2
0

trigtabs.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. /* ***** BEGIN LICENSE BLOCK *****
  2. * Version: RCSL 1.0/RPSL 1.0
  3. *
  4. * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.
  5. *
  6. * The contents of this file, and the files included with this file, are
  7. * subject to the current version of the RealNetworks Public Source License
  8. * Version 1.0 (the "RPSL") available at
  9. * http://www.helixcommunity.org/content/rpsl unless you have licensed
  10. * the file under the RealNetworks Community Source License Version 1.0
  11. * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,
  12. * in which case the RCSL will apply. You may also obtain the license terms
  13. * directly from RealNetworks. You may not use this file except in
  14. * compliance with the RPSL or, if you have a valid RCSL with RealNetworks
  15. * applicable to this file, the RCSL. Please see the applicable RPSL or
  16. * RCSL for the rights, obligations and limitations governing use of the
  17. * contents of the file.
  18. *
  19. * This file is part of the Helix DNA Technology. RealNetworks is the
  20. * developer of the Original Code and owns the copyrights in the portions
  21. * it created.
  22. *
  23. * This file, and the files included with this file, is distributed and made
  24. * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  25. * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,
  26. * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
  27. * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
  28. *
  29. * Technology Compatibility Kit Test Suite(s) Location:
  30. * http://www.helixcommunity.org/content/tck
  31. *
  32. * Contributor(s):
  33. *
  34. * ***** END LICENSE BLOCK ***** */
  35. /**************************************************************************************
  36. * Fixed-point MP3 decoder
  37. * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
  38. * June 2003
  39. *
  40. * trigtabs.c - global ROM tables for pre-calculated trig coefficients
  41. **************************************************************************************/
  42. // constants in RAM are not significantly faster
  43. #include "coder.h"
  44. #include <pgmspace.h>
  45. #pragma GCC diagnostic push
  46. #pragma GCC diagnostic ignored "-Wnarrowing"
  47. /* post-IMDCT window, win[blockType][i]
  48. * format = Q31
  49. * Fused sin window with final stage of IMDCT
  50. * includes 1/sqrt(2) scaling, since we scale by sqrt(2) in dequant in order
  51. * for fast IMDCT36 to be usable
  52. *
  53. * for(i=0;i<9;i++) win[0][i] = sin(pi/36 *(i+0.5));
  54. * for(i=9;i<36;i++) win[0][i] = -sin(pi/36 *(i+0.5));
  55. *
  56. * for(i=0;i<9;i++) win[1][i] = sin(pi/36 *(i+0.5));
  57. * for(i=9;i<18;i++) win[1][i] = -sin(pi/36 *(i+0.5));
