gds_draw.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. /**
  2. * Copyright (c) 2017-2018 Tara Keeling
  3. * 2020 Philippe G.
  4. *
  5. * This software is released under the MIT License.
  6. * https://opensource.org/licenses/MIT
  7. */
  8. #include <stdio.h>
  9. #include <string.h>
  10. #include <stdint.h>
  11. #include <stdbool.h>
  12. #include <stdlib.h>
  13. #include <math.h>
  14. #include <esp_attr.h>
  15. #include "gds.h"
  16. #include "gds_private.h"
  17. #include "gds_draw.h"
  18. static const unsigned char BitReverseTable256[] =
  19. {
  20. 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
  21. 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
  22. 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
  23. 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
  24. 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
  25. 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  26. 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
  27. 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  28. 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  29. 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
  30. 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  31. 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  32. 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
  33. 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  34. 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
  35. 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
  36. };
  37. __attribute__( ( always_inline ) ) static inline bool IsPixelVisible( struct GDS_Device* Device, int x, int y ) {
  38. bool Result = (
  39. ( x >= 0 ) &&
  40. ( x < Device->Width ) &&
  41. ( y >= 0 ) &&
  42. ( y < Device->Height )
  43. ) ? true : false;
  44. #if CONFIG_GDS_CLIPDEBUG > 0
  45. if ( Result == false ) {
  46. ClipDebug( x, y );
  47. }
  48. #endif
  49. return Result;
  50. }
  51. __attribute__( ( always_inline ) ) static inline void SwapInt( int* a, int* b ) {
  52. int Temp = *b;
  53. *b = *a;
  54. *a = Temp;
  55. }
  56. inline void IRAM_ATTR GDS_DrawPixelFast( struct GDS_Device* Device, int X, int Y, int Color ) {
  57. uint32_t YBit = ( Y & 0x07 );
  58. uint8_t* FBOffset = NULL;
  59. /*
  60. * We only need to modify the Y coordinate since the pitch
  61. * of the screen is the same as the width.
  62. * Dividing Y by 8 gives us which row the pixel is in but not
  63. * the bit position.
  64. */
  65. Y>>= 3;
  66. FBOffset = Device->Framebuffer + ( ( Y * Device->Width ) + X );
  67. if ( Color == GDS_COLOR_XOR ) {
  68. *FBOffset ^= BIT( YBit );
  69. } else {
  70. *FBOffset = ( Color == GDS_COLOR_WHITE ) ? *FBOffset | BIT( YBit ) : *FBOffset & ~BIT( YBit );
  71. }
  72. }
  73. void IRAM_ATTR GDS_DrawPixel( struct GDS_Device* Device, int x, int y, int Color ) {
  74. if ( IsPixelVisible( Device, x, y ) == true ) {
  75. Device->DrawPixelFast( Device, x, y, Color );
  76. }
  77. }
  78. inline void IRAM_ATTR GDS_DrawPixel4Fast( struct GDS_Device* Device, int X, int Y, int Color ) {
  79. uint32_t YBit = ( Y & 0x07 );
  80. uint8_t* FBOffset = NULL;
  81. /*
  82. * We only need to modify the Y coordinate since the pitch
  83. * of the screen is the same as the width.
  84. * Dividing Y by 8 gives us which row the pixel is in but not
  85. * the bit position.
