draft-ietf-codec-opus-update.xml 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. <?xml version="1.0" encoding="US-ASCII"?>
  2. <!DOCTYPE rfc SYSTEM "rfc2629.dtd">
  3. <?rfc toc="yes"?>
  4. <?rfc tocompact="yes"?>
  5. <?rfc tocdepth="3"?>
  6. <?rfc tocindent="yes"?>
  7. <?rfc symrefs="yes"?>
  8. <?rfc sortrefs="yes"?>
  9. <?rfc comments="yes"?>
  10. <?rfc inline="yes"?>
  11. <?rfc compact="yes"?>
  12. <?rfc subcompact="no"?>
  13. <rfc category="std" docName="draft-ietf-codec-opus-update-10"
  14. ipr="trust200902" updates="6716">
  15. <front>
  16. <title abbrev="Opus Update">Updates to the Opus Audio Codec</title>
  17. <author initials="JM" surname="Valin" fullname="Jean-Marc Valin">
  18. <organization>Mozilla Corporation</organization>
  19. <address>
  20. <postal>
  21. <street>331 E. Evelyn Avenue</street>
  22. <city>Mountain View</city>
  23. <region>CA</region>
  24. <code>94041</code>
  25. <country>USA</country>
  26. </postal>
  27. <phone>+1 650 903-0800</phone>
  28. <email>jmvalin@jmvalin.ca</email>
  29. </address>
  30. </author>
  31. <author initials="K." surname="Vos" fullname="Koen Vos">
  32. <organization>vocTone</organization>
  33. <address>
  34. <postal>
  35. <street></street>
  36. <city></city>
  37. <region></region>
  38. <code></code>
  39. <country></country>
  40. </postal>
  41. <phone></phone>
  42. <email>koenvos74@gmail.com</email>
  43. </address>
  44. </author>
  45. <date day="24" month="August" year="2017" />
  46. <abstract>
  47. <t>This document addresses minor issues that were found in the specification
  48. of the Opus audio codec in RFC 6716. It updates the normative decoder implementation
  49. included in the appendix of RFC 6716. The changes fixes real and potential security-related
  50. issues, as well minor quality-related issues.</t>
  51. </abstract>
  52. </front>
  53. <middle>
  54. <section title="Introduction">
  55. <t>This document addresses minor issues that were discovered in the reference
  56. implementation of the Opus codec. Unlike most IETF specifications, Opus is defined
  57. in <xref target="RFC6716">RFC 6716</xref> in terms of a normative reference
  58. decoder implementation rather than from the associated text description.
  59. That RFC includes the reference decoder implementation as Appendix A.
  60. That's why only issues affecting the decoder are
  61. listed here. An up-to-date implementation of the Opus encoder can be found at
  62. <eref target="https://opus-codec.org/"/>.</t>
  63. <t>
  64. Some of the changes in this document update normative behaviour in a way that requires
  65. new test vectors. The English text of the specification is unaffected, only
  66. the C implementation is. The updated specification remains fully compatible with
  67. the original specification.
  68. </t>
  69. <t>
  70. Note: due to RFC formatting conventions, lines exceeding the column width
  71. in the patch are split using a backslash character. The backslashes
  72. at the end of a line and the white space at the beginning
  73. of the following line are not part of the patch. A properly formatted patch
  74. including all changes is available at
  75. <eref target="https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-update-00.patch"/>
  76. and has a SHA-1 hash of 029e3aa88fc342c91e67a21e7bfbc9458661cd5f.
  77. </t>
  78. </section>
  79. <section title="Terminology">
  80. <t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  81. "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  82. document are to be interpreted as described in <xref
  83. target="RFC2119">RFC 2119</xref>.</t>
  84. </section>
  85. <section title="Stereo State Reset in SILK">
  86. <t>The reference implementation does not reinitialize the stereo state
  87. during a mode switch. The old stereo memory can produce a brief impulse
  88. (i.e. single sample) in the decoded audio. This can be fixed by changing
  89. silk/dec_API.c at line 72:
  90. </t>
  91. <figure>
  92. <artwork><![CDATA[
  93. <CODE BEGINS>
  94. for( n = 0; n < DECODER_NUM_CHANNELS; n++ ) {
  95. ret = silk_init_decoder( &channel_state[ n ] );
  96. }
  97. + silk_memset(&((silk_decoder *)decState)->sStereo, 0,
  98. + sizeof(((silk_decoder *)decState)->sStereo));
  99. + /* Not strictly needed, but it's cleaner that way */
  100. + ((silk_decoder *)decState)->prev_decode_only_middle = 0;
  101. return ret;
  102. }
  103. <CODE ENDS>
  104. ]]></artwork>
  105. </figure>
  106. <t>
  107. This change affects the normative output of the decoder, but the
  108. amount of change is within the tolerance and too small to make the testvector check fail.