  58. * for(i=18;i<24;i++) win[1][i] = -1;
  59. * for(i=24;i<30;i++) win[1][i] = -sin(pi/12 *(i+0.5-18));
  60. * for(i=30;i<36;i++) win[1][i] = 0;
  61. *
  62. * for(i=0;i<6;i++) win[3][i] = 0;
  63. * for(i=6;i<9;i++) win[3][i] = sin(pi/12 *(i+0.5-6));
  64. * for(i=9;i<12;i++) win[3][i] = -sin(pi/12 *(i+0.5-6));
  65. * for(i=12;i<18;i++) win[3][i] = -1;
  66. * for(i=18;i<36;i++) win[3][i] = -sin(pi/36*(i+0.5));
  67. *
  68. * for(i=0;i<3;i++) win[2][i] = sin(pi/12*(i+0.5));
  69. * for(i=3;i<12;i++) win[2][i] = -sin(pi/12*(i+0.5));
  70. * for(i=12;i<36;i++) win[2][i] = 0;
  71. *
  72. * for (i = 0; i < 4; i++) {
  73. * if (i == 2) {
  74. * win[i][8] *= cos(pi/12 * (0+0.5));
  75. * win[i][9] *= cos(pi/12 * (0+0.5));
  76. * win[i][7] *= cos(pi/12 * (1+0.5));
  77. * win[i][10] *= cos(pi/12 * (1+0.5));
  78. * win[i][6] *= cos(pi/12 * (2+0.5));
  79. * win[i][11] *= cos(pi/12 * (2+0.5));
  80. * win[i][0] *= cos(pi/12 * (3+0.5));
  81. * win[i][5] *= cos(pi/12 * (3+0.5));
  82. * win[i][1] *= cos(pi/12 * (4+0.5));
  83. * win[i][4] *= cos(pi/12 * (4+0.5));
  84. * win[i][2] *= cos(pi/12 * (5+0.5));
  85. * win[i][3] *= cos(pi/12 * (5+0.5));
  86. * } else {
  87. * for (j = 0; j < 9; j++) {
  88. * win[i][8-j] *= cos(pi/36 * (17-j+0.5));
  89. * win[i][9+j] *= cos(pi/36 * (17-j+0.5));
  90. * }
  91. * for (j = 0; j < 9; j++) {
  92. * win[i][18+8-j] *= cos(pi/36 * (j+0.5));
  93. * win[i][18+9+j] *= cos(pi/36 * (j+0.5));
  94. * }
  95. * }
  96. * }
  97. * for (i = 0; i < 4; i++)
  98. * for (j = 0; j < 36; j++)
  99. * win[i][j] *= 1.0 / sqrt(2);
  100. */
  101. const int imdctWin[4][36] PROGMEM = {
  102. {
  103. 0x02aace8b, 0x07311c28, 0x0a868fec, 0x0c913b52, 0x0d413ccd, 0x0c913b52, 0x0a868fec, 0x07311c28,
  104. 0x02aace8b, 0xfd16d8dd, 0xf6a09e66, 0xef7a6275, 0xe7dbc161, 0xe0000000, 0xd8243e9f, 0xd0859d8b,
  105. 0xc95f619a, 0xc2e92723, 0xbd553175, 0xb8cee3d8, 0xb5797014, 0xb36ec4ae, 0xb2bec333, 0xb36ec4ae,
  106. 0xb5797014, 0xb8cee3d8, 0xbd553175, 0xc2e92723, 0xc95f619a, 0xd0859d8b, 0xd8243e9f, 0xe0000000,
  107. 0xe7dbc161, 0xef7a6275, 0xf6a09e66, 0xfd16d8dd,
  108. },
  109. {
  110. 0x02aace8b, 0x07311c28, 0x0a868fec, 0x0c913b52, 0x0d413ccd, 0x0c913b52, 0x0a868fec, 0x07311c28,
  111. 0x02aace8b, 0xfd16d8dd, 0xf6a09e66, 0xef7a6275, 0xe7dbc161, 0xe0000000, 0xd8243e9f, 0xd0859d8b,
  112. 0xc95f619a, 0xc2e92723, 0xbd44ef14, 0xb831a052, 0xb3aa3837, 0xafb789a4, 0xac6145bb, 0xa9adecdc,
  113. 0xa864491f, 0xad1868f0, 0xb8431f49, 0xc8f42236, 0xdda8e6b1, 0xf47755dc, 0x00000000, 0x00000000,
  114. 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  115. },
  116. {
  117. 0x07311c28, 0x0d413ccd, 0x07311c28, 0xf6a09e66, 0xe0000000, 0xc95f619a, 0xb8cee3d8, 0xb2bec333,
