rtp.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830
  1. /*
  2. * HairTunes - RAOP packet handler and slave-clocked replay engine
  3. * Copyright (c) James Laird 2011
  4. * All rights reserved.
  5. *
  6. * Modularisation: philippe_44@outlook.com, 2019
  7. *
  8. * Permission is hereby granted, free of charge, to any person
  9. * obtaining a copy of this software and associated documentation
  10. * files (the "Software"), to deal in the Software without
  11. * restriction, including without limitation the rights to use,
  12. * copy, modify, merge, publish, distribute, sublicense, and/or
  13. * sell copies of the Software, and to permit persons to whom the
  14. * Software is furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be
  17. * included in all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  20. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
  21. * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  22. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
  23. * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
  24. * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  25. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  26. * OTHER DEALINGS IN THE SOFTWARE.
  27. */
  28. #include <stdio.h>
  29. #include <stdlib.h>
  30. #include <string.h>
  31. #include <stdarg.h>
  32. #include <sys/types.h>
  33. #include <pthread.h>
  34. #include <math.h>
  35. #include <errno.h>
  36. #include <sys/stat.h>
  37. #include <stdint.h>
  38. #include <fcntl.h>
  39. #include <assert.h>
  40. #include "platform.h"
  41. #include "rtp.h"
  42. #include "raop_sink.h"
  43. #include "log_util.h"
  44. #include "util.h"
  45. #ifdef WIN32
  46. #include <openssl/aes.h>
  47. #include "alac_wrapper.h"
  48. #define MSG_DONTWAIT 0
  49. #else
  50. #include "esp_pthread.h"
  51. #include "esp_system.h"
  52. #include <mbedtls/version.h>
  53. #include <mbedtls/aes.h>
  54. #include "alac_wrapper.h"
  55. #endif
  56. #define NTP2MS(ntp) ((((ntp) >> 10) * 1000L) >> 22)
  57. #define MS2NTP(ms) (((((u64_t) (ms)) << 22) / 1000) << 10)
  58. #define NTP2TS(ntp, rate) ((((ntp) >> 16) * (rate)) >> 16)
  59. #define TS2NTP(ts, rate) (((((u64_t) (ts)) << 16) / (rate)) << 16)
  60. #define MS2TS(ms, rate) ((((u64_t) (ms)) * (rate)) / 1000)
  61. #define TS2MS(ts, rate) NTP2MS(TS2NTP(ts,rate))
  62. extern log_level raop_loglevel;
  63. static log_level *loglevel = &raop_loglevel;
  64. //#define __RTP_STORE
  65. // default buffer size
  66. #define BUFFER_FRAMES_MAX ((RAOP_SAMPLE_RATE * 10) / 352 )
  67. #define BUFFER_FRAMES_MIN ( (150 * RAOP_SAMPLE_RATE * 2) / (352 * 100) )
  68. #define MAX_PACKET 1408
  69. #define MIN_LATENCY 11025
  70. #define MAX_LATENCY ( (120 * RAOP_SAMPLE_RATE * 2) / 100 )
  71. #define RTP_STACK_SIZE (4*1024)
  72. #define RTP_SYNC (0x01)
  73. #define NTP_SYNC (0x02)
  74. #define RESEND_TO 200
  75. enum { DATA = 0, CONTROL, TIMING };
  76. static const u8_t silence_frame[MAX_PACKET] = { 0 };
  77. uint32_t buffer_frames = ((150 * RAOP_SAMPLE_RATE * 2) / (352 * 100));
  78. typedef u16_t seq_t;
  79. typedef struct __attribute__((__packed__)) audio_buffer_entry { // decoded audio packets
  80. u32_t rtptime, last_resend;
  81. s16_t *data;
  82. u16_t len;
  83. u8_t ready;
  84. u8_t allocated;
  85. } abuf_t;
  86. typedef struct rtp_s {
  87. #ifdef __RTP_STORE
  88. FILE *rtpIN, *rtpOUT;
  89. #endif
  90. bool running;
  91. unsigned char aesiv[16];
  92. #ifdef WIN32
  93. AES_KEY aes;
  94. #else
  95. mbedtls_aes_context aes;
  96. #endif
  97. bool decrypt;
  98. u8_t *decrypt_buf;
  99. u32_t frame_size, frame_duration;
  100. u32_t in_frames, out_frames;
  101. struct in_addr host;
