123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442 |
- /* Copyright (c) 2007-2008 CSIRO
- Copyright (c) 2007-2009 Xiph.Org Foundation
- Written by Jean-Marc Valin */
- /*
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
- #include "mathops.h"
- #include "cwrs.h"
- #include "vq.h"
- #include "arch.h"
- #include "os_support.h"
- #include "bands.h"
- #include "rate.h"
- #include "pitch.h"
- #if defined(MIPSr1_ASM)
- #include "mips/vq_mipsr1.h"
- #endif
- #ifndef OVERRIDE_vq_exp_rotation1
- static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_val16 s)
- {
- int i;
- opus_val16 ms;
- celt_norm *Xptr;
- Xptr = X;
- ms = NEG16(s);
- for (i=0;i<len-stride;i++)
- {
- celt_norm x1, x2;
- x1 = Xptr[0];
- x2 = Xptr[stride];
- Xptr[stride] = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x2), s, x1), 15));
- *Xptr++ = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x1), ms, x2), 15));
- }
- Xptr = &X[len-2*stride-1];
- for (i=len-2*stride-1;i>=0;i--)
- {
- celt_norm x1, x2;
- x1 = Xptr[0];
- x2 = Xptr[stride];
- Xptr[stride] = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x2), s, x1), 15));
- *Xptr-- = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x1), ms, x2), 15));
- }
- }
- #endif /* OVERRIDE_vq_exp_rotation1 */
- void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread)
- {
- static const int SPREAD_FACTOR[3]={15,10,5};
- int i;
- opus_val16 c, s;
- opus_val16 gain, theta;
- int stride2=0;
- int factor;
- if (2*K>=len || spread==SPREAD_NONE)
- return;
- factor = SPREAD_FACTOR[spread-1];
- gain = celt_div((opus_val32)MULT16_16(Q15_ONE,len),(opus_val32)(len+factor*K));
- theta = HALF16(MULT16_16_Q15(gain,gain));
- c = celt_cos_norm(EXTEND32(theta));
- s = celt_cos_norm(EXTEND32(SUB16(Q15ONE,theta))); /* sin(theta) */
- if (len>=8*stride)
- {
- stride2 = 1;
- /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
- It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
- while ((stride2*stride2+stride2)*stride + (stride>>2) < len)
- stride2++;
- }
- /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
- extract_collapse_mask().*/
- len = celt_udiv(len, stride);
- for (i=0;i<stride;i++)
- {
- if (dir < 0)
- {
- if (stride2)
- exp_rotation1(X+i*len, len, stride2, s, c);
- exp_rotation1(X+i*len, len, 1, c, s);
- } else {
- exp_rotation1(X+i*len, len, 1, c, -s);
- if (stride2)
- exp_rotation1(X+i*len, len, stride2, s, -c);
- }
- }
- }
- /** Takes the pitch vector and the decoded residual vector, computes the gain
- that will give ||p+g*y||=1 and mixes the residual with the pitch. */
- static void normalise_residual(int * OPUS_RESTRICT iy, celt_norm * OPUS_RESTRICT X,
- int N, opus_val32 Ryy, opus_val16 gain)
- {
- int i;
- #ifdef FIXED_POINT
- int k;
- #endif
- opus_val32 t;
- opus_val16 g;
- #ifdef FIXED_POINT
- k = celt_ilog2(Ryy)>>1;
- #endif
- t = VSHR32(Ryy, 2*(k-7));
- g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
- i=0;
- do
- X[i] = EXTRACT16(PSHR32(MULT16_16(g, iy[i]), k+1));
- while (++i < N);
- }
- static unsigned extract_collapse_mask(int *iy, int N, int B)
- {
- unsigned collapse_mask;
- int N0;
- int i;
- if (B<=1)
- return 1;
- /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
- exp_rotation().*/
- N0 = celt_udiv(N, B);
- collapse_mask = 0;
- i=0; do {
- int j;
- unsigned tmp=0;
- j=0; do {
- tmp |= iy[i*N0+j];
- } while (++j<N0);
- collapse_mask |= (tmp!=0)<<i;
- } while (++i<B);
- return collapse_mask;
- }
- opus_val16 op_pvq_search_c(celt_norm *X, int *iy, int K, int N, int arch)
- {
- VARDECL(celt_norm, y);
