_CTL2_TXOFF, CS4265_SPDIF_CTL2_TXOFF);
  462. cs4265_update_bit(CS4265_SPDIF_CTL2, CS4265_SPDIF_CTL2_TXMUTE, CS4265_SPDIF_CTL2_TXMUTE);
  463. cs4265_update_bit(CS4265_DAC_CTL, CS4265_DAC_CTL_MUTE, CS4265_DAC_CTL_MUTE);
  464. break;
  465. case cs4265_ANALOGUE_ON:
  466. ESP_LOGD(TAG, "DAC Analog on");
  467. adac_write_byte(cs4265_addr, CS4265_PWRCTL, 0);
  468. cs4265_update_bit(CS4265_SPDIF_CTL2, CS4265_SPDIF_CTL2_TXOFF, 0);
  469. cs4265_update_bit(CS4265_SPDIF_CTL2, CS4265_SPDIF_CTL2_TXMUTE, 0);
  470. cs4265_update_bit(CS4265_DAC_CTL, CS4265_DAC_CTL_MUTE, 0);
  471. break;
  472. }
  473. if (ret != ESP_OK) {
  474. ESP_LOGE(TAG, "could not use cs4265 %d", ret);
  475. }
  476. get_status();
  477. // now set the clock
  478. ret = set_clock();
  479. if (ret != ESP_OK) {
  480. ESP_LOGE(TAG, "could not set the cs4265's clock %d", ret);
  481. }
  482. va_end(args);
  483. }
  484. /****************************************************************************************
  485. * TAS57 detection
  486. */
  487. static int cs4265_detect(void) {
  488. uint8_t addr[] = {CS4265_PULL_DOWN, CS4265_PULL_UP};
  489. ESP_LOGD(TAG, "Detecting chip connection type/address");
  490. for (int i = 0; i < sizeof(addr); i++) {
  491. ESP_LOGI(TAG, "Looking for CS4265 @0x%x", addr[i]);
  492. uint8_t reg = adac_read_byte(addr[i], CS4265_CHIP_ID);
  493. if (reg == 255) {
  494. ESP_LOGD(TAG, "Nothing there");
  495. continue;
  496. }
  497. // found a device at that address
  498. ESP_LOGD(TAG, "Found a device. Check signature");
  499. uint8_t devid = reg & CS4265_CHIP_ID_MASK;
  500. if (devid != CS4265_CHIP_ID_VAL) {
  501. ESP_LOGE(TAG, "CS4265 Device ID (%X). Expected %X", devid, CS4265_CHIP_ID);
  502. return 0;
  503. }
  504. ESP_LOGI(TAG, "Found DAC @0x%x, Version %x", addr[i], reg & CS4265_REV_ID_MASK);
  505. return addr[i];
  506. }
  507. return 0;
  508. }