  102. struct sockaddr_in rtp_host;
  103. struct {
  104. unsigned short rport, lport;
  105. int sock;
  106. } rtp_sockets[3]; // data, control, timing
  107. struct timing_s {
  108. u64_t local, remote;
  109. } timing;
  110. struct {
  111. u32_t rtp, time;
  112. u8_t status;
  113. } synchro;
  114. struct {
  115. u32_t time;
  116. seq_t seqno;
  117. u32_t rtptime;
  118. } record;
  119. int latency; // rtp hold depth in samples
  120. u32_t resent_req, resent_rec; // total resent + recovered frames
  121. u32_t silent_frames; // total silence frames
  122. u32_t discarded;
  123. abuf_t audio_buffer[BUFFER_FRAMES_MAX];
  124. seq_t ab_read, ab_write;
  125. pthread_mutex_t ab_mutex;
  126. #ifdef WIN32
  127. pthread_t thread;
  128. #else
  129. TaskHandle_t thread, joiner;
  130. StaticTask_t *xTaskBuffer;
  131. StackType_t xStack[RTP_STACK_SIZE] __attribute__ ((aligned (4)));
  132. #endif
  133. struct alac_codec_s *alac_codec;
  134. int flush_seqno;
  135. bool playing;
  136. raop_data_cb_t data_cb;
  137. raop_cmd_cb_t cmd_cb;
  138. } rtp_t;
  139. #define BUFIDX(seqno) ((seq_t)(seqno) % buffer_frames)
  140. static void buffer_alloc(abuf_t *audio_buffer, int size, uint8_t *buf, size_t buf_size);
  141. static void buffer_release(abuf_t *audio_buffer);
  142. static void buffer_reset(abuf_t *audio_buffer);
  143. static void buffer_push_packet(rtp_t *ctx);
  144. static bool rtp_request_resend(rtp_t *ctx, seq_t first, seq_t last);
  145. static bool rtp_request_timing(rtp_t *ctx);
  146. static int seq_order(seq_t a, seq_t b);
  147. #ifdef WIN32
  148. static void *rtp_thread_func(void *arg);
  149. #else
  150. static void rtp_thread_func(void *arg);
  151. #endif
  152. /*---------------------------------------------------------------------------*/
  153. static struct alac_codec_s* alac_init(int fmtp[32]) {
  154. struct alac_codec_s *alac;
  155. unsigned sample_rate, block_size;
  156. unsigned char sample_size, channels;
  157. struct {
  158. uint32_t frameLength;
  159. uint8_t compatibleVersion;
  160. uint8_t bitDepth;
  161. uint8_t pb;
  162. uint8_t mb;
  163. uint8_t kb;
  164. uint8_t numChannels;
  165. uint16_t maxRun;
  166. uint32_t maxFrameBytes;
  167. uint32_t avgBitRate;
  168. uint32_t sampleRate;
  169. } config;
  170. config.frameLength = htonl(fmtp[1]);
  171. config.compatibleVersion = fmtp[2];
  172. config.bitDepth = fmtp[3];
  173. config.pb = fmtp[4];
  174. config.mb = fmtp[5];
  175. config.kb = fmtp[6];
  176. config.numChannels = fmtp[7];
  177. config.maxRun = htons(fmtp[8]);
  178. config.maxFrameBytes = htonl(fmtp[9]);
  179. config.avgBitRate = htonl(fmtp[10]);
  180. config.sampleRate = htonl(fmtp[11]);
  181. alac = alac_create_decoder(sizeof(config), (unsigned char*) &config, &sample_size, &sample_rate, &channels, &block_size);
  182. if (!alac) {
  183. LOG_ERROR("cannot create alac codec", NULL);
  184. return NULL;
  185. }
  186. return alac;
  187. }
  188. /*---------------------------------------------------------------------------*/
  189. rtp_resp_t rtp_init(struct in_addr host, int latency, char *aeskey, char *aesiv, char *fmtpstr,
  190. short unsigned pCtrlPort, short unsigned pTimingPort,
  191. uint8_t *buffer, size_t size,
  192. raop_cmd_cb_t cmd_cb, raop_data_cb_t data_cb)
  193. {
  194. int i = 0;
  195. char *arg;
  196. int fmtp[12];
  197. bool rc = true;
  198. rtp_t *ctx = calloc(1, sizeof(rtp_t));
  199. rtp_resp_t resp = { 0, 0, 0, NULL };
  200. if (!ctx) return resp;
  201. ctx->host = host;
  202. ctx->decrypt = false;
  203. ctx->cmd_cb = cmd_cb;
  204. ctx->data_cb = data_cb;
  205. ctx->rtp_host.sin_family = AF_INET;
  206. ctx->rtp_host.sin_addr.s_addr = INADDR_ANY;