  118. 0xb8cee3d8, 0xc95f619a, 0xe0000000, 0xf6a09e66, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  119. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  120. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  121. 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  122. },
  123. {
  124. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x028e9709, 0x04855ec0,
  125. 0x026743a1, 0xfcde2c10, 0xf515dc82, 0xec93e53b, 0xe4c880f8, 0xdd5d0b08, 0xd63510b7, 0xcf5e834a,
  126. 0xc8e6b562, 0xc2da4105, 0xbd553175, 0xb8cee3d8, 0xb5797014, 0xb36ec4ae, 0xb2bec333, 0xb36ec4ae,
  127. 0xb5797014, 0xb8cee3d8, 0xbd553175, 0xc2e92723, 0xc95f619a, 0xd0859d8b, 0xd8243e9f, 0xe0000000,
  128. 0xe7dbc161, 0xef7a6275, 0xf6a09e66, 0xfd16d8dd,
  129. },
  130. };
  131. /* indexing = [mid-side off/on][intensity scale factor]
  132. * format = Q30, range = [0.0, 1.414]
  133. *
  134. * mid-side off:
  135. * ISFMpeg1[0][i] = tan(i*pi/12) / [1 + tan(i*pi/12)] (left scalefactor)
  136. * = 1 / [1 + tan(i*pi/12)] (right scalefactor)
  137. *
  138. * mid-side on:
  139. * ISFMpeg1[1][i] = sqrt(2) * ISFMpeg1[0][i]
  140. *
  141. * output L = ISFMpeg1[midSide][isf][0] * input L
  142. * output R = ISFMpeg1[midSide][isf][1] * input L
  143. *
  144. * obviously left scalefactor + right scalefactor = 1 (m-s off) or sqrt(2) (m-s on)
  145. * so just store left and calculate right as 1 - left
  146. * (can derive as right = ISFMpeg1[x][6] - left)
  147. *
  148. * if mid-side enabled, multiply joint stereo scale factors by sqrt(2)
  149. * - we scaled whole spectrum by 1/sqrt(2) in Dequant for the M+S/sqrt(2) in MidSideProc
  150. * - but the joint stereo part of the spectrum doesn't need this, so we have to undo it
  151. *
  152. * if scale factor is and illegal intensity position, this becomes a passthrough
  153. * - gain = [1, 0] if mid-side off, since L is coded directly and R = 0 in this region
  154. * - gain = [1, 1] if mid-side on, since L = (M+S)/sqrt(2), R = (M-S)/sqrt(2)
  155. * - and since S = 0 in the joint stereo region (above NZB right) then L = R = M * 1.0
  156. */
  157. const int ISFMpeg1[2][7] PROGMEM = {
  158. {0x00000000, 0x0d8658ba, 0x176cf5d0, 0x20000000, 0x28930a2f, 0x3279a745, 0x40000000},
  159. {0x00000000, 0x13207f5c, 0x2120fb83, 0x2d413ccc, 0x39617e16, 0x4761fa3d, 0x5a827999}
  160. };
  161. /* indexing = [intensity scale on/off][mid-side off/on][intensity scale factor]
  162. * format = Q30, range = [0.0, 1.414]
  163. *
  164. * if (isf == 0) kl = 1.0 kr = 1.0
  165. * else if (isf & 0x01 == 0x01) kl = i0^((isf+1)/2), kr = 1.0
  166. * else if (isf & 0x01 == 0x00) kl = 1.0, kr = i0^(isf/2)
  167. *
  168. * if (intensityScale == 1) i0 = 1/sqrt(2) = 0x2d413ccc (Q30)
  169. * else i0 = 1/sqrt(sqrt(2)) = 0x35d13f32 (Q30)
  170. *
  171. * see comments for ISFMpeg1 (just above) regarding scaling, sqrt(2), etc.
  172. *
  173. * compress the MPEG2 table using the obvious identities above...
