| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 | /* ***** BEGIN LICENSE BLOCK *****   * Source last modified: $Id: pns.c,v 1.2 2005/03/10 17:01:56 jrecker Exp $  *    * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.   *        * The contents of this file, and the files included with this file,  * are subject to the current version of the RealNetworks Public  * Source License (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the current version of the RealNetworks Community  * Source License (the "RCSL") available at  * http://www.helixcommunity.org/content/rcsl, in which case the RCSL  * will apply. You may also obtain the license terms directly from  * RealNetworks.  You may not use this file except in compliance with  * the RPSL or, if you have a valid RCSL with RealNetworks applicable  * to this file, the RCSL.  Please see the applicable RPSL or RCSL for  * the rights, obligations and limitations governing use of the  * contents of the file.  *    * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the  * portions it created.  *    * This file, and the files included with this file, is distributed  * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY  * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS  * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET  * ENJOYMENT OR NON-INFRINGEMENT.  *   * Technology Compatibility Kit Test Suite(s) Location:   *    http://www.helixcommunity.org/content/tck   *   * Contributor(s):   *    * ***** END LICENSE BLOCK ***** */  /************************************************************************************** * Fixed-point HE-AAC decoder * Jon Recker (jrecker@real.com) * February 2005 * * pns.c - perceptual noise substitution **************************************************************************************/#include "coder.h"#include "assembly.h"/************************************************************************************** * Function:    Get32BitVal * * Description: generate 32-bit unsigned random number * * Inputs:      last number calculated (seed, first time through) * * Outputs:     new number, saved in *last * * Return:      32-bit number, uniformly distributed between [0, 2^32) * * Notes:       uses simple linear congruential generator **************************************************************************************/static unsigned int Get32BitVal(unsigned int *last){	unsigned int r = *last;	/* use same coefs as MPEG reference code (classic LCG)	 * use unsigned multiply to force reliable wraparound behavior in C (mod 2^32)	 */	r = (1664525U * r) + 1013904223U;	*last = r;	return r;}#define NUM_ITER_INVSQRT	4#define X0_COEF_2	0xc0000000	/* Q29: -2.0 */#define X0_OFF_2	0x60000000	/* Q29:  3.0 */#define Q26_3		0x0c000000	/* Q26:  3.0 *//************************************************************************************** * Function:    InvRootR * * Description: use Newton's method to solve for x = 1/sqrt(r) * * Inputs:      r in Q30 format, range = [0.25, 1] (normalize inputs to this range) * * Outputs:     none * * Return:      x = Q29, range = (1, 2) * * Notes:       guaranteed to converge and not overflow for any r in this range *               *              xn+1  = xn - f(xn)/f'(xn) *              f(x)  = 1/sqrt(r) - x = 0 (find root) *                    = 1/x^2 - r *              f'(x) = -2/x^3 * *              so xn+1 = xn/2 * (3 - r*xn^2) * *              NUM_ITER_INVSQRT = 3, maxDiff = 1.3747e-02 *              NUM_ITER_INVSQRT = 4, maxDiff = 3.9832e-04 **************************************************************************************/static int InvRootR(int r){	int i, xn, t;	/* use linear equation for initial guess	 * x0 = -2*r + 3 (so x0 always >= correct answer in range [0.25, 1))	 * xn = Q29 (at every step)	 */	xn = (MULSHIFT32(r, X0_COEF_2) << 2) + X0_OFF_2;	for (i = 0; i < NUM_ITER_INVSQRT; i++) {		t = MULSHIFT32(xn, xn);					/* Q26 = Q29*Q29 */		t = Q26_3 - (MULSHIFT32(r, t) << 2);	/* Q26 = Q26 - (Q31*Q26 << 1) */		xn = MULSHIFT32(xn, t) << (6 - 1);		/* Q29 = (Q29*Q26 << 6), and -1 for division by 2 */	}	/* clip to range (1.0, 2.0) 	 * (because of rounding, this can converge to xn slightly > 2.0 when r is near 0.25)	 */	if (xn >> 30)		xn = (1 << 30) - 1;	return xn;}/************************************************************************************** * Function:    ScaleNoiseVector * * Description: apply scaling to vector of noise coefficients for one scalefactor band * * Inputs:      unscaled coefficients *              number of coefficients in vector (one scalefactor band of coefs) *              scalefactor for this band (i.e. noise energy) * * Outputs:     nVals coefficients in Q(FBITS_OUT_DQ_OFF) * * Return:      guard bit mask (OR of abs value of all noise coefs) **************************************************************************************/static int ScaleNoiseVector(int *coef, int nVals, int sf){/* pow(2, i/4.0) for i = [0,1,2,3], format = Q30 */static const int pow14[4] PROGMEM = { 	0x40000000, 0x4c1bf829, 0x5a82799a, 0x6ba27e65};	int i, c, spec, energy, sq, scalef, scalei, invSqrtEnergy, z, gbMask;		energy = 0;	for (i = 0; i < nVals; i++) {		spec = coef[i];		/* max nVals = max SFB width = 96, so energy can gain < 2^7 bits in accumulation */		sq = (spec * spec) >> 8;		/* spec*spec range = (-2^30, 2^30) */		energy += sq;	}	/* unless nVals == 1 (or the number generator is broken...), this should not happen */	if (energy == 0)		return 0;	/* coef[i] must = 0 for i = [0, nVals-1], so gbMask = 0 */	/* pow(2, sf/4) * pow(2, FBITS_OUT_DQ_OFF) */	scalef = pow14[sf & 0x3];	scalei = (sf >> 2) + FBITS_OUT_DQ_OFF;	/* energy has implied factor of 2^-8 since we shifted the accumulator 	 * normalize energy to range [0.25, 1.0), calculate 1/sqrt(1), and denormalize	 *   i.e. divide input by 2^(30-z) and convert to Q30	 *        output of 1/sqrt(i) now has extra factor of 2^((30-z)/2)	 *        for energy > 0, z is an even number between 0 and 28	 * final scaling of invSqrtEnergy:	 *  2^(15 - z/2) to compensate for implicit 2^(30-z) factor in input	 *  +4 to compensate for implicit 2^-8 factor in input	 */	z = CLZ(energy) - 2;					/* energy has at least 2 leading zeros (see acc loop) */	z &= 0xfffffffe;						/* force even */	invSqrtEnergy = InvRootR(energy << z);	/* energy << z must be in range [0x10000000, 0x40000000] */	scalei -= (15 - z/2 + 4);				/* nInt = 1/sqrt(energy) in Q29 */	/* normalize for final scaling */	z = CLZ(invSqrtEnergy) - 1;	invSqrtEnergy <<= z;	scalei -= (z - 3 - 2);	/* -2 for scalef, z-3 for invSqrtEnergy */	scalef = MULSHIFT32(scalef, invSqrtEnergy);	/* scalef (input) = Q30, invSqrtEnergy = Q29 * 2^z */	gbMask = 0;	if (scalei < 0) {		scalei = -scalei;		if (scalei > 31)			scalei = 31;		for (i = 0; i < nVals; i++) {			c = MULSHIFT32(coef[i], scalef) >> scalei;			gbMask |= FASTABS(c);			coef[i] = c;		}	} else {		/* for scalei <= 16, no clipping possible (coef[i] is < 2^15 before scaling) 		 * for scalei > 16, just saturate exponent (rare)		 *   scalef is close to full-scale (since we normalized invSqrtEnergy)		 * remember, we are just producing noise here		 */		if (scalei > 16)			scalei = 16;		for (i = 0; i < nVals; i++) {			c = MULSHIFT32(coef[i] << scalei, scalef);			coef[i] = c;			gbMask |= FASTABS(c);		}	}	return gbMask;}/************************************************************************************** * Function:    GenerateNoiseVector * * Description: create vector of noise coefficients for one scalefactor band * * Inputs:      seed for number generator *              number of coefficients to generate * * Outputs:     buffer of nVals coefficients, range = [-2^15, 2^15) *              updated seed for number generator * * Return:      none **************************************************************************************/static void GenerateNoiseVector(int *coef, int *last, int nVals){	