  207. pthread_mutex_init(&ctx->ab_mutex, 0);
  208. ctx->flush_seqno = -1;
  209. ctx->latency = latency;
  210. ctx->ab_read = ctx->ab_write;
  211. #ifdef __RTP_STORE
  212. ctx->rtpIN = fopen("airplay.rtpin", "wb");
  213. ctx->rtpOUT = fopen("airplay.rtpout", "wb");
  214. #endif
  215. ctx->rtp_sockets[CONTROL].rport = pCtrlPort;
  216. ctx->rtp_sockets[TIMING].rport = pTimingPort;
  217. if (aesiv && aeskey) {
  218. memcpy(ctx->aesiv, aesiv, 16);
  219. #ifdef WIN32
  220. AES_set_decrypt_key((unsigned char*) aeskey, 128, &ctx->aes);
  221. #else
  222. memset(&ctx->aes, 0, sizeof(mbedtls_aes_context));
  223. mbedtls_aes_setkey_dec(&ctx->aes, (unsigned char*) aeskey, 128);
  224. #endif
  225. ctx->decrypt = true;
  226. ctx->decrypt_buf = malloc(MAX_PACKET);
  227. }
  228. memset(fmtp, 0, sizeof(fmtp));
  229. while ((arg = strsep(&fmtpstr, " \t")) != NULL) fmtp[i++] = atoi(arg);
  230. ctx->frame_size = fmtp[1];
  231. ctx->frame_duration = (ctx->frame_size * 1000) / RAOP_SAMPLE_RATE;
  232. // alac decoder
  233. ctx->alac_codec = alac_init(fmtp);
  234. rc &= ctx->alac_codec != NULL;
  235. buffer_alloc(ctx->audio_buffer, ctx->frame_size*4, buffer, size);
  236. // create rtp ports
  237. for (i = 0; i < 3; i++) {
  238. ctx->rtp_sockets[i].sock = bind_socket(&ctx->rtp_sockets[i].lport, SOCK_DGRAM);
  239. rc &= ctx->rtp_sockets[i].sock > 0;
  240. }
  241. // create http port and start listening
  242. resp.cport = ctx->rtp_sockets[CONTROL].lport;
  243. resp.tport = ctx->rtp_sockets[TIMING].lport;
  244. resp.aport = ctx->rtp_sockets[DATA].lport;
  245. ctx->running = true;
  246. #ifdef WIN32
  247. pthread_create(&ctx->thread, NULL, rtp_thread_func, (void *) ctx);
  248. #else
  249. ctx->xTaskBuffer = (StaticTask_t*) heap_caps_malloc(sizeof(StaticTask_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  250. ctx->thread = xTaskCreateStaticPinnedToCore( (TaskFunction_t) rtp_thread_func, "RTP_thread", RTP_STACK_SIZE, ctx,
  251. CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT + 1, ctx->xStack, ctx->xTaskBuffer,
  252. CONFIG_PTHREAD_TASK_CORE_DEFAULT );
  253. #endif
  254. // cleanup everything if we failed
  255. if (!rc) {
  256. LOG_ERROR("[%p]: cannot start RTP", ctx);
  257. rtp_end(ctx);
  258. ctx = NULL;
  259. }
  260. resp.ctx = ctx;
  261. return resp;
  262. }
  263. /*---------------------------------------------------------------------------*/
  264. void rtp_end(rtp_t *ctx)
  265. {
  266. int i;
  267. if (!ctx) return;
  268. if (ctx->running) {
  269. #if !defined WIN32
  270. ctx->joiner = xTaskGetCurrentTaskHandle();
  271. #endif
  272. ctx->running = false;
  273. #ifdef WIN32
  274. pthread_join(ctx->thread, NULL);
  275. #else
  276. ulTaskNotifyTake(pdFALSE, portMAX_DELAY);
  277. vTaskDelete(ctx->thread);
  278. SAFE_PTR_FREE(ctx->xTaskBuffer);
  279. #endif
  280. }
  281. for (i = 0; i < 3; i++) closesocket(ctx->rtp_sockets[i].sock);
  282. if (ctx->alac_codec) alac_delete_decoder(ctx->alac_codec);
  283. if (ctx->decrypt_buf) free(ctx->decrypt_buf);
  284. pthread_mutex_destroy(&ctx->ab_mutex);
  285. buffer_release(ctx->audio_buffer);
  286. free(ctx);
  287. #ifdef __RTP_STORE
  288. fclose(ctx->rtpIN);
  289. fclose(ctx->rtpOUT);
  290. #endif
  291. }
  292. /*---------------------------------------------------------------------------*/
  293. bool rtp_flush(rtp_t *ctx, unsigned short seqno, unsigned int rtptime, bool exit_locked)
  294. {
  295. bool rc = true;
  296. u32_t now = gettime_ms();
  297. if (now < ctx->record.time + 250 || (ctx->record.seqno == seqno && ctx->record.rtptime == rtptime)) {
  298. rc = false;
  299. LOG_ERROR("[%p]: FLUSH ignored as same as RECORD (%hu - %u)", ctx, seqno, rtptime);