  174. * for isf = [0, 1, 2, ... 30], let sf = table[(isf+1) >> 1]
  175. * - if isf odd, L = sf*L, R = tab[0]*R
  176. * - if isf even, L = tab[0]*L, R = sf*R
  177. */
  178. const int ISFMpeg2[2][2][16] PROGMEM = {
  179. {
  180. {
  181. /* intensityScale off, mid-side off */
  182. 0x40000000, 0x35d13f32, 0x2d413ccc, 0x260dfc14, 0x1fffffff, 0x1ae89f99, 0x16a09e66, 0x1306fe0a,
  183. 0x0fffffff, 0x0d744fcc, 0x0b504f33, 0x09837f05, 0x07ffffff, 0x06ba27e6, 0x05a82799, 0x04c1bf82,
  184. },
  185. {
  186. /* intensityScale off, mid-side on */
  187. 0x5a827999, 0x4c1bf827, 0x3fffffff, 0x35d13f32, 0x2d413ccc, 0x260dfc13, 0x1fffffff, 0x1ae89f99,
  188. 0x16a09e66, 0x1306fe09, 0x0fffffff, 0x0d744fcc, 0x0b504f33, 0x09837f04, 0x07ffffff, 0x06ba27e6,
  189. },
  190. },
  191. {
  192. {
  193. /* intensityScale on, mid-side off */
  194. 0x40000000, 0x2d413ccc, 0x20000000, 0x16a09e66, 0x10000000, 0x0b504f33, 0x08000000, 0x05a82799,
  195. 0x04000000, 0x02d413cc, 0x02000000, 0x016a09e6, 0x01000000, 0x00b504f3, 0x00800000, 0x005a8279,
  196. },
  197. /* intensityScale on, mid-side on */
  198. {
  199. 0x5a827999, 0x3fffffff, 0x2d413ccc, 0x1fffffff, 0x16a09e66, 0x0fffffff, 0x0b504f33, 0x07ffffff,
  200. 0x05a82799, 0x03ffffff, 0x02d413cc, 0x01ffffff, 0x016a09e6, 0x00ffffff, 0x00b504f3, 0x007fffff,
  201. }
  202. }
  203. };
  204. /* indexing = [intensity scale on/off][left/right]
  205. * format = Q30, range = [0.0, 1.414]
  206. *
  207. * illegal intensity position scalefactors (see comments on ISFMpeg1)
  208. */
  209. const int ISFIIP[2][2] PROGMEM = {
  210. {0x40000000, 0x00000000}, /* mid-side off */
  211. {0x40000000, 0x40000000}, /* mid-side on */
  212. };
  213. const unsigned char uniqueIDTab[8] = {0x5f, 0x4b, 0x43, 0x5f, 0x5f, 0x4a, 0x52, 0x5f};
  214. /* anti-alias coefficients - see spec Annex B, table 3-B.9
  215. * csa[0][i] = CSi, csa[1][i] = CAi
  216. * format = Q31
  217. */
  218. const int csa[8][2] PROGMEM = {
  219. {0x6dc253f0, 0xbe2500aa},
  220. {0x70dcebe4, 0xc39e4949},
  221. {0x798d6e73, 0xd7e33f4a},
  222. {0x7ddd40a7, 0xe8b71176},
  223. {0x7f6d20b7, 0xf3e4fe2f},
  224. {0x7fe47e40, 0xfac1a3c7},
  225. {0x7ffcb263, 0xfe2ebdc6},
  226. {0x7fffc694, 0xff86c25d},
  227. };
  228. /* format = Q30, range = [0.0981, 1.9976]
  229. *
  230. * n = 16;
  231. * k = 0;
  232. * for(i=0; i<5; i++, n=n/2) {
  233. * for(p=0; p<n; p++, k++) {
  234. * t = (PI / (4*n)) * (2*p + 1);
  235. * coef32[k] = 2.0 * cos(t);
  236. * }
  237. * }