  109. </t>
  110. </section>
  111. <section anchor="padding" title="Parsing of the Opus Packet Padding">
  112. <t>It was discovered that some invalid packets of very large size could trigger
  113. an out-of-bounds read in the Opus packet parsing code responsible for padding.
  114. This is due to an integer overflow if the signaled padding exceeds 2^31-1 bytes
  115. (the actual packet may be smaller). The code can be fixed by decrementing the
  116. (signed) len value, instead of incrementing a separate padding counter.
  117. This is done by applying the following changes at line 596 of src/opus_decoder.c:
  118. </t>
  119. <figure>
  120. <artwork><![CDATA[
  121. <CODE BEGINS>
  122. /* Padding flag is bit 6 */
  123. if (ch&0x40)
  124. {
  125. - int padding=0;
  126. int p;
  127. do {
  128. if (len<=0)
  129. return OPUS_INVALID_PACKET;
  130. p = *data++;
  131. len--;
  132. - padding += p==255 ? 254: p;
  133. + len -= p==255 ? 254: p;
  134. } while (p==255);
  135. - len -= padding;
  136. }
  137. <CODE ENDS>
  138. ]]></artwork>
  139. </figure>
  140. <t>This packet parsing issue is limited to reading memory up
  141. to about 60 kB beyond the compressed buffer. This can only be triggered
  142. by a compressed packet more than about 16 MB long, so it's not a problem
  143. for RTP. In theory, it could crash a file
  144. decoder (e.g. Opus in Ogg) if the memory just after the incoming packet
  145. is out-of-range, but our attempts to trigger such a crash in a production
  146. application built using an affected version of the Opus decoder failed.</t>
  147. </section>
  148. <section anchor="resampler" title="Resampler buffer">
  149. <t>The SILK resampler had the following issues:
  150. <list style="numbers">
  151. <t>The calls to memcpy() were using sizeof(opus_int32), but the type of the
  152. local buffer was opus_int16.</t>
  153. <t>Because the size was wrong, this potentially allowed the source
  154. and destination regions of the memcpy() to overlap on the copy from "buf" to "buf".
  155. We believe that nSamplesIn (number of input samples) is at least fs_in_khZ (sampling rate in kHz),
  156. which is at least 8.
  157. Since RESAMPLER_ORDER_FIR_12 is only 8, that should not be a problem once
  158. the type size is fixed.</t>
  159. <t>The size of the buffer used RESAMPLER_MAX_BATCH_SIZE_IN, but the
  160. data stored in it was actually twice the input batch size
  161. (nSamplesIn&lt;&lt;1).</t>
  162. </list></t>
  163. <t>The code can be fixed by applying the following changes to line 78 of silk/resampler_private_IIR_FIR.c:
  164. </t>
  165. <figure>
  166. <artwork><![CDATA[
  167. <CODE BEGINS>
  168. )
  169. {
  170. silk_resampler_state_struct *S = \
  171. (silk_resampler_state_struct *)SS;
  172. opus_int32 nSamplesIn;
  173. opus_int32 max_index_Q16, index_increment_Q16;
  174. - opus_int16 buf[ RESAMPLER_MAX_BATCH_SIZE_IN + \
  175. RESAMPLER_ORDER_FIR_12 ];
  176. + opus_int16 buf[ 2*RESAMPLER_MAX_BATCH_SIZE_IN + \
  177. RESAMPLER_ORDER_FIR_12 ];
  178. /* Copy buffered samples to start of buffer */