  300. } else {
  301. pthread_mutex_lock(&ctx->ab_mutex);
  302. buffer_reset(ctx->audio_buffer);
  303. ctx->playing = false;
  304. ctx->flush_seqno = seqno;
  305. if (!exit_locked) pthread_mutex_unlock(&ctx->ab_mutex);
  306. }
  307. LOG_INFO("[%p]: flush %hu %u", ctx, seqno, rtptime);
  308. return rc;
  309. }
  310. /*---------------------------------------------------------------------------*/
  311. void rtp_flush_release(rtp_t *ctx) {
  312. pthread_mutex_unlock(&ctx->ab_mutex);
  313. }
  314. /*---------------------------------------------------------------------------*/
  315. void rtp_record(rtp_t *ctx, unsigned short seqno, unsigned rtptime) {
  316. ctx->record.seqno = seqno;
  317. ctx->record.rtptime = rtptime;
  318. ctx->record.time = gettime_ms();
  319. LOG_INFO("[%p]: record %hu %u", ctx, seqno, rtptime);
  320. }
  321. /*---------------------------------------------------------------------------*/
  322. static void buffer_alloc(abuf_t *audio_buffer, int size, uint8_t *buf, size_t buf_size) {
  323. for (buffer_frames = 0; buf && buf_size >= size && buffer_frames < BUFFER_FRAMES_MAX; buffer_frames++) {
  324. audio_buffer[buffer_frames].data = (s16_t*) buf;
  325. audio_buffer[buffer_frames].allocated = 0;
  326. audio_buffer[buffer_frames].ready = 0;
  327. buf += size;
  328. buf_size -= size;
  329. }
  330. LOG_INFO("allocated %d buffers (min=%d) from buffer of %zu bytes", buffer_frames, BUFFER_FRAMES_MIN, buf_size + buffer_frames * size);
  331. for(; buffer_frames < BUFFER_FRAMES_MIN; buffer_frames++) {
  332. audio_buffer[buffer_frames].data = malloc(size);
  333. audio_buffer[buffer_frames].allocated = 1;
  334. audio_buffer[buffer_frames].ready = 0;
  335. }
  336. }
  337. /*---------------------------------------------------------------------------*/
  338. static void buffer_release(abuf_t *audio_buffer) {
  339. int i;
  340. for (i = 0; i < buffer_frames; i++) {
  341. if (audio_buffer[i].allocated) free(audio_buffer[i].data);
  342. }
  343. }
  344. /*---------------------------------------------------------------------------*/
  345. static void buffer_reset(abuf_t *audio_buffer) {
  346. int i;
  347. for (i = 0; i < buffer_frames; i++) audio_buffer[i].ready = 0;
  348. }
  349. /*---------------------------------------------------------------------------*/
  350. // the sequence numbers will wrap pretty often.
  351. // this returns true if the second arg is after the first
  352. static int seq_order(seq_t a, seq_t b) {
  353. s16_t d = b - a;
  354. return d > 0;
  355. }
  356. /*---------------------------------------------------------------------------*/
  357. static void alac_decode(rtp_t *ctx, s16_t *dest, char *buf, int len, u16_t *outsize) {
  358. unsigned char iv[16];
  359. int aeslen;
  360. assert(len<=MAX_PACKET);
  361. if (ctx->decrypt) {
  362. aeslen = len & ~0xf;
  363. memcpy(iv, ctx->aesiv, sizeof(iv));
  364. #ifdef WIN32
  365. AES_cbc_encrypt((unsigned char*)buf, ctx->decrypt_buf, aeslen, &ctx->aes, iv, AES_DECRYPT);
  366. #else
  367. mbedtls_aes_crypt_cbc(&ctx->aes, MBEDTLS_AES_DECRYPT, aeslen, iv, (unsigned char*) buf, ctx->decrypt_buf);
  368. #endif
  369. memcpy(ctx->decrypt_buf+aeslen, buf+aeslen, len-aeslen);
  370. alac_to_pcm(ctx->alac_codec, (unsigned char*) ctx->decrypt_buf, (unsigned char*) dest, 2, (unsigned int*) outsize);
  371. } else {
  372. alac_to_pcm(ctx->alac_codec, (unsigned char*) buf, (unsigned char*) dest, 2, (unsigned int*) outsize);
  373. }
  374. *outsize *= 4;
  375. }
  376. /*---------------------------------------------------------------------------*/
  377. static void buffer_put_packet(rtp_t *ctx, seq_t seqno, unsigned rtptime, bool first, char *data, int len) {
