| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 | 
							- #!/usr/bin/python
 
- from __future__ import print_function
 
- from keras.models import Sequential
 
- from keras.models import Model
 
- from keras.layers import Input
 
- from keras.layers import Dense
 
- from keras.layers import LSTM
 
- from keras.layers import GRU
 
- from keras.layers import SimpleRNN
 
- from keras.layers import Dropout
 
- from keras import losses
 
- import h5py
 
- from keras import backend as K
 
- import numpy as np
 
- def binary_crossentrop2(y_true, y_pred):
 
-     return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
 
- print('Build model...')
 
- #model = Sequential()
 
- #model.add(Dense(16, activation='tanh', input_shape=(None, 25)))
 
- #model.add(GRU(12, dropout=0.0, recurrent_dropout=0.0, activation='tanh', recurrent_activation='sigmoid', return_sequences=True))
 
- #model.add(Dense(2, activation='sigmoid'))
 
- main_input = Input(shape=(None, 25), name='main_input')
 
- x = Dense(16, activation='tanh')(main_input)
 
- x = GRU(12, dropout=0.1, recurrent_dropout=0.1, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
 
- x = Dense(2, activation='sigmoid')(x)
 
- model = Model(inputs=main_input, outputs=x)
 
- batch_size = 64
 
- print('Loading data...')
 
- with h5py.File('features.h5', 'r') as hf:
 
-     all_data = hf['features'][:]
 
- print('done.')
 
- window_size = 1500
 
- nb_sequences = len(all_data)/window_size
 
- print(nb_sequences, ' sequences')
 
- x_train = all_data[:nb_sequences*window_size, :-2]
 
- x_train = np.reshape(x_train, (nb_sequences, window_size, 25))
 
- y_train = np.copy(all_data[:nb_sequences*window_size, -2:])
 
- y_train = np.reshape(y_train, (nb_sequences, window_size, 2))
 
- all_data = 0;
 
- x_train = x_train.astype('float32')
 
- y_train = y_train.astype('float32')
 
- print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape)
 
- # try using different optimizers and different optimizer configs
 
- model.compile(loss=binary_crossentrop2,
 
-               optimizer='adam',
 
-               metrics=['binary_accuracy'])
 
- print('Train...')
 
- model.fit(x_train, y_train,
 
-           batch_size=batch_size,
 
-           epochs=200,
 
-           validation_data=(x_train, y_train))
 
- model.save("newweights.hdf5")
 
 
  |