  179. - silk_memcpy( buf, S->sFIR, RESAMPLER_ORDER_FIR_12 \
  180. * sizeof( opus_int32 ) );
  181. + silk_memcpy( buf, S->sFIR, RESAMPLER_ORDER_FIR_12 \
  182. * sizeof( opus_int16 ) );
  183. /* Iterate over blocks of frameSizeIn input samples */
  184. index_increment_Q16 = S->invRatio_Q16;
  185. while( 1 ) {
  186. nSamplesIn = silk_min( inLen, S->batchSize );
  187. /* Upsample 2x */
  188. silk_resampler_private_up2_HQ( S->sIIR, &buf[ \
  189. RESAMPLER_ORDER_FIR_12 ], in, nSamplesIn );
  190. max_index_Q16 = silk_LSHIFT32( nSamplesIn, 16 + 1 \
  191. ); /* + 1 because 2x upsampling */
  192. out = silk_resampler_private_IIR_FIR_INTERPOL( out, \
  193. buf, max_index_Q16, index_increment_Q16 );
  194. in += nSamplesIn;
  195. inLen -= nSamplesIn;
  196. if( inLen > 0 ) {
  197. /* More iterations to do; copy last part of \
  198. filtered signal to beginning of buffer */
  199. - silk_memcpy( buf, &buf[ nSamplesIn << 1 ], \
  200. RESAMPLER_ORDER_FIR_12 * sizeof( opus_int32 ) );
  201. + silk_memmove( buf, &buf[ nSamplesIn << 1 ], \
  202. RESAMPLER_ORDER_FIR_12 * sizeof( opus_int16 ) );
  203. } else {
  204. break;
  205. }
  206. }
  207. /* Copy last part of filtered signal to the state for \
  208. the next call */
  209. - silk_memcpy( S->sFIR, &buf[ nSamplesIn << 1 ], \
  210. RESAMPLER_ORDER_FIR_12 * sizeof( opus_int32 ) );
  211. + silk_memcpy( S->sFIR, &buf[ nSamplesIn << 1 ], \
  212. RESAMPLER_ORDER_FIR_12 * sizeof( opus_int16 ) );
  213. }
  214. <CODE ENDS>
  215. ]]></artwork>
  216. </figure>
  217. </section>
  218. <section title="Integer wrap-around in inverse gain computation">
  219. <t>
  220. It was discovered through decoder fuzzing that some bitstreams could produce
  221. integer values exceeding 32-bits in LPC_inverse_pred_gain_QA(), causing
  222. a wrap-around. The C standard considers
  223. this behavior as undefined. The following patch to line 87 of silk/LPC_inv_pred_gain.c
  224. detects values that do not fit in a 32-bit integer and considers the corresponding filters unstable:
  225. </t>
  226. <figure>
  227. <artwork><![CDATA[
  228. <CODE BEGINS>
  229. /* Update AR coefficient */
  230. for( n = 0; n < k; n++ ) {
  231. - tmp_QA = Aold_QA[ n ] - MUL32_FRAC_Q( \
  232. Aold_QA[ k - n - 1 ], rc_Q31, 31 );
  233. - Anew_QA[ n ] = MUL32_FRAC_Q( tmp_QA, rc_mult2 , mult2Q );
  234. + opus_int64 tmp64;
  235. + tmp_QA = silk_SUB_SAT32( Aold_QA[ n ], MUL32_FRAC_Q( \
  236. Aold_QA[ k - n - 1 ], rc_Q31, 31 ) );
  237. + tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( tmp_QA, \
  238. rc_mult2 ), mult2Q);
  239. + if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
  240. + return 0;
  241. + }
  242. + Anew_QA[ n ] = ( opus_int32 )tmp64;
  243. }
  244. <CODE ENDS>
  245. ]]></artwork>
  246. </figure>
  247. </section>
  248. <section title="Integer wrap-around in LSF decoding" anchor="lsf_overflow">
  249. <t>
  250. It was discovered -- also from decoder fuzzing -- that an integer wrap-around could
  251. occur when decoding bitstreams with extremely large values for the high LSF parameters.
