| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390 | /* * Copyright (c) 2011 Apple Inc. All rights reserved. * * @APPLE_APACHE_LICENSE_HEADER_START@ *  * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at *  *     http://www.apache.org/licenses/LICENSE-2.0 *  * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *  * @APPLE_APACHE_LICENSE_HEADER_END@ *//*	File:		matrix_dec.c		Contains:	ALAC mixing/matrixing decode routines.	Copyright:	(c) 2004-2011 Apple, Inc.*/#include "matrixlib.h"#include "ALACAudioTypes.h"// up to 24-bit "offset" macros for the individual bytes of a 20/24-bit word#if TARGET_RT_BIG_ENDIAN	#define LBYTE	2	#define MBYTE	1	#define HBYTE	0#else	#define LBYTE	0	#define MBYTE	1	#define HBYTE	2#endif/*    There is no plain middle-side option; instead there are various mixing    modes including middle-side, each lossless, as embodied in the mix()    and unmix() functions.  These functions exploit a generalized middle-side    transformation:        u := [(rL + (m-r)R)/m];    v := L - R;        where [ ] denotes integer floor.  The (lossless) inverse is        L = u + v - [rV/m];    R = L - v;*/// 16-bit routinesvoid unmix16( int32_t * u, int32_t * v, int16_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres ){	int16_t *	op = out;	int32_t 		j;	if ( mixres != 0 )	{		/* matrixed stereo */		for ( j = 0; j < numSamples; j++ )		{			int32_t		l, r;			l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);			r = l - v[j];			op[0] = (int16_t) l;			op[1] = (int16_t) r;			op += stride;		} 	}	else	{		/* Conventional separated stereo. */		for ( j = 0; j < numSamples; j++ )		{			op[0] = (int16_t) u[j];			op[1] = (int16_t) v[j];			op += stride;		}	}}// 20-bit routines// - the 20 bits of data are left-justified in 3 bytes of storage but right-aligned for input/output predictor buffersvoid unmix20( int32_t * u, int32_t * v, uint8_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres ){	uint8_t *	op = out;	int32_t 		j;	if ( mixres != 0 )	{		/* matrixed stereo */		for ( j = 0; j < numSamples; j++ )		{			int32_t		l, r;			l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);			r = l - v[j];			l <<= 4;			r <<= 4;			op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);			op[MBYTE] = (uint8_t)((l >>  8) & 0xffu);			op[LBYTE] = (uint8_t)((l >>  0) & 0xffu);			op += 3;			op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);			op[MBYTE] = (uint8_t)((r >>  8) & 0xffu);			op[LBYTE] = (uint8_t)((r >>  0) & 0xffu);			op += (stride - 1) * 3;		}	}	else 	{		/* Conventional separated stereo. */		for ( j = 0; j < numSamples; j++ )		{			int32_t		val;			val = u[j] << 4;			op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);			op[MBYTE] = (uint8_t)((val >>  8) & 0xffu);			op[LBYTE] = (uint8_t)((val >>  0) & 0xffu);			op += 3;			val = v[j] << 4;			op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);			op[MBYTE] = (uint8_t)((val >>  8) & 0xffu);			op[LBYTE] = (uint8_t)((val >>  0) & 0xffu);			op += (stride - 1) * 3;		}	}}// 24-bit routines// - the 24 bits of data are right-justified in the input/output predictor buffersvoid unmix24( int32_t * u, int32_t * v, uint8_t * out, uint32_t stride, int32_t numSamples,				int32_t mixbits, int32_t mixres, uint16_t * shiftUV, int32_t bytesShifted ){	uint8_t *	op = out;	int32_t			shift = bytesShifted * 8;	int32_t		l, r;	int32_t 		j, k;	if ( mixres != 0 )	{		/* matrixed stereo */		if ( bytesShifted != 0 )		{			for ( j = 0, k = 0; j < numSamples; j++, k += 2 )			{				l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);				r = l - v[j];				l = (l << shift) | (uint32_t) shiftUV[k + 0];				r = (r << shift) | (uint32_t) shiftUV[k + 1];				op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);				op[MBYTE] = (uint8_t)((l >>  8) & 0xffu);				op[LBYTE] = (uint8_t)((l >>  0) & 0xffu);				op += 3;				op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);				op[MBYTE] = (uint8_t)((r >>  8) & 0xffu);				op[LBYTE] = (uint8_t)((r >>  0) & 0xffu);				op += (stride - 1) * 3;			}		}		else		{			for ( j = 0; j < numSamples; j++ )			{				l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);				r = l - v[j];				op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);				op[MBYTE] = (uint8_t)((l >>  8) & 0xffu);				op[LBYTE] = (uint8_t)((l >>  0) & 0xffu);				op += 3;				op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);				op[MBYTE] = (uint8_t)((r >>  8) & 0xffu);				op[LBYTE] = (uint8_t)((r >>  0) & 0xffu);				op += (stride - 1) * 3;			}		}	}	else 	{		/* Conventional