  86. */
  87. Y>>= 3;
  88. FBOffset = Device->Framebuffer + ( ( Y * Device->Width ) + X );
  89. if ( Color == GDS_COLOR_XOR ) {
  90. *FBOffset ^= BIT( YBit );
  91. } else {
  92. *FBOffset = ( Color == GDS_COLOR_WHITE ) ? *FBOffset | BIT( YBit ) : *FBOffset & ~BIT( YBit );
  93. }
  94. }
  95. void IRAM_ATTR GDS_DrawPixel4( struct GDS_Device* Device, int x, int y, int Color ) {
  96. if ( IsPixelVisible( Device, x, y ) == true ) {
  97. Device->DrawPixelFast( Device, x, y, Color );
  98. }
  99. }
  100. void IRAM_ATTR GDS_DrawHLine( struct GDS_Device* Device, int x, int y, int Width, int Color ) {
  101. int XEnd = x + Width;
  102. Device->Dirty = true;
  103. if (x < 0) x = 0;
  104. if (XEnd >= Device->Width) XEnd = Device->Width - 1;
  105. if (y < 0) y = 0;
  106. else if (y >= Device->Height) x = Device->Height - 1;
  107. for ( ; x < XEnd; x++ ) {
  108. // if ( IsPixelVisible( Device, x, y ) == true ) {
  109. Device->DrawPixelFast( Device, x, y, Color );
  110. // } else {
  111. // break;
  112. // }
  113. }
  114. }
  115. void IRAM_ATTR GDS_DrawVLine( struct GDS_Device* Device, int x, int y, int Height, int Color ) {
  116. int YEnd = y + Height;
  117. Device->Dirty = true;
  118. for ( ; y < YEnd; y++ ) {
  119. if ( IsPixelVisible( Device, x, y ) == true ) {
  120. Device->DrawPixel( Device, x, y, Color );
  121. } else {
  122. break;
  123. }
  124. }
  125. }
  126. static inline void IRAM_ATTR DrawWideLine( struct GDS_Device* Device, int x0, int y0, int x1, int y1, int Color ) {
  127. int dx = ( x1 - x0 );
  128. int dy = ( y1 - y0 );
  129. int Error = 0;
  130. int Incr = 1;
  131. int x = x0;
  132. int y = y0;
  133. if ( dy < 0 ) {
  134. Incr = -1;
  135. dy = -dy;
  136. }
  137. Error = ( dy * 2 ) - dx;
  138. for ( ; x < x1; x++ ) {
  139. if ( IsPixelVisible( Device, x, y ) == true ) {
  140. Device->DrawPixelFast( Device, x, y, Color );
  141. }
  142. if ( Error > 0 ) {
  143. Error-= ( dx * 2 );
  144. y+= Incr;
  145. }
  146. Error+= ( dy * 2 );
  147. }
  148. }
  149. static inline void IRAM_ATTR DrawTallLine( struct GDS_Device* Device, int x0, int y0, int x1, int y1, int Color ) {
  150. int dx = ( x1 - x0 );
  151. int dy = ( y1 - y0 );
  152. int Error = 0;
  153. int Incr = 1;
  154. int x = x0;
  155. int y = y0;
  156. if ( dx < 0 ) {
  157. Incr = -1;
  158. dx = -dx;
  159. }
  160. Error = ( dx * 2 ) - dy;
  161. for ( ; y < y1; y++ ) {
  162. if ( IsPixelVisible( Device, x, y ) == true ) {
  163. Device->DrawPixelFast( Device, x, y, Color );
  164. }
  165. if ( Error > 0 ) {
  166. Error-= ( dy * 2 );
  167. x+= Incr;
  168. }
  169. Error+= ( dx * 2 );
  170. }
  171. }
  172. void IRAM_ATTR GDS_DrawLine( struct GDS_Device* Device, int x0, int y0, int x1, int y1, int Color ) {
  173. if ( x0 == x1 ) {
  174. GDS_DrawVLine( Device, x0, y0, ( y1 - y0 ), Color );
  175. } else if ( y0 == y1 ) {
  176. GDS_DrawHLine( Device, x0, y0, ( x1 - x0 ), Color );
  177. } else {
  178. Device->Dirty = true;
  179. if ( abs( x1 - x0 ) > abs( y1 - y0 ) ) {
  180. /* Wide ( run > rise ) */
  181. if ( x0 > x1 ) {
  182. SwapInt( &x0, &x1 );
  183. SwapInt( &y0, &y1 );
