123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 |
- /* ***** BEGIN LICENSE BLOCK *****
- * Source last modified: $Id: fft.c,v 1.1 2005/02/26 01:47:34 jrecker Exp $
- *
- * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
- *
- * The contents of this file, and the files included with this file,
- * are subject to the current version of the RealNetworks Public
- * Source License (the "RPSL") available at
- * http://www.helixcommunity.org/content/rpsl unless you have licensed
- * the file under the current version of the RealNetworks Community
- * Source License (the "RCSL") available at
- * http://www.helixcommunity.org/content/rcsl, in which case the RCSL
- * will apply. You may also obtain the license terms directly from
- * RealNetworks. You may not use this file except in compliance with
- * the RPSL or, if you have a valid RCSL with RealNetworks applicable
- * to this file, the RCSL. Please see the applicable RPSL or RCSL for
- * the rights, obligations and limitations governing use of the
- * contents of the file.
- *
- * This file is part of the Helix DNA Technology. RealNetworks is the
- * developer of the Original Code and owns the copyrights in the
- * portions it created.
- *
- * This file, and the files included with this file, is distributed
- * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
- * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
- * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
- * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
- * ENJOYMENT OR NON-INFRINGEMENT.
- *
- * Technology Compatibility Kit Test Suite(s) Location:
- * http://www.helixcommunity.org/content/tck
- *
- * Contributor(s):
- *
- * ***** END LICENSE BLOCK ***** */
- /**************************************************************************************
- * Fixed-point HE-AAC decoder
- * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
- * February 2005
- *
- * fft.c - Ken's optimized radix-4 DIT FFT, optional radix-8 first pass for odd log2(N)
- **************************************************************************************/
- #include "coder.h"
- #include "assembly.h"
- #define NUM_FFT_SIZES 2
- static const int nfftTab[NUM_FFT_SIZES] PROGMEM ={64, 512};
- static const int nfftlog2Tab[NUM_FFT_SIZES] PROGMEM = {6, 9};
- #define SQRT1_2 0x5a82799a /* sqrt(1/2) in Q31 */
- #define swapcplx(p0,p1) \
- t = p0; t1 = *(&(p0)+1); p0 = p1; *(&(p0)+1) = *(&(p1)+1); p1 = t; *(&(p1)+1) = t1
- /**************************************************************************************
- * Function: BitReverse
- *
- * Description: Ken's fast in-place bit reverse, using super-small table
- *
- * Inputs: buffer of samples
- * table index (for transform size)
- *
- * Outputs: bit-reversed samples in same buffer
- *
- * Return: none
- **************************************************************************************/
- /*__attribute__ ((section (".data"))) */ static void BitReverse(int *inout, int tabidx)
- {
- int *part0, *part1;
- int a,b, t,t1;
- const unsigned char* tab = bitrevtab + bitrevtabOffset[tabidx];
- int nbits = nfftlog2Tab[tabidx];
- part0 = inout;
- part1 = inout + (1 << nbits);
-
- while ((a = pgm_read_byte(tab++)) != 0) {
- b = pgm_read_byte(tab++);
- swapcplx(part0[4*a+0], part0[4*b+0]); /* 0xxx0 <-> 0yyy0 */
- swapcplx(part0[4*a+2], part1[4*b+0]); /* 0xxx1 <-> 1yyy0 */
- swapcplx(part1[4*a+0], part0[4*b+2]); /* 1xxx0 <-> 0yyy1 */
- swapcplx(part1[4*a+2], part1[4*b+2]); /* 1xxx1 <-> 1yyy1 */
- }
- do {
- swapcplx(part0[4*a+2], part1[4*a+0]); /* 0xxx1 <-> 1xxx0 */
- } while ((a = pgm_read_byte(tab++)) != 0);
-
-
- }
- /**************************************************************************************
- * Function: R4FirstPass
