| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388 | /* pb_common.c: Common support functions for pb_encode.c and pb_decode.c. * * 2014 Petteri Aimonen <jpa@kapsi.fi> */#include "pb_common.h"static bool load_descriptor_values(pb_field_iter_t *iter){    uint32_t word0;    uint32_t data_offset;    int_least8_t size_offset;    if (iter->index >= iter->descriptor->field_count)        return false;    word0 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index]);    iter->type = (pb_type_t)((word0 >> 8) & 0xFF);    switch(word0 & 3)    {        case 0: {            /* 1-word format */            iter->array_size = 1;            iter->tag = (pb_size_t)((word0 >> 2) & 0x3F);            size_offset = (int_least8_t)((word0 >> 24) & 0x0F);            data_offset = (word0 >> 16) & 0xFF;            iter->data_size = (pb_size_t)((word0 >> 28) & 0x0F);            break;        }        case 1: {            /* 2-word format */            uint32_t word1 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 1]);            iter->array_size = (pb_size_t)((word0 >> 16) & 0x0FFF);            iter->tag = (pb_size_t)(((word0 >> 2) & 0x3F) | ((word1 >> 28) << 6));            size_offset = (int_least8_t)((word0 >> 28) & 0x0F);            data_offset = word1 & 0xFFFF;            iter->data_size = (pb_size_t)((word1 >> 16) & 0x0FFF);            break;        }        case 2: {            /* 4-word format */            uint32_t word1 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 1]);            uint32_t word2 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 2]);            uint32_t word3 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 3]);            iter->array_size = (pb_size_t)(word0 >> 16);            iter->tag = (pb_size_t)(((word0 >> 2) & 0x3F) | ((word1 >> 8) << 6));            size_offset = (int_least8_t)(word1 & 0xFF);            data_offset = word2;            iter->data_size = (pb_size_t)word3;            break;        }        default: {            /* 8-word format */            uint32_t word1 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 1]);            uint32_t word2 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 2]);            uint32_t word3 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 3]);            uint32_t word4 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 4]);            iter->array_size = (pb_size_t)word4;            iter->tag = (pb_size_t)(((word0 >> 2) & 0x3F) | ((word1 >> 8) << 6));            size_offset = (int_least8_t)(word1 & 0xFF);            data_offset = word2;            iter->data_size = (pb_size_t)word3;            break;        }    }    if (!iter->message)    {        /* Avoid doing arithmetic on null pointers, it is undefined */        iter->pField = NULL;        iter->pSize = NULL;    }    else    {        iter->pField = (char*)iter->message + data_offset;        if (size_offset)        {            iter->pSize = (char*)iter->pField - size_offset;        }        else if (PB_HTYPE(iter->type) == PB_HTYPE_REPEATED &&                 (PB_ATYPE(iter->type) == PB_ATYPE_STATIC ||                  PB_ATYPE(iter->type) == PB_ATYPE_POINTER))        {            /* Fixed count array */            iter->pSize = &iter->array_size;        }        else        {            iter->pSize = NULL;        }        if (PB_ATYPE(iter->type) == PB_ATYPE_POINTER && iter->pField != NULL)        {            iter->pData = *(void**)iter->pField;        }        else        {            iter->pData = iter->pField;        }    }    if (PB_LTYPE_IS_SUBMSG(iter->type))    {        iter->submsg_desc = iter->descriptor->submsg_info[iter->submessage_index];    }    else    {        iter->submsg_desc = NULL;    }    return true;}static void advance_iterator(pb_field_iter_t *iter){    iter->index++;    if (iter->index >= iter->descriptor->field_count)    {        /* Restart */        iter->index = 0;        iter->field_info_index = 0;        iter->submessage_index = 0;        iter->required_field_index = 0;    }    else    {        /* Increment indexes based on previous field type.         * All field info formats have the following fields:         * - lowest 2 bits tell the amount of words in the descriptor (2^n words)         * - bits 2..7 give the lowest bits of tag number.         * - bits 8..15 give the field type.         */        uint32_t prev_descriptor = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index]);        pb_type_t prev_type = (prev_descriptor >> 8) & 0xFF;        pb_size_t descriptor_len = (pb_size_t)(1 << (prev_descriptor & 3));        /* Add to fields.         * The cast to pb_size_t is needed to avoid -Wconversion warning.         * Because the data is is constants from generator, there is no danger of overflow.         */        iter->field_info_index = (pb_size_t)(iter->field_info_index + descriptor_len);        iter->required_field_index = (pb_size_t)(iter->required_field_index + (PB_HTYPE(prev_type) == PB_HTYPE_REQUIRED));        iter->submessage_index = (pb_size_t)(iter->submessage_index + PB_LTYPE_IS_SUBMSG(prev_type));    }}bool pb_field_iter_begin(pb_field_iter_t *iter, const pb_msgdesc_t *desc, void *message){    memset(iter, 0, sizeof(*iter));    iter->descriptor = desc;    iter->message = message;    return load_descriptor_values(iter);}bool pb_field_iter_begin_extension(pb_field_iter_t *iter, pb_extension_t *extension){    const pb_msgdesc_t *msg = (const pb_msgdesc_t*)extension->type->arg;    bool status;    uint32_t word0 = PB_PROGMEM_READU32(msg->field_info[0]);    if (PB_ATYPE(word0 >> 8) == PB_ATYPE_POINTER)    {        /* For pointer extensions, the pointer is stored directly         * in the extension structure. This avoids having an extra         * indirection. */        status = pb_field_iter_begin(iter, msg, &extension->dest);    }    else    {        status = pb_field_iter_begin(iter, msg, extension->dest);    }    iter->pSize = &extension->found;    return status;}bool pb_field_iter_next(pb_field_iter_t *iter){    advance_iterator(iter);    (void)load_descriptor_values(iter);    return iter->index != 0;}bool pb_field_iter_find(pb_field_iter_t *iter, uint32_t tag){    if (iter->tag == tag)    {        return true; /* Nothing to do, correct field already. */    }    else if (tag > iter->descriptor->largest_tag)    {        return false;    }    else    {        pb_size_t start = iter->index;        uint32_t fieldinfo;        if (tag < iter->tag)        {            /* Fields are in tag number order, so we know that tag is between             * 0 and our start position. Setting index to end forces             * advance_iterator() call below to restart from beginning. */            iter->index = iter->descriptor->field_count;        }        do        {            /* Advance iterator but don't load values yet */            advance_iterator(iter);            /* Do fast check for tag number match */            fieldinfo = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index]);            if (((fieldinfo >> 2) & 0x3F) == (tag & 0x3F))            {                /* Good candidate, check further */                (void)load_descriptor_values(iter);                if (iter->tag == tag &&                    PB_LTYPE(iter->type) != PB_LTYPE_EXTENSION)                {                    /* Found it */                    return true;                }            }        } while (iter->index != start);        /* Searched all the way back to start, and found nothing. */        (void)load_descriptor_values(iter);        return false;    }}bool pb_field_iter_find_extension(pb_field_iter_t *iter){    if (PB_LTYPE(iter->type) == PB_LTYPE_EXTENSION)    {        return true;    }    else    {        pb_size_t start = iter->index;        uint32_t fieldinfo;        do        {            /* Advance iterator but don't load values yet */            advance_iterator(iter);            /* Do fast check for field type */            fieldinfo = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index]);            if (PB_LTYPE((fieldinfo >> 8) & 0xFF) == PB_LTYPE_EXTENSION)            {                return load_descriptor_values(iter);            }        } while (iter->index != start);        /* Searched all the way back to start, and found nothing. */        (void)load_descriptor_values(iter);        return false;    }}static void *pb_const_cast(const void *p){    /* Note: this casts away const, in order to use the common field iterator     * logic for both encoding and decoding. The cast is done using union     * to avoid spurious compiler warnings. */    union {        void *p1;        const void *p2;    } t;    t.p2 = p;    return t.p1;}bool pb_field_iter_begin_const(pb_field_iter_t *iter, const pb_msgdesc_t *desc, const void *message){    return pb_field_iter_begin(iter, desc, pb_const_cast(message));}bool pb_field_iter_begin_extension_const(pb_field_iter_t *iter, const pb_extension_t *extension){    return pb_field_iter_begin_extension(iter, (pb_extension_t*)pb_const_cast(extension));}bool pb_default_field_callback(pb_istream_t *istream, pb_ostream_t *ostream, const pb_field_t *field){    if (field->data_size == sizeof(pb_callback_t))    {        pb_callback_t *pCallback = (pb_callback_t*)field->pData;        if (pCallback != NULL)        {            if (istream != NULL && pCallback->funcs.decode != NULL)            {                return pCallback->funcs.decode(istream, field, &pCallback->arg);            }            if (ostream != NULL && pCallback->funcs.encode != NULL)            {                return pCallback->funcs.encode(ostream, field, &pCallback->arg);            }        }    }    return true; /* Success, but didn't do anything */}#ifdef PB_VALIDATE_UTF8/* This function checks whether a string is valid UTF-8 text. * * Algorithm is adapted from https://www.cl.cam.ac.uk/~mgk25/ucs/utf8_check.c * Original copyright: Markus Kuhn <http://www.cl.cam.ac.uk/~mgk25/> 2005-03-30 * Licensed under "Short code license", which allows use under MIT license or * any compatible with it. */bool pb_validate_utf8(const char *str){    const pb_byte_t *s = (const pb_byte_t*)str;    while (*s)    {        if (*s < 0x80)        {            /* 0xxxxxxx */            s++;        }        else if ((s[0] & 0xe0) == 0xc0)        {            /* 110XXXXx 10xxxxxx */            if ((s[1] & 0xc0) != 0x80 ||                (s[0] & 0xfe) == 0xc0)                        /* overlong? */                return false;            else                s += 2;        }        else if ((s[0] & 0xf0) == 0xe0)        {            /* 1110XXXX 10Xxxxxx 10xxxxxx */            if ((s[1] & 0xc0) != 0x80 ||                (s[2] & 0xc0) != 0x80 ||                (s[0] == 0xe0 && (s[1] & 0xe0) == 0x80) ||    /* overlong? */                (s[0] == 0xed && (s[1] & 0xe0) == 0xa0) ||    /* surrogate? */                (s[0] == 0xef && s[1] == 0xbf &&                (s[2] & 0xfe) == 0xbe))                 /* U+FFFE or U+FFFF? */                return false;            else                s += 3;        }        else if ((s[0] & 0xf8) == 0xf0)        {            /* 11110XXX 10XXxxxx 10xxxxxx 10xxxxxx */            if ((s[1] & 0xc0) != 0x80 ||                (s[2] & 0xc0) != 0x80 ||                (s[3] & 0xc0) != 0x80 ||                (s[0] == 0xf0 && (s[1] & 0xf0) == 0x80) ||    /* overlong? */                (s[0] == 0xf4 && s[1] > 0x8f) || s[0] > 0xf4) /* > U+10FFFF? */                return false;            else                s += 4;        }        else        {            return false;        }    }    return true;}#endif
 |