  238. * coef32[30] *= 0.5; / *** for initial back butterfly (i.e. two-point DCT) *** /
  239. */
  240. const int coef32[31] PROGMEM = {
  241. 0x7fd8878d, 0x7e9d55fc, 0x7c29fbee, 0x78848413, 0x73b5ebd0, 0x6dca0d14, 0x66cf811f, 0x5ed77c89,
  242. 0x55f5a4d2, 0x4c3fdff3, 0x41ce1e64, 0x36ba2013, 0x2b1f34eb, 0x1f19f97b, 0x12c8106e, 0x0647d97c,
  243. 0x7f62368f, 0x7a7d055b, 0x70e2cbc6, 0x62f201ac, 0x5133cc94, 0x3c56ba70, 0x25280c5d, 0x0c8bd35e,
  244. 0x7d8a5f3f, 0x6a6d98a4, 0x471cece6, 0x18f8b83c, 0x7641af3c, 0x30fbc54d, 0x2d413ccc,
  245. };
  246. /* format = Q30, right shifted by 12 (sign bits only in top 12 - undo this when rounding to short)
  247. * this is to enable early-terminating multiplies on ARM
  248. * range = [-1.144287109, 1.144989014]
  249. * max gain of filter (per output sample) ~= 2.731
  250. *
  251. * new (properly sign-flipped) values
  252. * - these actually are correct to 32 bits, (floating-pt coefficients in spec
  253. * chosen such that only ~20 bits are required)
  254. *
  255. * Reordering - see table 3-B.3 in spec (appendix B)
  256. *
  257. * polyCoef[i] =
  258. * D[ 0, 32, 64, ... 480], i = [ 0, 15]
  259. * D[ 1, 33, 65, ... 481], i = [ 16, 31]
  260. * D[ 2, 34, 66, ... 482], i = [ 32, 47]
  261. * ...
  262. * D[15, 47, 79, ... 495], i = [240,255]
  263. *
  264. * also exploits symmetry: D[i] = -D[512 - i], for i = [1, 255]
  265. *
  266. * polyCoef[256, 257, ... 263] are for special case of sample 16 (out of 0)
  267. * see PolyphaseStereo() and PolyphaseMono()
  268. */
  269. const int polyCoef[264] PROGMEM = {
  270. /* shuffled vs. original from 0, 1, ... 15 to 0, 15, 2, 13, ... 14, 1 */
  271. 0x00000000, 0x00000074, 0x00000354, 0x0000072c, 0x00001fd4, 0x00005084, 0x000066b8, 0x000249c4,
  272. 0x00049478, 0xfffdb63c, 0x000066b8, 0xffffaf7c, 0x00001fd4, 0xfffff8d4, 0x00000354, 0xffffff8c,
  273. 0xfffffffc, 0x00000068, 0x00000368, 0x00000644, 0x00001f40, 0x00004ad0, 0x00005d1c, 0x00022ce0,
  274. 0x000493c0, 0xfffd9960, 0x00006f78, 0xffffa9cc, 0x0000203c, 0xfffff7e4, 0x00000340, 0xffffff84,
  275. 0xfffffffc, 0x00000060, 0x00000378, 0x0000056c, 0x00001e80, 0x00004524, 0x000052a0, 0x00020ffc,
  276. 0x000491a0, 0xfffd7ca0, 0x00007760, 0xffffa424, 0x00002080, 0xfffff6ec, 0x00000328, 0xffffff74,
  277. 0xfffffffc, 0x00000054, 0x00000384, 0x00000498, 0x00001d94, 0x00003f7c, 0x00004744, 0x0001f32c,
  278. 0x00048e18, 0xfffd6008, 0x00007e70, 0xffff9e8c, 0x0000209c, 0xfffff5ec, 0x00000310, 0xffffff68,
  279. 0xfffffffc, 0x0000004c, 0x0000038c, 0x000003d0, 0x00001c78, 0x000039e4, 0x00003b00, 0x0001d680,