- VARDECL(int, signx);
- int i, j;
- int pulsesLeft;
- opus_val32 sum;
- opus_val32 xy;
- opus_val16 yy;
- SAVE_STACK;
- (void)arch;
- ALLOC(y, N, celt_norm);
- ALLOC(signx, N, int);
- /* Get rid of the sign */
- sum = 0;
- j=0; do {
- signx[j] = X[j]<0;
- /* OPT: Make sure the compiler doesn't use a branch on ABS16(). */
- X[j] = ABS16(X[j]);
- iy[j] = 0;
- y[j] = 0;
- } while (++j<N);
- xy = yy = 0;
- pulsesLeft = K;
- /* Do a pre-search by projecting on the pyramid */
- if (K > (N>>1))
- {
- opus_val16 rcp;
- j=0; do {
- sum += X[j];
- } while (++j<N);
- /* If X is too small, just replace it with a pulse at 0 */
- #ifdef FIXED_POINT
- if (sum <= K)
- #else
- /* Prevents infinities and NaNs from causing too many pulses
- to be allocated. 64 is an approximation of infinity here. */
- if (!(sum > EPSILON && sum < 64))
- #endif
- {
- X[0] = QCONST16(1.f,14);
- j=1; do
- X[j]=0;
- while (++j<N);
- sum = QCONST16(1.f,14);
- }
- #ifdef FIXED_POINT
- rcp = EXTRACT16(MULT16_32_Q16(K, celt_rcp(sum)));
- #else
- /* Using K+e with e < 1 guarantees we cannot get more than K pulses. */
- rcp = EXTRACT16(MULT16_32_Q16(K+0.8f, celt_rcp(sum)));
- #endif
- j=0; do {
- #ifdef FIXED_POINT
- /* It's really important to round *towards zero* here */
- iy[j] = MULT16_16_Q15(X[j],rcp);
- #else
- iy[j] = (int)floor(rcp*X[j]);
- #endif
- y[j] = (celt_norm)iy[j];
- yy = MAC16_16(yy, y[j],y[j]);
- xy = MAC16_16(xy, X[j],y[j]);
- y[j] *= 2;
- pulsesLeft -= iy[j];
- } while (++j<N);
- }
- celt_sig_assert(pulsesLeft>=0);
- /* This should never happen, but just in case it does (e.g. on silence)
- we fill the first bin with pulses. */
- #ifdef FIXED_POINT_DEBUG
- celt_sig_assert(pulsesLeft<=N+3);
- #endif
- if (pulsesLeft > N+3)
- {
- opus_val16 tmp = (opus_val16)pulsesLeft;
- yy = MAC16_16(yy, tmp, tmp);
- yy = MAC16_16(yy, tmp, y[0]);
- iy[0] += pulsesLeft;
- pulsesLeft=0;
- }
- for (i=0;i<pulsesLeft;i++)
- {
- opus_val16 Rxy, Ryy;
- int best_id;
- opus_val32 best_num;
- opus_val16 best_den;
- #ifdef FIXED_POINT
- int rshift;
- #endif
- #ifdef FIXED_POINT
- rshift = 1+celt_ilog2(K-pulsesLeft+i+1);
- #endif
- best_id = 0;
- /* The squared magnitude term gets added anyway, so we might as well
- add it outside the loop */
- yy = ADD16(yy, 1);
- /* Calculations for position 0 are out of the loop, in part to reduce
- mispredicted branches (since the if condition is usually false)
- in the loop. */
- /* Temporary sums of the new pulse(s) */
- Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[0])),rshift));
- /* We're multiplying y[j] by two so we don't have to do it here */
- Ryy = ADD16(yy, y[0]);
- /* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
- Rxy is positive because the sign is pre-computed) */
- Rxy = MULT16_16_Q15(Rxy,Rxy);
- best_den = Ryy;
- best_num = Rxy;
- j=1;
- do {
- /* Temporary sums of the new pulse(s) */
- Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[j])),rshift));
- /* We're multiplying y[j] by two so we don't have to do it here */
- Ryy = ADD16(yy, y[j]);
- /* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
- Rxy is positive because the sign is pre-computed) */
- Rxy = MULT16_16_Q15(Rxy,Rxy);
- /* The idea is to check for num/den >= best_num/best_den, but that way
- we can do it without any division */
- /* OPT: It's not clear whether a cmov is faster than a branch here
- since the condition is more often false than true and using
- a cmov introduces data dependencies across iterations. The optimal
- choice may be architecture-dependent. */