- *
- * Description: radix-4 trivial pass for decimation-in-time FFT
- *
- * Inputs: buffer of (bit-reversed) samples
- * number of R4 butterflies per group (i.e. nfft / 4)
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: assumes 2 guard bits, gains no integer bits,
- * guard bits out = guard bits in - 2
- **************************************************************************************/
- /* __attribute__ ((section (".data"))) */ static void R4FirstPass(int *x, int bg)
- {
- int ar, ai, br, bi, cr, ci, dr, di;
-
- for (; bg != 0; bg--) {
- ar = x[0] + x[2];
- br = x[0] - x[2];
- ai = x[1] + x[3];
- bi = x[1] - x[3];
- cr = x[4] + x[6];
- dr = x[4] - x[6];
- ci = x[5] + x[7];
- di = x[5] - x[7];
- /* max per-sample gain = 4.0 (adding 4 inputs together) */
- x[0] = ar + cr;
- x[4] = ar - cr;
- x[1] = ai + ci;
- x[5] = ai - ci;
- x[2] = br + di;
- x[6] = br - di;
- x[3] = bi - dr;
- x[7] = bi + dr;
- x += 8;
- }
- }
- /**************************************************************************************
- * Function: R8FirstPass
- *
- * Description: radix-8 trivial pass for decimation-in-time FFT
- *
- * Inputs: buffer of (bit-reversed) samples
- * number of R8 butterflies per group (i.e. nfft / 8)
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: assumes 3 guard bits, gains 1 integer bit
- * guard bits out = guard bits in - 3 (if inputs are full scale)
- * or guard bits in - 2 (if inputs bounded to +/- sqrt(2)/2)
- * see scaling comments in code
- **************************************************************************************/
- /* __attribute__ ((section (".data"))) */ static void R8FirstPass(int *x, int bg)
- {
- int ar, ai, br, bi, cr, ci, dr, di;
- int sr, si, tr, ti, ur, ui, vr, vi;
- int wr, wi, xr, xi, yr, yi, zr, zi;
- for (; bg != 0; bg--) {
- ar = x[0] + x[2];
- br = x[0] - x[2];
- ai = x[1] + x[3];
- bi = x[1] - x[3];
- cr = x[4] + x[6];
- dr = x[4] - x[6];
- ci = x[5] + x[7];
- di = x[5] - x[7];
- sr = ar + cr;
- ur = ar - cr;
- si = ai + ci;
- ui = ai - ci;
- tr = br - di;
- vr = br + di;
- ti = bi + dr;
- vi = bi - dr;
- ar = x[ 8] + x[10];
- br = x[ 8] - x[10];
- ai = x[ 9] + x[11];
- bi = x[ 9] - x[11];
- cr = x[12] + x[14];
- dr = x[12] - x[14];
- ci = x[13] + x[15];
- di = x[13] - x[15];
- /* max gain of wr/wi/yr/yi vs input = 2
- * (sum of 4 samples >> 1)
- */
- wr = (ar + cr) >> 1;
- yr = (ar - cr) >> 1;
- wi = (ai + ci) >> 1;
- yi = (ai - ci) >> 1;
- /* max gain of output vs input = 4
- * (sum of 4 samples >> 1 + sum of 4 samples >> 1)
- */
- x[ 0] = (sr >> 1) + wr;
- x[ 8] = (sr >> 1) - wr;
- x[ 1] = (si >> 1) + wi;
- x[ 9] = (si >> 1) - wi;
- x[ 4] = (ur >> 1) + yi;
- x[12] = (ur >> 1) - yi;
- x[ 5] = (ui >> 1) - yr;
- x[13] = (ui >> 1) + yr;
- ar = br - di;
- cr = br + di;
- ai = bi + dr;
- ci = bi - dr;
- /* max gain of xr/xi/zr/zi vs input = 4*sqrt(2)/2 = 2*sqrt(2)
- * (sum of 8 samples, multiply by sqrt(2)/2, implicit >> 1 from Q31)
- */
- xr = MULSHIFT32(SQRT1_2, ar - ai);
- xi = MULSHIFT32(SQRT1_2, ar + ai);
- zr = MULSHIFT32(SQRT1_2, cr - ci);
- zi = MULSHIFT32(SQRT1_2, cr + ci);
- /* max gain of output vs input = (2 + 2*sqrt(2) ~= 4.83)
- * (sum of 4 samples >> 1, plus xr/xi/zr/zi with gain of 2*sqrt(2))
- * in absolute terms, we have max gain of appx 9.656 (4 + 0.707*8)
- * but we also gain 1 int bit (from MULSHIFT32 or from explicit >> 1)
- */
- x[ 6] = (tr >> 1) - xr;
- x[14] = (tr >> 1) + xr;
- x[ 7] = (ti >> 1) - xi;
- x[15] = (ti >> 1) + xi;
- x[ 2] = (vr >> 1) + zi;
- x[10] = (vr >> 1) - zi;
- x[ 3] = (vi >> 1) - zr;
- x[11] = (vi >> 1) + zr;
- x += 16;
- }
- }
- /**************************************************************************************
- * Function: R4Core
- *