  378. abuf_t *abuf = NULL;
  379. u32_t playtime;
  380. pthread_mutex_lock(&ctx->ab_mutex);
  381. if (!ctx->playing) {
  382. if ((ctx->flush_seqno == -1 || seq_order(ctx->flush_seqno, seqno)) &&
  383. (ctx->synchro.status & RTP_SYNC) && (ctx->synchro.status & NTP_SYNC)) {
  384. ctx->ab_write = seqno-1;
  385. ctx->ab_read = seqno;
  386. ctx->flush_seqno = -1;
  387. ctx->playing = true;
  388. ctx->resent_req = ctx->resent_rec = ctx->silent_frames = ctx->discarded = 0;
  389. playtime = ctx->synchro.time + ((rtptime - ctx->synchro.rtp) * 10) / (RAOP_SAMPLE_RATE / 100);
  390. ctx->cmd_cb(RAOP_PLAY, playtime);
  391. } else {
  392. pthread_mutex_unlock(&ctx->ab_mutex);
  393. return;
  394. }
  395. }
  396. if (seqno == (u16_t) (ctx->ab_write+1)) {
  397. // expected packet
  398. abuf = ctx->audio_buffer + BUFIDX(seqno);
  399. ctx->ab_write = seqno;
  400. LOG_SDEBUG("packet expected seqno:%hu rtptime:%u (W:%hu R:%hu)", seqno, rtptime, ctx->ab_write, ctx->ab_read);
  401. } else if (seq_order(ctx->ab_write, seqno)) {
  402. seq_t i;
  403. u32_t now;
  404. // newer than expected
  405. if (ctx->latency && seq_order(ctx->latency / ctx->frame_size, seqno - ctx->ab_write - 1)) {
  406. // only get rtp latency-1 frames back (last one is seqno)
  407. LOG_WARN("[%p] too many missing frames %hu seq: %hu, (W:%hu R:%hu)", ctx, seqno - ctx->ab_write - 1, seqno, ctx->ab_write, ctx->ab_read);
  408. ctx->ab_write = seqno - ctx->latency / ctx->frame_size;
  409. }
  410. // need to request re-send and adjust timing of gaps
  411. rtp_request_resend(ctx, ctx->ab_write + 1, seqno-1);
  412. for (now = gettime_ms(), i = ctx->ab_write + 1; seq_order(i, seqno); i++) {
  413. ctx->audio_buffer[BUFIDX(i)].rtptime = rtptime - (seqno-i)*ctx->frame_size;
  414. ctx->audio_buffer[BUFIDX(i)].last_resend = now;
  415. }
  416. LOG_DEBUG("[%p]: packet newer seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  417. abuf = ctx->audio_buffer + BUFIDX(seqno);
  418. ctx->ab_write = seqno;
  419. } else if (seq_order(ctx->ab_read, seqno + 1)) {
  420. // recovered packet, not yet sent
  421. abuf = ctx->audio_buffer + BUFIDX(seqno);
  422. ctx->resent_rec++;
  423. LOG_DEBUG("[%p]: packet recovered seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  424. } else {
  425. // too late
  426. LOG_DEBUG("[%p]: packet too late seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  427. }
  428. if (ctx->in_frames++ > 1000) {
  429. LOG_INFO("[%p]: fill [level:%hu rec:%u] [W:%hu R:%hu]", ctx, ctx->ab_write - ctx->ab_read, ctx->resent_rec, ctx->ab_write, ctx->ab_read);
  430. ctx->in_frames = 0;
  431. }
  432. if (abuf) {
  433. alac_decode(ctx, abuf->data, data, len, &abuf->len);
  434. abuf->ready = 1;
  435. // this is the local rtptime when this frame is expected to play
  436. abuf->rtptime = rtptime;
  437. buffer_push_packet(ctx);
  438. #ifdef __RTP_STORE
  439. fwrite(data, len, 1, ctx->rtpIN);
  440. fwrite(abuf->data, abuf->len, 1, ctx->rtpOUT);
  441. #endif
  442. }
  443. pthread_mutex_unlock(&ctx->ab_mutex);
  444. }
  445. /*---------------------------------------------------------------------------*/
  446. // push as many frames as possible through callback
  447. static void buffer_push_packet(rtp_t *ctx) {
  448. abuf_t *curframe = NULL;
  449. u32_t now, playtime, hold = max((ctx->latency * 1000) / (8 * RAOP_SAMPLE_RATE), 100);
  450. int i;
  451. // not ready to play yet
  452. if (!ctx->playing || ctx->synchro.status != (RTP_SYNC | NTP_SYNC)) return;
  453. // there is always at least one frame in the buffer
  454. do {
  455. // re-evaluate time in loop in case data callback blocks ...