int i;		for (i = 0; i < nVals; i++)		coef[i] = ((signed int)Get32BitVal((unsigned int *)last)) >> 16;}/************************************************************************************** * Function:    CopyNoiseVector * * Description: copy vector of noise coefficients for one scalefactor band from L to R * * Inputs:      buffer of left coefficients *              number of coefficients to copy * * Outputs:     buffer of right coefficients * * Return:      none **************************************************************************************/static void CopyNoiseVector(int *coefL, int *coefR, int nVals){	int i;	for (i = 0; i < nVals; i++)		coefR[i] = coefL[i];}/************************************************************************************** * Function:    PNS * * Description: apply perceptual noise substitution, if enabled (MPEG-4 only) * * Inputs:      valid AACDecInfo struct *              index of current channel * * Outputs:     shaped noise in scalefactor bands where PNS is active *              updated minimum guard bit count for this channel * * Return:      0 if successful, -1 if error **************************************************************************************/int PNS(AACDecInfo *aacDecInfo, int ch){	int gp, sfb, win, width, nSamps, gb, gbMask;	int *coef;	const /*short*/ int *sfbTab;	unsigned char *sfbCodeBook;	short *scaleFactors;	int msMaskOffset, checkCorr, genNew;	unsigned char msMask;	unsigned char *msMaskPtr;	PSInfoBase *psi;	ICSInfo *icsInfo;		/* validate pointers */	if (!aacDecInfo || !aacDecInfo->psInfoBase)		return -1;	psi = (PSInfoBase *)(aacDecInfo->psInfoBase);	icsInfo = (ch == 1 && psi->commonWin == 1) ? &(psi->icsInfo[0]) : &(psi->icsInfo[ch]);		if (!psi->pnsUsed[ch])		return 0;		if (icsInfo->winSequence == 2) {		sfbTab = sfBandTabShort + sfBandTabShortOffset[psi->sampRateIdx];		nSamps = NSAMPS_SHORT;	} else {		sfbTab = sfBandTabLong + sfBandTabLongOffset[psi->sampRateIdx];		nSamps = NSAMPS_LONG;	}	coef = psi->coef[ch];	sfbCodeBook = psi->sfbCodeBook[ch];	scaleFactors = psi->scaleFactors[ch];	checkCorr = (aacDecInfo->currBlockID == AAC_ID_CPE && psi->commonWin == 1 ? 1 : 0);		gbMask = 0;	for (gp = 0; gp < icsInfo->numWinGroup; gp++) {		for (win = 0; win < icsInfo->winGroupLen[gp]; win++) {			msMaskPtr = psi->msMaskBits + ((gp*icsInfo->maxSFB) >> 3);			msMaskOffset = ((gp*icsInfo->maxSFB) & 0x07);			msMask = (*msMaskPtr++) >> msMaskOffset;						for (sfb = 0; sfb < icsInfo->maxSFB; sfb++) {				width = sfbTab[sfb+1] - sfbTab[sfb];				if (sfbCodeBook[sfb] == 13) {					if (ch == 0) {						/* generate new vector, copy into ch 1 if it's possible that the channels will be correlated 						 * if ch 1 has PNS enabled for this SFB but it's uncorrelated (i.e. ms_used == 0),						 *    the copied values will be overwritten when we process ch 1						 */						GenerateNoiseVector(coef, &psi->pnsLastVal, width);						if (checkCorr && psi->sfbCodeBook[1][gp*icsInfo->maxSFB + sfb] == 13)							CopyNoiseVector(coef, psi->coef[1] + (coef - psi->coef[0]), width);					} else {						/* generate new vector if no correlation between channels */						genNew = 1;						if (checkCorr && psi->sfbCodeBook[0][gp*icsInfo->maxSFB + sfb] == 13) {							if ( (psi->msMaskPresent == 1 && (msMask & 0x01)) || psi->msMaskPresent == 2 )								genNew = 0;						}						if (genNew)							GenerateNoiseVector(coef, &psi->pnsLastVal, width);					}					gbMask |= ScaleNoiseVector(coef, width, psi->scaleFactors[ch][gp*icsInfo->maxSFB + sfb]);				}				coef += width;								/* get next mask bit (should be branchless on ARM) */				msMask >>= 1;				if (++msMaskOffset == 8) {					msMask = *msMaskPtr++;					msMaskOffset = 0;				}			}			coef += (nSamps - sfbTab[icsInfo->maxSFB]);		}		sfbCodeBook += icsInfo->maxSFB;		scaleFactors += icsInfo->maxSFB;	}		/* update guard bit count if necessary */	gb = CLZ(gbMask) - 1;	if (psi->gbCurrent[ch] > gb)		psi->gbCurrent[ch] = gb;		return 0;}
 |