- * Description: radix-4 pass for decimation-in-time FFT
- *
- * Inputs: buffer of samples
- * number of R4 butterflies per group
- * number of R4 groups per pass
- * pointer to twiddle factors tables
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: gain 2 integer bits per pass (see scaling comments in code)
- * min 1 GB in
- * gbOut = gbIn - 1 (short block) or gbIn - 2 (long block)
- * uses 3-mul, 3-add butterflies instead of 4-mul, 2-add
- **************************************************************************************/
- /* __attribute__ ((section (".data"))) */ static void R4Core(int *x, int bg, int gp, int *wtab)
- {
- int ar, ai, br, bi, cr, ci, dr, di, tr, ti;
- int wd, ws, wi;
- int i, j, step;
- int *xptr, *wptr;
- for (; bg != 0; gp <<= 2, bg >>= 2) {
- step = 2*gp;
- xptr = x;
- /* max per-sample gain, per group < 1 + 3*sqrt(2) ~= 5.25 if inputs x are full-scale
- * do 3 groups for long block, 2 groups for short block (gain 2 int bits per group)
- *
- * very conservative scaling:
- * group 1: max gain = 5.25, int bits gained = 2, gb used = 1 (2^3 = 8)
- * group 2: max gain = 5.25^2 = 27.6, int bits gained = 4, gb used = 1 (2^5 = 32)
- * group 3: max gain = 5.25^3 = 144.7, int bits gained = 6, gb used = 2 (2^8 = 256)
- */
- for (i = bg; i != 0; i--) {
- wptr = wtab;
- for (j = gp; j != 0; j--) {
- ar = xptr[0];
- ai = xptr[1];
- xptr += step;
-
- /* gain 2 int bits for br/bi, cr/ci, dr/di (MULSHIFT32 by Q30)
- * gain 1 net GB
- */
- ws = wptr[0];
- wi = wptr[1];
- br = xptr[0];
- bi = xptr[1];
- wd = ws + 2*wi;
- tr = MULSHIFT32(wi, br + bi);
- br = MULSHIFT32(wd, br) - tr; /* cos*br + sin*bi */
- bi = MULSHIFT32(ws, bi) + tr; /* cos*bi - sin*br */
- xptr += step;
-
- ws = wptr[2];
- wi = wptr[3];
- cr = xptr[0];
- ci = xptr[1];
- wd = ws + 2*wi;
- tr = MULSHIFT32(wi, cr + ci);
- cr = MULSHIFT32(wd, cr) - tr;
- ci = MULSHIFT32(ws, ci) + tr;
- xptr += step;
-
- ws = wptr[4];
- wi = wptr[5];
- dr = xptr[0];
- di = xptr[1];
- wd = ws + 2*wi;
- tr = MULSHIFT32(wi, dr + di);
- dr = MULSHIFT32(wd, dr) - tr;
- di = MULSHIFT32(ws, di) + tr;
- wptr += 6;
- tr = ar;
- ti = ai;
- ar = (tr >> 2) - br;
- ai = (ti >> 2) - bi;
- br = (tr >> 2) + br;
- bi = (ti >> 2) + bi;
- tr = cr;
- ti = ci;
- cr = tr + dr;
- ci = di - ti;
- dr = tr - dr;
- di = di + ti;
- xptr[0] = ar + ci;
- xptr[1] = ai + dr;
- xptr -= step;
- xptr[0] = br - cr;
- xptr[1] = bi - di;
- xptr -= step;
- xptr[0] = ar - ci;
- xptr[1] = ai - dr;
- xptr -= step;
- xptr[0] = br + cr;
- xptr[1] = bi + di;
- xptr += 2;
- }
- xptr += 3*step;
- }
- wtab += 3*step;
- }
- }
- /**************************************************************************************
- * Function: R4FFT
- *
- * Description: Ken's very fast in-place radix-4 decimation-in-time FFT
- *
- * Inputs: table index (for transform size)
- * buffer of samples (non bit-reversed)
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: assumes 5 guard bits in for nfft <= 512
- * gbOut = gbIn - 4 (assuming input is from PreMultiply)
- * gains log2(nfft) - 2 int bits total
- * so gain 7 int bits (LONG), 4 int bits (SHORT)
- **************************************************************************************/
- void R4FFT(int tabidx, int *x)
- {
- int order = nfftlog2Tab[tabidx];
- int nfft = nfftTab[tabidx];
- /* decimation in time */
- BitReverse(x, tabidx);
- if (order & 0x1) {
- /* long block: order = 9, nfft = 512 */
- R8FirstPass(x, nfft >> 3); /* gain 1 int bit, lose 2 GB */
- R4Core(x, nfft >> 5, 8, (int *)twidTabOdd); /* gain 6 int bits, lose 2 GB */
- } else {
- /* short block: order = 6, nfft = 64 */
- R4FirstPass(x, nfft >> 2); /* gain 0 int bits, lose 2 GB */
- R4Core(x, nfft >> 4, 4, (int *)twidTabEven); /* gain 4 int bits, lose 1 GB */
- }
- }
|