  456. now = gettime_ms();
  457. // try to manage playtime so that we overflow as late as possible if we miss NTP (2^31 / 10 / 44100)
  458. curframe = ctx->audio_buffer + BUFIDX(ctx->ab_read);
  459. playtime = ctx->synchro.time + ((curframe->rtptime - ctx->synchro.rtp) * 10) / (RAOP_SAMPLE_RATE / 100);
  460. if (now > playtime) {
  461. LOG_DEBUG("[%p]: discarded frame now:%u missed by:%d (W:%hu R:%hu)", ctx, now, now - playtime, ctx->ab_write, ctx->ab_read);
  462. ctx->discarded++;
  463. curframe->ready = 0;
  464. } else if (playtime - now <= hold) {
  465. if (curframe->ready) {
  466. ctx->data_cb((const u8_t*) curframe->data, curframe->len, playtime);
  467. curframe->ready = 0;
  468. } else {
  469. LOG_DEBUG("[%p]: created zero frame (W:%hu R:%hu)", ctx, ctx->ab_write, ctx->ab_read);
  470. ctx->data_cb(silence_frame, ctx->frame_size * 4, playtime);
  471. ctx->silent_frames++;
  472. }
  473. } else if (curframe->ready) {
  474. ctx->data_cb((const u8_t*) curframe->data, curframe->len, playtime);
  475. curframe->ready = 0;
  476. } else {
  477. break;
  478. }
  479. ctx->ab_read++;
  480. ctx->out_frames++;
  481. } while (seq_order(ctx->ab_read, ctx->ab_write));
  482. if (ctx->out_frames > 1000) {
  483. LOG_INFO("[%p]: drain [level:%hd head:%d ms] [W:%hu R:%hu] [req:%u sil:%u dis:%u]",
  484. ctx, ctx->ab_write - ctx->ab_read, playtime - now, ctx->ab_write, ctx->ab_read,
  485. ctx->resent_req, ctx->silent_frames, ctx->discarded);
  486. ctx->out_frames = 0;
  487. }
  488. LOG_SDEBUG("playtime %u %d [W:%hu R:%hu] %d", playtime, playtime - now, ctx->ab_write, ctx->ab_read, curframe->ready);
  489. // each missing packet will be requested up to (latency_frames / 16) times
  490. for (i = 0; seq_order(ctx->ab_read + i, ctx->ab_write); i += 16) {
  491. abuf_t *frame = ctx->audio_buffer + BUFIDX(ctx->ab_read + i);
  492. if (!frame->ready && now - frame->last_resend > RESEND_TO) {
  493. rtp_request_resend(ctx, ctx->ab_read + i, ctx->ab_read + i);
  494. frame->last_resend = now;
  495. }
  496. }
  497. }
  498. /*---------------------------------------------------------------------------*/
  499. #ifdef WIN32
  500. static void *rtp_thread_func(void *arg) {
  501. #else
  502. static void rtp_thread_func(void *arg) {
  503. #endif
  504. fd_set fds;
  505. int i, sock = -1;
  506. int count = 0;
  507. bool ntp_sent;
  508. char *packet = malloc(MAX_PACKET);
  509. rtp_t *ctx = (rtp_t*) arg;
  510. for (i = 0; i < 3; i++) {
  511. if (ctx->rtp_sockets[i].sock > sock) sock = ctx->rtp_sockets[i].sock;
  512. // send synchro request 3 times
  513. ntp_sent = rtp_request_timing(ctx);
  514. }
  515. while (ctx->running) {
  516. ssize_t plen;
  517. char type;
  518. socklen_t rtp_client_len = sizeof(struct sockaddr_in);
  519. int idx = 0;
  520. char *pktp = packet;
  521. struct timeval timeout = {0, 100*1000};
  522. FD_ZERO(&fds);
  523. for (i = 0; i < 3; i++) { FD_SET(ctx->rtp_sockets[i].sock, &fds); }
  524. if (select(sock + 1, &fds, NULL, NULL, &timeout) <= 0) continue;
  525. for (i = 0; i < 3; i++)
  526. if (FD_ISSET(ctx->rtp_sockets[i].sock, &fds)) idx = i;
  527. plen = recvfrom(ctx->rtp_sockets[idx].sock, packet, MAX_PACKET, MSG_DONTWAIT, (struct sockaddr*) &ctx->rtp_host, &rtp_client_len);
  528. if (!ntp_sent) {
  529. LOG_WARN("[%p]: NTP request not send yet", ctx);
  530. ntp_sent = rtp_request_timing(ctx);
  531. }