  252. The end result of the wrap-around is an illegal read access on the stack, which
  253. the authors do not believe is exploitable but should nonetheless be fixed. The following
  254. patch to line 137 of silk/NLSF_stabilize.c prevents the problem:
  255. </t>
  256. <figure>
  257. <artwork><![CDATA[
  258. <CODE BEGINS>
  259. /* Keep delta_min distance between the NLSFs */
  260. for( i = 1; i < L; i++ )
  261. - NLSF_Q15[i] = silk_max_int( NLSF_Q15[i], \
  262. NLSF_Q15[i-1] + NDeltaMin_Q15[i] );
  263. + NLSF_Q15[i] = silk_max_int( NLSF_Q15[i], \
  264. silk_ADD_SAT16( NLSF_Q15[i-1], NDeltaMin_Q15[i] ) );
  265. /* Last NLSF should be no higher than 1 - NDeltaMin[L] */
  266. <CODE ENDS>
  267. ]]></artwork>
  268. </figure>
  269. </section>
  270. <section title="Cap on Band Energy">
  271. <t>On extreme bit-streams, it is possible for log-domain band energy levels
  272. to exceed the maximum single-precision floating point value once converted
  273. to a linear scale. This would later cause the decoded values to be NaN (not a number),
  274. possibly causing problems in the software using the PCM values. This can be
  275. avoided with the following patch to line 552 of celt/quant_bands.c:
  276. </t>
  277. <figure>
  278. <artwork><![CDATA[
  279. <CODE BEGINS>
  280. {
  281. opus_val16 lg = ADD16(oldEBands[i+c*m->nbEBands],
  282. SHL16((opus_val16)eMeans[i],6));
  283. + lg = MIN32(QCONST32(32.f, 16), lg);
  284. eBands[i+c*m->nbEBands] = PSHR32(celt_exp2(lg),4);
  285. }
  286. for (;i<m->nbEBands;i++)
  287. <CODE ENDS>
  288. ]]></artwork>
  289. </figure>
  290. </section>
  291. <section title="Hybrid Folding" anchor="folding">
  292. <t>When encoding in hybrid mode at low bitrate, we sometimes only have
  293. enough bits to code a single CELT band (8 - 9.6 kHz). When that happens,
  294. the second band (CELT band 18, from 9.6 to 12 kHz) cannot use folding
  295. because it is wider than the amount already coded, and falls back to
  296. white noise. Because it can also happen on transients (e.g. stops), it
  297. can cause audible pre-echo.
  298. </t>
  299. <t>
  300. To address the issue, we change the folding behavior so that it is
  301. never forced to fall back to LCG due to the first band not containing
  302. enough coefficients to fold onto the second band. This
  303. is achieved by simply repeating part of the first band in the folding
  304. of the second band. This changes the code in celt/bands.c around line 1237:
  305. </t>
  306. <figure>
  307. <artwork><![CDATA[
  308. <CODE BEGINS>
  309. b = 0;
  310. }
  311. - if (resynth && M*eBands[i]-N >= M*eBands[start] && \
  312. (update_lowband || lowband_offset==0))
  313. + if (resynth && (M*eBands[i]-N >= M*eBands[start] || \
  314. i==start+1) && (update_lowband || lowband_offset==0))
  315. lowband_offset = i;
  316. + if (i == start+1)
  317. + {
  318. + int n1, n2;
  319. + int offset;
  320. + n1 = M*(eBands[start+1]-eBands[start]);
  321. + n2 = M*(eBands[start+2]-eBands[start+1]);
  322. + offset = M*eBands[start];
  323. + /* Duplicate enough of the first band folding data to \
  324. be able to fold the second band.
