123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- /* ***** BEGIN LICENSE BLOCK *****
- * Source last modified: $Id: sbrmath.c,v 1.1 2005/02/26 01:47:35 jrecker Exp $
- *
- * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
- *
- * The contents of this file, and the files included with this file,
- * are subject to the current version of the RealNetworks Public
- * Source License (the "RPSL") available at
- * http://www.helixcommunity.org/content/rpsl unless you have licensed
- * the file under the current version of the RealNetworks Community
- * Source License (the "RCSL") available at
- * http://www.helixcommunity.org/content/rcsl, in which case the RCSL
- * will apply. You may also obtain the license terms directly from
- * RealNetworks. You may not use this file except in compliance with
- * the RPSL or, if you have a valid RCSL with RealNetworks applicable
- * to this file, the RCSL. Please see the applicable RPSL or RCSL for
- * the rights, obligations and limitations governing use of the
- * contents of the file.
- *
- * This file is part of the Helix DNA Technology. RealNetworks is the
- * developer of the Original Code and owns the copyrights in the
- * portions it created.
- *
- * This file, and the files included with this file, is distributed
- * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
- * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
- * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
- * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
- * ENJOYMENT OR NON-INFRINGEMENT.
- *
- * Technology Compatibility Kit Test Suite(s) Location:
- * http://www.helixcommunity.org/content/tck
- *
- * Contributor(s):
- *
- * ***** END LICENSE BLOCK ***** */
- /**************************************************************************************
- * Fixed-point HE-AAC decoder
- * Jon Recker (jrecker@real.com)
- * February 2005
- *
- * sbrmath.c - fixed-point math functions for SBR
- **************************************************************************************/
- #include "sbr.h"
- #include "assembly.h"
- #define Q28_2 0x20000000 /* Q28: 2.0 */
- #define Q28_15 0x30000000 /* Q28: 1.5 */
- #define NUM_ITER_IRN 5
- /**************************************************************************************
- * Function: InvRNormalized
- *
- * Description: use Newton's method to solve for x = 1/r
- *
- * Inputs: r = Q31, range = [0.5, 1) (normalize your inputs to this range)
- *
- * Outputs: none
- *
- * Return: x = Q29, range ~= [1.0, 2.0]
- *
- * Notes: guaranteed to converge and not overflow for any r in [0.5, 1)
- *
- * xn+1 = xn - f(xn)/f'(xn)
- * f(x) = 1/r - x = 0 (find root)
- * = 1/x - r
- * f'(x) = -1/x^2
- *
- * so xn+1 = xn - (1/xn - r) / (-1/xn^2)
- * = xn * (2 - r*xn)
- *
- * NUM_ITER_IRN = 2, maxDiff = 6.2500e-02 (precision of about 4 bits)
- * NUM_ITER_IRN = 3, maxDiff = 3.9063e-03 (precision of about 8 bits)
- * NUM_ITER_IRN = 4, maxDiff = 1.5288e-05 (precision of about 16 bits)
- * NUM_ITER_IRN = 5, maxDiff = 3.0034e-08 (precision of about 24 bits)
- **************************************************************************************/
- int InvRNormalized(int r)
- {
- int i, xn, t;
- /* r = [0.5, 1.0)
- * 1/r = (1.0, 2.0]
- * so use 1.5 as initial guess
- */
- xn = Q28_15;
- /* xn = xn*(2.0 - r*xn) */
- for (i = NUM_ITER_IRN; i != 0; i--) {
- t = MULSHIFT32(r, xn); /* Q31*Q29 = Q28 */
- t = Q28_2 - t; /* Q28 */
- xn = MULSHIFT32(xn, t) << 4; /* Q29*Q28 << 4 = Q29 */
- }
- return xn;
- }
- #define NUM_TERMS_RPI 5
- #define LOG2_EXP_INV 0x58b90bfc /* 1/log2(e), Q31 */
- /* invTab[x] = 1/(x+1), format = Q30 */
- static const int invTab[NUM_TERMS_RPI] PROGMEM = {0x40000000, 0x20000000, 0x15555555, 0x10000000, 0x0ccccccd};
- /**************************************************************************************
- * Function: RatioPowInv
- *
- * Description: use Taylor (MacLaurin) series expansion to calculate (a/b) ^ (1/c)
- *
- * Inputs: a = [1, 64], b = [1, 64], c = [1, 64], a >= b
- *
- * Outputs: none
- *
- * Return: y = Q24, range ~= [0.015625, 64]
- **************************************************************************************/
- int RatioPowInv(int a, int b, int c)
- {
- int lna, lnb, i, p, t, y;
- if (a < 1 || b < 1 || c < 1 || a > 64 || b > 64 || c > 64 || a < b)
- return 0;
- lna = MULSHIFT32(log2Tab[a], LOG2_EXP_INV) << 1; /* ln(a), Q28 */
- lnb = MULSHIFT32(log2Tab[b], LOG2_EXP_INV) << 1; /* ln(b), Q28 */
- p = (lna - lnb) / c; /* Q28 */
- /* sum in Q24 */
- y = (1 << 24);
- t = p >> 4; /* t = p^1 * 1/1! (Q24)*/
- y += t;
- for (i = 2; i <= NUM_TERMS_RPI; i++) {
- t = MULSHIFT32(invTab[i-1], t) << 2;
- t = MULSHIFT32(p, t) << 4; /* t = p^i * 1/i! (Q24) */
- y += t;
- }
- return y;
- }
- /**************************************************************************************
- * Function: SqrtFix
- *
- * Description: use binary search to calculate sqrt(q)
- *
- * Inputs: q = Q30
- * number of fraction bits in input
- *
- * Outputs: number of fraction bits in output
- *
- * Return: lo = Q(fBitsOut)
- *
- * Notes: absolute precision varies depending on fBitsIn
- * normalizes input to range [0x200000000, 0x7fffffff] and takes
- * floor(sqrt(input)), and sets fBitsOut appropriately
- **************************************************************************************/
- int SqrtFix(int q, int fBitsIn, int *fBitsOut)
- {
- int z, lo, hi, mid;
- if (q <= 0) {
- *fBitsOut = fBitsIn;
- return 0;
- }
- /* force even fBitsIn */
- z = fBitsIn & 0x01;
- q >>= z;
- fBitsIn -= z;
- /* for max precision, normalize to [0x20000000, 0x7fffffff] */
- z = (CLZ(q) - 1);
- z >>= 1;
- q <<= (2*z);
- /* choose initial bounds */
- lo = 1;
- if (q >= 0x10000000)
- lo = 16384; /* (int)sqrt(0x10000000) */
- hi = 46340; /* (int)sqrt(0x7fffffff) */
- /* do binary search with 32x32->32 multiply test */
- do {
- mid = (lo + hi) >> 1;
- if (mid*mid > q)
- hi = mid - 1;
- else
- lo = mid + 1;
- } while (hi >= lo);
- lo--;
- *fBitsOut = ((fBitsIn + 2*z) >> 1);
- return lo;
- }
|