- if (opus_unlikely(MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num)))
- {
- best_den = Ryy;
- best_num = Rxy;
- best_id = j;
- }
- } while (++j<N);
- /* Updating the sums of the new pulse(s) */
- xy = ADD32(xy, EXTEND32(X[best_id]));
- /* We're multiplying y[j] by two so we don't have to do it here */
- yy = ADD16(yy, y[best_id]);
- /* Only now that we've made the final choice, update y/iy */
- /* Multiplying y[j] by 2 so we don't have to do it everywhere else */
- y[best_id] += 2;
- iy[best_id]++;
- }
- /* Put the original sign back */
- j=0;
- do {
- /*iy[j] = signx[j] ? -iy[j] : iy[j];*/
- /* OPT: The is more likely to be compiled without a branch than the code above
- but has the same performance otherwise. */
- iy[j] = (iy[j]^-signx[j]) + signx[j];
- } while (++j<N);
- RESTORE_STACK;
- return yy;
- }
- unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc,
- opus_val16 gain, int resynth, int arch)
- {
- VARDECL(int, iy);
- opus_val16 yy;
- unsigned collapse_mask;
- SAVE_STACK;
- celt_assert2(K>0, "alg_quant() needs at least one pulse");
- celt_assert2(N>1, "alg_quant() needs at least two dimensions");
- /* Covers vectorization by up to 4. */
- ALLOC(iy, N+3, int);
- exp_rotation(X, N, 1, B, K, spread);
- yy = op_pvq_search(X, iy, K, N, arch);
- encode_pulses(iy, N, K, enc);
- if (resynth)
- {
- normalise_residual(iy, X, N, yy, gain);
- exp_rotation(X, N, -1, B, K, spread);
- }
- collapse_mask = extract_collapse_mask(iy, N, B);
- RESTORE_STACK;
- return collapse_mask;
- }
- /** Decode pulse vector and combine the result with the pitch vector to produce
- the final normalised signal in the current band. */
- unsigned alg_unquant(celt_norm *X, int N, int K, int spread, int B,
- ec_dec *dec, opus_val16 gain)
- {
- opus_val32 Ryy;
- unsigned collapse_mask;
- VARDECL(int, iy);
- SAVE_STACK;
- celt_assert2(K>0, "alg_unquant() needs at least one pulse");
- celt_assert2(N>1, "alg_unquant() needs at least two dimensions");
- ALLOC(iy, N, int);
- Ryy = decode_pulses(iy, N, K, dec);
- normalise_residual(iy, X, N, Ryy, gain);
- exp_rotation(X, N, -1, B, K, spread);
- collapse_mask = extract_collapse_mask(iy, N, B);
- RESTORE_STACK;
- return collapse_mask;
- }
- #ifndef OVERRIDE_renormalise_vector
- void renormalise_vector(celt_norm *X, int N, opus_val16 gain, int arch)
- {
- int i;
- #ifdef FIXED_POINT
- int k;
- #endif
- opus_val32 E;
- opus_val16 g;
- opus_val32 t;
- celt_norm *xptr;
- E = EPSILON + celt_inner_prod(X, X, N, arch);
- #ifdef FIXED_POINT
- k = celt_ilog2(E)>>1;
- #endif
- t = VSHR32(E, 2*(k-7));
- g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
- xptr = X;
- for (i=0;i<N;i++)
- {
- *xptr = EXTRACT16(PSHR32(MULT16_16(g, *xptr), k+1));
- xptr++;
- }
- /*return celt_sqrt(E);*/
- }
- #endif /* OVERRIDE_renormalise_vector */
- int stereo_itheta(const celt_norm *X, const celt_norm *Y, int stereo, int N, int arch)
- {
- int i;
- int itheta;
- opus_val16 mid, side;
- opus_val32 Emid, Eside;
- Emid = Eside = EPSILON;
- if (stereo)
- {
- for (i=0;i<N;i++)
- {
- celt_norm m, s;
- m = ADD16(SHR16(X[i],1),SHR16(Y[i],1));
- s = SUB16(SHR16(X[i],1),SHR16(Y[i],1));
- Emid = MAC16_16(Emid, m, m);
- Eside = MAC16_16(Eside, s, s);
- }
- } else {
- Emid += celt_inner_prod(X, X, N, arch);
- Eside += celt_inner_prod(Y, Y, N, arch);
- }
- mid = celt_sqrt(Emid);
- side = celt_sqrt(Eside);
- #ifdef FIXED_POINT
- /* 0.63662 = 2/pi */
- itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid));
- #else
- itheta = (int)floor(.5f+16384*0.63662f*fast_atan2f(side,mid));
- #endif
- return itheta;
- }
|