  325. + Copies no data for CELT-only mode. */
  326. + OPUS_COPY(&norm[offset+n1], &norm[offset+2*n1 - n2], n2-n1);
  327. + if (C==2)
  328. + OPUS_COPY(&norm2[offset+n1], &norm2[offset+2*n1 - n2], \
  329. n2-n1);
  330. + }
  331. +
  332. tf_change = tf_res[i];
  333. if (i>=m->effEBands)
  334. {
  335. <CODE ENDS>
  336. ]]></artwork>
  337. </figure>
  338. <t>
  339. as well as line 1260:
  340. </t>
  341. <figure>
  342. <artwork><![CDATA[
  343. <CODE BEGINS>
  344. fold_start = lowband_offset;
  345. while(M*eBands[--fold_start] > effective_lowband);
  346. fold_end = lowband_offset-1;
  347. - while(M*eBands[++fold_end] < effective_lowband+N);
  348. + while(++fold_end < i && M*eBands[fold_end] < \
  349. effective_lowband+N);
  350. x_cm = y_cm = 0;
  351. fold_i = fold_start; do {
  352. x_cm |= collapse_masks[fold_i*C+0];
  353. <CODE ENDS>
  354. ]]></artwork>
  355. </figure>
  356. <t>
  357. The fix does not impact compatibility, because the improvement does
  358. not depend on the encoder doing anything special. There is also no
  359. reasonable way for an encoder to use the original behavior to
  360. improve quality over the proposed change.
  361. </t>
  362. </section>
  363. <section title="Downmix to Mono" anchor="stereo">
  364. <t>The last issue is not strictly a bug, but it is an issue that has been reported
  365. when downmixing an Opus decoded stream to mono, whether this is done inside the decoder
  366. or as a post-processing step on the stereo decoder output. Opus intensity stereo allows
  367. optionally coding the two channels 180-degrees out of phase on a per-band basis.
  368. This provides better stereo quality than forcing the two channels to be in phase,
  369. but when the output is downmixed to mono, the energy in the affected bands is cancelled
  370. sometimes resulting in audible artifacts.
  371. </t>
  372. <t>As a work-around for this issue, the decoder MAY choose not to apply the 180-degree
  373. phase shift. This can be useful when downmixing to mono inside or
  374. outside of the decoder (e.g. user-controllable).
  375. </t>
  376. </section>
  377. <section title="New Test Vectors">
  378. <t>Changes in <xref target="folding"/> and <xref target="stereo"/> have
  379. sufficient impact on the testvectors to make them fail. For this reason,
  380. this document also updates the Opus test vectors. The new test vectors now
  381. include two decoded outputs for the same bitstream. The outputs with
  382. suffix 'm' do not apply the CELT 180-degree phase shift as allowed in
  383. <xref target="stereo"/>, while the outputs without the suffix do. An
  384. implementation is compliant as long as it passes either set of vectors.
  385. </t>
  386. <t>
  387. Any Opus implementation
  388. that passes either the original test vectors from <xref target="RFC6716">RFC 6716</xref>
  389. or one of the new sets of test vectors is compliant with the Opus specification. However, newer implementations
  390. SHOULD be based on the new test vectors rather than the old ones.
  391. </t>
  392. <t>The new test vectors are located at
  393. <eref target="https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-newvectors-00.tar.gz"/>.
  394. The SHA-1 hashes of the test vectors are:
  395. <figure>
  396. <artwork>
  397. <![CDATA[
  398. e49b2862ceec7324790ed8019eb9744596d5be01 testvector01.bit
  399. b809795ae1bcd606049d76de4ad24236257135e0 testvector02.bit
  400. e0c4ecaeab44d35a2f5b6575cd996848e5ee2acc testvector03.bit
  401. a0f870cbe14ebb71fa9066ef3ee96e59c9a75187 testvector04.bit
  402. 9b3d92b48b965dfe9edf7b8a85edd4309f8cf7c8 testvector05.bit
  403. 28e66769ab17e17f72875283c14b19690cbc4e57 testvector06.bit
  404. bacf467be3215fc7ec288f29e2477de1192947a6 testvector07.bit
  405. ddbe08b688bbf934071f3893cd0030ce48dba12f testvector08.bit