  532. if (plen <= 0) {
  533. LOG_WARN("Nothing received on a readable socket %d", plen);
  534. continue;
  535. }
  536. assert(plen <= MAX_PACKET);
  537. type = packet[1] & ~0x80;
  538. pktp = packet;
  539. switch (type) {
  540. seq_t seqno;
  541. unsigned rtptime;
  542. // re-sent packet
  543. case 0x56: {
  544. pktp += 4;
  545. plen -= 4;
  546. }
  547. // fall through
  548. // data packet
  549. case 0x60: {
  550. seqno = ntohs(*(u16_t*)(pktp+2));
  551. rtptime = ntohl(*(u32_t*)(pktp+4));
  552. // adjust pointer and length
  553. pktp += 12;
  554. plen -= 12;
  555. LOG_SDEBUG("[%p]: seqno:%hu rtp:%u (type: %x, first: %u)", ctx, seqno, rtptime, type, packet[1] & 0x80);
  556. // check if packet contains enough content to be reasonable
  557. if (plen < 16) break;
  558. if ((packet[1] & 0x80) && (type != 0x56)) {
  559. LOG_INFO("[%p]: 1st audio packet received", ctx);
  560. }
  561. buffer_put_packet(ctx, seqno, rtptime, packet[1] & 0x80, pktp, plen);
  562. break;
  563. }
  564. // sync packet
  565. case 0x54: {
  566. u32_t rtp_now_latency = ntohl(*(u32_t*)(pktp+4));
  567. u64_t remote = (((u64_t) ntohl(*(u32_t*)(pktp+8))) << 32) + ntohl(*(u32_t*)(pktp+12));
  568. u32_t rtp_now = ntohl(*(u32_t*)(pktp+16));
  569. u16_t flags = ntohs(*(u16_t*)(pktp+2));
  570. u32_t remote_gap = NTP2MS(remote - ctx->timing.remote);
  571. // try to get NTP every 3 sec or every time if we are not synced
  572. if (!count-- || !(ctx->synchro.status & NTP_SYNC)) {
  573. rtp_request_timing(ctx);
  574. count = 3;
  575. }
  576. // something is wrong, we should not have such gap
  577. if (remote_gap > 10000) {
  578. LOG_WARN("discarding remote timing information %u", remote_gap);
  579. break;
  580. }
  581. pthread_mutex_lock(&ctx->ab_mutex);
  582. // re-align timestamp and expected local playback time (and magic 11025 latency)
  583. ctx->latency = rtp_now - rtp_now_latency;
  584. if (flags == 7 || flags == 4) ctx->latency += 11025;
  585. if (ctx->latency < MIN_LATENCY) ctx->latency = MIN_LATENCY;
  586. else if (ctx->latency > MAX_LATENCY) ctx->latency = MAX_LATENCY;
  587. ctx->synchro.rtp = rtp_now - ctx->latency;
  588. ctx->synchro.time = ctx->timing.local + remote_gap;
  589. // now we are synced on RTP frames
  590. ctx->synchro.status |= RTP_SYNC;
  591. // 1st sync packet received (signals a restart of playback)
  592. if (packet[0] & 0x10) {
  593. LOG_INFO("[%p]: 1st sync packet received", ctx);
  594. }
  595. pthread_mutex_unlock(&ctx->ab_mutex);
  596. LOG_DEBUG("[%p]: sync packet latency:%d rtp_latency:%u rtp:%u remote ntp:%llx, local time:%u local rtp:%u (now:%u)",
  597. ctx, ctx->latency, rtp_now_latency, rtp_now, remote, ctx->synchro.time, ctx->synchro.rtp, gettime_ms());
  598. if ((ctx->synchro.status & RTP_SYNC) && (ctx->synchro.status & NTP_SYNC)) ctx->cmd_cb(RAOP_TIMING);
  599. break;
  600. }
  601. // NTP timing packet
  602. case 0x53: {
  603. u32_t reference = ntohl(*(u32_t*)(pktp+12)); // only low 32 bits in our case
  604. u64_t remote =(((u64_t) ntohl(*(u32_t*)(pktp+16))) << 32) + ntohl(*(u32_t*)(pktp+20));
  605. u32_t roundtrip = gettime_ms() - reference;
  606. // better discard sync packets when roundtrip is suspicious
  607. if (roundtrip > 100) {
  608. // ask for another one only if we are not synced already
  609. if (!(ctx->synchro.status & NTP_SYNC)) rtp_request_timing(ctx);