  280. 0x00048924, 0xfffd43ac, 0x000084b0, 0xffff990c, 0x00002094, 0xfffff4e4, 0x000002f8, 0xffffff5c,
  281. 0xfffffffc, 0x00000044, 0x00000390, 0x00000314, 0x00001b2c, 0x0000345c, 0x00002ddc, 0x0001ba04,
  282. 0x000482d0, 0xfffd279c, 0x00008a20, 0xffff93a4, 0x0000206c, 0xfffff3d4, 0x000002dc, 0xffffff4c,
  283. 0xfffffffc, 0x00000040, 0x00000390, 0x00000264, 0x000019b0, 0x00002ef0, 0x00001fd4, 0x00019dc8,
  284. 0x00047b1c, 0xfffd0be8, 0x00008ecc, 0xffff8e64, 0x00002024, 0xfffff2c0, 0x000002c0, 0xffffff3c,
  285. 0xfffffff8, 0x00000038, 0x0000038c, 0x000001bc, 0x000017fc, 0x0000299c, 0x000010e8, 0x000181d8,
  286. 0x0004720c, 0xfffcf09c, 0x000092b4, 0xffff894c, 0x00001fc0, 0xfffff1a4, 0x000002a4, 0xffffff2c,
  287. 0xfffffff8, 0x00000034, 0x00000380, 0x00000120, 0x00001618, 0x00002468, 0x00000118, 0x00016644,
  288. 0x000467a4, 0xfffcd5cc, 0x000095e0, 0xffff8468, 0x00001f44, 0xfffff084, 0x00000284, 0xffffff18,
  289. 0xfffffff8, 0x0000002c, 0x00000374, 0x00000090, 0x00001400, 0x00001f58, 0xfffff068, 0x00014b14,
  290. 0x00045bf0, 0xfffcbb88, 0x00009858, 0xffff7fbc, 0x00001ea8, 0xffffef60, 0x00000268, 0xffffff04,
  291. 0xfffffff8, 0x00000028, 0x0000035c, 0x00000008, 0x000011ac, 0x00001a70, 0xffffded8, 0x00013058,
  292. 0x00044ef8, 0xfffca1d8, 0x00009a1c, 0xffff7b54, 0x00001dfc, 0xffffee3c, 0x0000024c, 0xfffffef0,
  293. 0xfffffff4, 0x00000024, 0x00000340, 0xffffff8c, 0x00000f28, 0x000015b0, 0xffffcc70, 0x0001161c,
  294. 0x000440bc, 0xfffc88d8, 0x00009b3c, 0xffff7734, 0x00001d38, 0xffffed18, 0x0000022c, 0xfffffedc,
  295. 0xfffffff4, 0x00000020, 0x00000320, 0xffffff1c, 0x00000c68, 0x0000111c, 0xffffb92c, 0x0000fc6c,
  296. 0x00043150, 0xfffc708c, 0x00009bb8, 0xffff7368, 0x00001c64, 0xffffebf4, 0x00000210, 0xfffffec4,
  297. 0xfffffff0, 0x0000001c, 0x000002f4, 0xfffffeb4, 0x00000974, 0x00000cb8, 0xffffa518, 0x0000e350,
  298. 0x000420b4, 0xfffc5908, 0x00009b9c, 0xffff6ff4, 0x00001b7c, 0xffffead0, 0x000001f4, 0xfffffeac,
  299. 0xfffffff0, 0x0000001c, 0x000002c4, 0xfffffe58, 0x00000648, 0x00000884, 0xffff9038, 0x0000cad0,
  300. 0x00040ef8, 0xfffc425c, 0x00009af0, 0xffff6ce0, 0x00001a88, 0xffffe9b0, 0x000001d4, 0xfffffe94,
  301. 0xffffffec, 0x00000018, 0x0000028c, 0xfffffe04, 0x000002e4, 0x00000480, 0xffff7a90, 0x0000b2fc,
  302. 0x0003fc28, 0xfffc2c90, 0x000099b8, 0xffff6a3c, 0x00001988, 0xffffe898, 0x000001bc, 0xfffffe7c,
  303. 0x000001a0, 0x0000187c, 0x000097fc, 0x0003e84c, 0xffff6424, 0xffffff4c, 0x00000248, 0xffffffec,
  304. };
  305. #pragma GCC diagnostic pop