  184. }
  185. DrawWideLine( Device, x0, y0, x1, y1, Color );
  186. } else {
  187. /* Tall ( rise > run ) */
  188. if ( y0 > y1 ) {
  189. SwapInt( &y0, &y1 );
  190. SwapInt( &x0, &x1 );
  191. }
  192. DrawTallLine( Device, x0, y0, x1, y1, Color );
  193. }
  194. }
  195. }
  196. void IRAM_ATTR GDS_DrawBox( struct GDS_Device* Device, int x1, int y1, int x2, int y2, int Color, bool Fill ) {
  197. int Width = ( x2 - x1 );
  198. int Height = ( y2 - y1 );
  199. Device->Dirty = true;
  200. if ( Fill == false ) {
  201. /* Top side */
  202. GDS_DrawHLine( Device, x1, y1, Width, Color );
  203. /* Bottom side */
  204. GDS_DrawHLine( Device, x1, y1 + Height, Width, Color );
  205. /* Left side */
  206. GDS_DrawVLine( Device, x1, y1, Height, Color );
  207. /* Right side */
  208. GDS_DrawVLine( Device, x1 + Width, y1, Height, Color );
  209. } else {
  210. /* Fill the box by drawing horizontal lines */
  211. for ( ; y1 <= y2; y1++ ) {
  212. GDS_DrawHLine( Device, x1, y1, Width, Color );
  213. }
  214. }
  215. }
  216. /****************************************************************************************
  217. * Process graphic display data from column-oriented data (MSbit first)
  218. */
  219. void GDS_DrawBitmapCBR(struct GDS_Device* Device, uint8_t *Data, int Width, int Height) {
  220. if (!Height) Height = Device->Height;
  221. if (!Width) Width = Device->Width;
  222. // need to do row/col swap and bit-reverse
  223. int Rows = Height / 8;
  224. for (int r = 0; r < Rows; r++) {
  225. uint8_t *optr = Device->Framebuffer + r*Device->Width, *iptr = Data + r;
  226. for (int c = Width; --c >= 0;) {
  227. *optr++ = BitReverseTable256[*iptr];;
  228. iptr += Rows;
  229. }
  230. }
  231. Device->Dirty = true;
  232. }
  233. /****************************************************************************************
  234. * Process graphic display data MSBit first
  235. * WARNING: this has not been tested yet
  236. */
  237. /*
  238. static void draw_raw(int x1, int y1, int x2, int y2, bool by_column, bool MSb, u8_t *data) {
  239. // default end point to display size
  240. if (x2 == -1) x2 = Display.Width - 1;
  241. if (y2 == -1) y2 = Display.Height - 1;
  242. display->dirty = true;
  243. // not a boundary draw
  244. // same comment about bit depth
  245. if (y1 % 8 || y2 % 8 || x1 % 8 | x2 % 8) {
  246. ESP_LOGW(TAG, "can't write on non cols/rows boundaries for now");
  247. } else {
  248. // set addressing mode to match data
  249. if (by_column) {
  250. // copy the window and do row/col exchange
  251. for (int r = y1/8; r <= y2/8; r++) {
  252. uint8_t *optr = Display.Framebuffer + r*Display.Width + x1, *iptr = data + r;
  253. for (int c = x1; c <= x2; c++) {
  254. *optr++ = MSb ? BitReverseTable256[*iptr] : *iptr;
  255. iptr += (y2-y1)/8 + 1;
  256. }
  257. }
  258. } else {
  259. // just copy the window inside the frame buffer
  260. for (int r = y1/8; r <= y2/8; r++) {
  261. uint8_t *optr = Display.Framebuffer + r*Display.Width + x1, *iptr = data + r*(x2-x1+1);
  262. for (int c = x1; c <= x2; c++) *optr++ = *iptr++;
  263. }
  264. }
  265. }
  266. }
  267. */