  406. 3932d9d61944dab1201645b8eeaad595d5705ecb testvector09.bit
  407. 521eb2a1e0cc9c31b8b740673307c2d3b10c1900 testvector10.bit
  408. 6bc8f3146fcb96450c901b16c3d464ccdf4d5d96 testvector11.bit
  409. 338c3f1b4b97226bc60bc41038becbc6de06b28f testvector12.bit
  410. f5ef93884da6a814d311027918e9afc6f2e5c2c8 testvector01.dec
  411. 48ac1ff1995250a756e1e17bd32acefa8cd2b820 testvector02.dec
  412. d15567e919db2d0e818727092c0af8dd9df23c95 testvector03.dec
  413. 1249dd28f5bd1e39a66fd6d99449dca7a8316342 testvector04.dec
  414. b85675d81deef84a112c466cdff3b7aaa1d2fc76 testvector05.dec
  415. 55f0b191e90bfa6f98b50d01a64b44255cb4813e testvector06.dec
  416. 61e8b357ab090b1801eeb578a28a6ae935e25b7b testvector07.dec
  417. a58539ee5321453b2ddf4c0f2500e856b3966862 testvector08.dec
  418. bb96aad2cde188555862b7bbb3af6133851ef8f4 testvector09.dec
  419. 1b6cdf0413ac9965b16184b1bea129b5c0b2a37a testvector10.dec
  420. b1fff72b74666e3027801b29dbc48b31f80dee0d testvector11.dec
  421. 98e09bbafed329e341c3b4052e9c4ba5fc83f9b1 testvector12.dec
  422. 1e7d984ea3fbb16ba998aea761f4893fbdb30157 testvector01m.dec
  423. 48ac1ff1995250a756e1e17bd32acefa8cd2b820 testvector02m.dec
  424. d15567e919db2d0e818727092c0af8dd9df23c95 testvector03m.dec
  425. 1249dd28f5bd1e39a66fd6d99449dca7a8316342 testvector04m.dec
  426. d70b0bad431e7d463bc3da49bd2d49f1c6d0a530 testvector05m.dec
  427. 6ac1648c3174c95fada565161a6c78bdbe59c77d testvector06m.dec
  428. fc5e2f709693738324fb4c8bdc0dad6dda04e713 testvector07m.dec
  429. aad2ba397bf1b6a18e8e09b50e4b19627d479f00 testvector08m.dec
  430. 6feb7a7b9d7cdc1383baf8d5739e2a514bd0ba08 testvector09m.dec
  431. 1b6cdf0413ac9965b16184b1bea129b5c0b2a37a testvector10m.dec
  432. fd3d3a7b0dfbdab98d37ed9aa04b659b9fefbd18 testvector11m.dec
  433. 98e09bbafed329e341c3b4052e9c4ba5fc83f9b1 testvector12m.dec
  434. ]]>
  435. </artwork>
  436. </figure>
  437. Note that the decoder input bitstream files (.bit) are unchanged.
  438. </t>
  439. </section>
  440. <section anchor="security" title="Security Considerations">
  441. <t>This document fixes two security issues reported on Opus and that affect the
  442. reference implementation in <xref target="RFC6716">RFC 6716</xref>: CVE-2013-0899
  443. <eref target="https://nvd.nist.gov/vuln/detail/CVE-2013-0899"/>
  444. and CVE-2017-0381 <eref target="https://nvd.nist.gov/vuln/detail/CVE-2017-0381"/>.
  445. CVE- 2013-0899 theoretically could have caused an information leak. The leaked
  446. information would have gone through the decoder process before being accessible
  447. to the attacker. It is fixed by <xref target="padding"/>.
  448. CVE-2017-0381 could have resulted in a 16-bit out-of-bounds read from a fixed
  449. location. It is fixed in <xref target="lsf_overflow"/>.
  450. Beyond the two fixed CVEs, this document adds no new security considerations on top of
  451. <xref target="RFC6716">RFC 6716</xref>.
  452. </t>
  453. </section>
  454. <section anchor="IANA" title="IANA Considerations">
  455. <t>This document makes no request of IANA.</t>
  456. <t>Note to RFC Editor: this section may be removed on publication as an
  457. RFC.</t>
  458. </section>
  459. <section anchor="Acknowledgements" title="Acknowledgements">
  460. <t>We would like to thank Juri Aedla for reporting the issue with the parsing of
  461. the Opus padding. Thanks to Felicia Lim for reporting the LSF integer overflow issue.
  462. Also, thanks to Tina le Grand, Jonathan Lennox, and Mark Harris for their
  463. feedback on this document.</t>
  464. </section>
  465. </middle>
  466. <back>
  467. <references title="Normative References">
  468. <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml"?>
  469. <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.6716.xml"?>
  470. </references>
  471. </back>
  472. </rfc>