separated stereo. */		if ( bytesShifted != 0 )		{			for ( j = 0, k = 0; j < numSamples; j++, k += 2 )			{				l = u[j];				r = v[j];				l = (l << shift) | (uint32_t) shiftUV[k + 0];				r = (r << shift) | (uint32_t) shiftUV[k + 1];				op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);				op[MBYTE] = (uint8_t)((l >>  8) & 0xffu);				op[LBYTE] = (uint8_t)((l >>  0) & 0xffu);				op += 3;				op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);				op[MBYTE] = (uint8_t)((r >>  8) & 0xffu);				op[LBYTE] = (uint8_t)((r >>  0) & 0xffu);				op += (stride - 1) * 3;			}		}		else		{			for ( j = 0; j < numSamples; j++ )			{				int32_t		val;				val = u[j];				op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);				op[MBYTE] = (uint8_t)((val >>  8) & 0xffu);				op[LBYTE] = (uint8_t)((val >>  0) & 0xffu);				op += 3;				val = v[j];				op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);				op[MBYTE] = (uint8_t)((val >>  8) & 0xffu);				op[LBYTE] = (uint8_t)((val >>  0) & 0xffu);				op += (stride - 1) * 3;			}		}	}}// 32-bit routines// - note that these really expect the internal data width to be < 32 but the arrays are 32-bit// - otherwise, the calculations might overflow into the 33rd bit and be lost// - therefore, these routines deal with the specified "unused lower" bytes in the "shift" buffersvoid unmix32( int32_t * u, int32_t * v, int32_t * out, uint32_t stride, int32_t numSamples,				int32_t mixbits, int32_t mixres, uint16_t * shiftUV, int32_t bytesShifted ){	int32_t *	op = out;	int32_t			shift = bytesShifted * 8;	int32_t		l, r;	int32_t 		j, k;	if ( mixres != 0 )	{		//Assert( bytesShifted != 0 );		/* matrixed stereo with shift */		for ( j = 0, k = 0; j < numSamples; j++, k += 2 )		{			int32_t		lt, rt;			lt = u[j];			rt = v[j];						l = lt + rt - ((mixres * rt) >> mixbits);			r = l - rt;			op[0] = (l << shift) | (uint32_t) shiftUV[k + 0];			op[1] = (r << shift) | (uint32_t) shiftUV[k + 1];			op += stride;		} 	}	else	{		if ( bytesShifted == 0 )		{			/* interleaving w/o shift */			for ( j = 0; j < numSamples; j++ )			{				op[0] = u[j];				op[1] = v[j];				op += stride;			}		}		else		{			/* interleaving with shift */			for ( j = 0, k = 0; j < numSamples; j++, k += 2 )			{				op[0] = (u[j] << shift) | (uint32_t) shiftUV[k + 0];				op[1] = (v[j] << shift) | (uint32_t) shiftUV[k + 1];				op += stride;			}		}	}}// 20/24-bit <-> 32-bit helper routines (not really matrixing but convenient to put here)void copyPredictorTo24( int32_t * in, uint8_t * out, uint32_t stride, int32_t numSamples ){	uint8_t *	op = out;	int32_t			j;	for ( j = 0; j < numSamples; j++ )	{		int32_t		val = in[j];		op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);		op[MBYTE] = (uint8_t)((val >>  8) & 0xffu);		op[LBYTE] = (uint8_t)((val >>  0) & 0xffu);		op += (stride * 3);	}}void copyPredictorTo24Shift( int32_t * in, uint16_t * shift, uint8_t * out, uint32_t stride, int32_t numSamples, int32_t bytesShifted ){	uint8_t *	op = out;	int32_t			shiftVal = bytesShifted * 8;	int32_t			j;	//Assert( bytesShifted != 0 );	for ( j = 0; j < numSamples; j++ )	{		int32_t		val = in[j];		val = (val << shiftVal) | (uint32_t) shift[j];		op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);		op[MBYTE] = (uint8_t)((val >>  8) & 0xffu);		op[LBYTE] = (uint8_t)((val >>  0) & 0xffu);		op += (stride * 3);	}}void copyPredictorTo20( int32_t * in, uint8_t * out, uint32_t stride, int32_t numSamples ){	uint8_t *	op = out;	int32_t			j;	// 32-bit predictor values are right-aligned but 20-bit output values should be left-aligned	// in the 24-bit output buffer	for ( j = 0; j < numSamples; j++ )	{		int32_t		val = in[j];		op[HBYTE] = (uint8_t)((val >> 12) & 0xffu);		op[MBYTE] = (uint8_t)((val >>  4) & 0xffu);		op[LBYTE] = (uint8_t)((val <<  4) & 0xffu);		op += (stride * 3);	}}void copyPredictorTo32( int32_t * in, int32_t * out, uint32_t stride, int32_t numSamples ){	int32_t			i, j;	// this is only a subroutine to abstract the "iPod can only output 16-bit data" problem	for ( i = 0, j = 0; i < numSamples; i++, j += stride )		out[j] = in[i];}void copyPredictorTo32Shift( int32_t * in, uint16_t * shift, int32_t * out, uint32_t stride, int32_t numSamples, int32_t bytesShifted ){	int32_t *		op = out;	uint32_t		shiftVal = bytesShifted * 8;	int32_t				j;	//Assert( bytesShifted != 0 );	// this is only a subroutine to abstract the "iPod can only output 16-bit data" problem	for ( j = 0; j < numSamples; j++ )	{		op[0] = (in[j] << shiftVal) | (uint32_t) shift[j];		op += stride;	}}
 |