  610. LOG_WARN("[%p]: discarding NTP roundtrip of %u ms", ctx, roundtrip);
  611. break;
  612. }
  613. /*
  614. The expected elapsed remote time should be exactly the same as
  615. elapsed local time between the two request, corrected by the
  616. drifting
  617. u64_t expected = ctx->timing.remote + MS2NTP(reference - ctx->timing.local);
  618. */
  619. ctx->timing.remote = remote;
  620. ctx->timing.local = reference;
  621. // now we are synced on NTP (mutex not needed)
  622. ctx->synchro.status |= NTP_SYNC;
  623. LOG_DEBUG("[%p]: Timing references local:%llu, remote:%llx (delta:%lld, sum:%lld, adjust:%lld, gaps:%d)",
  624. ctx, ctx->timing.local, ctx->timing.remote);
  625. break;
  626. }
  627. default: {
  628. LOG_WARN("Unknown packet received %x", (int) type);
  629. break;
  630. }
  631. }
  632. }
  633. free(packet);
  634. LOG_INFO("[%p]: terminating", ctx);
  635. #ifndef WIN32
  636. xTaskNotifyGive(ctx->joiner);
  637. vTaskSuspend(NULL);
  638. #else
  639. return NULL;
  640. #endif
  641. }
  642. /*---------------------------------------------------------------------------*/
  643. static bool rtp_request_timing(rtp_t *ctx) {
  644. unsigned char req[32];
  645. u32_t now = gettime_ms();
  646. int i;
  647. struct sockaddr_in host;
  648. LOG_DEBUG("[%p]: timing request now:%u (port: %hu)", ctx, now, ctx->rtp_sockets[TIMING].rport);
  649. req[0] = 0x80;
  650. req[1] = 0x52|0x80;
  651. *(u16_t*)(req+2) = htons(7);
  652. *(u32_t*)(req+4) = htonl(0); // dummy
  653. for (i = 0; i < 16; i++) req[i+8] = 0;
  654. *(u32_t*)(req+24) = 0;
  655. *(u32_t*)(req+28) = htonl(now); // this is not a real NTP, but a 32 ms counter in the low part of the NTP
  656. if (ctx->host.s_addr != INADDR_ANY) {
  657. host.sin_family = AF_INET;
  658. host.sin_addr = ctx->host;
  659. } else host = ctx->rtp_host;
  660. // no address from sender, need to wait for 1st packet to be received
  661. if (host.sin_addr.s_addr == INADDR_ANY) return false;
  662. host.sin_port = htons(ctx->rtp_sockets[TIMING].rport);
  663. if (sizeof(req) != sendto(ctx->rtp_sockets[TIMING].sock, req, sizeof(req), MSG_DONTWAIT, (struct sockaddr*) &host, sizeof(host))) {
  664. LOG_WARN("[%p]: SENDTO failed (%s)", ctx, strerror(errno));
  665. }
  666. return true;
  667. }
  668. /*---------------------------------------------------------------------------*/
  669. static bool rtp_request_resend(rtp_t *ctx, seq_t first, seq_t last) {
  670. unsigned char req[8]; // *not* a standard RTCP NACK
  671. // do not request silly ranges (happens in case of network large blackouts)
  672. if (seq_order(last, first) || last - first > buffer_frames / 2) return false;
  673. ctx->resent_req += (seq_t) (last - first) + 1;
  674. LOG_DEBUG("resend request [W:%hu R:%hu first=%hu last=%hu]", ctx->ab_write, ctx->ab_read, first, last);
  675. req[0] = 0x80;
  676. req[1] = 0x55|0x80; // Apple 'resend'
  677. *(u16_t*)(req+2) = htons(1); // our seqnum
  678. *(u16_t*)(req+4) = htons(first); // missed seqnum
  679. *(u16_t*)(req+6) = htons(last-first+1); // count
  680. ctx->rtp_host.sin_port = htons(ctx->rtp_sockets[CONTROL].rport);
  681. if (sizeof(req) != sendto(ctx->rtp_sockets[CONTROL].sock, req, sizeof(req), MSG_DONTWAIT, (struct sockaddr*) &ctx->rtp_host, sizeof(ctx->rtp_host))) {
  682. LOG_WARN("[%p]: SENDTO failed (%s)", ctx, strerror(errno));
  683. }
  684. return true;
  685. }