rtp.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777
  1. /*
  2. * HairTunes - RAOP packet handler and slave-clocked replay engine
  3. * Copyright (c) James Laird 2011
  4. * All rights reserved.
  5. *
  6. * Modularisation: philippe_44@outlook.com, 2019
  7. *
  8. * Permission is hereby granted, free of charge, to any person
  9. * obtaining a copy of this software and associated documentation
  10. * files (the "Software"), to deal in the Software without
  11. * restriction, including without limitation the rights to use,
  12. * copy, modify, merge, publish, distribute, sublicense, and/or
  13. * sell copies of the Software, and to permit persons to whom the
  14. * Software is furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be
  17. * included in all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  20. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
  21. * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  22. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
  23. * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
  24. * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  25. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  26. * OTHER DEALINGS IN THE SOFTWARE.
  27. */
  28. #include <stdio.h>
  29. #include <stdlib.h>
  30. #include <string.h>
  31. #include <stdarg.h>
  32. #include <sys/types.h>
  33. #include <pthread.h>
  34. #include <math.h>
  35. #include <errno.h>
  36. #include <sys/stat.h>
  37. #include <stdint.h>
  38. #include <fcntl.h>
  39. #include <assert.h>
  40. #include "platform.h"
  41. #include "rtp.h"
  42. #include "raop_sink.h"
  43. #include "log_util.h"
  44. #include "util.h"
  45. #ifdef WIN32
  46. #include <openssl/aes.h>
  47. #include "alac_wrapper.h"
  48. #else
  49. #include "esp_pthread.h"
  50. #include "esp_system.h"
  51. #include <mbedtls/version.h>
  52. #include <mbedtls/aes.h>
  53. #include "alac_wrapper.h"
  54. #endif
  55. #define NTP2MS(ntp) ((((ntp) >> 10) * 1000L) >> 22)
  56. #define MS2NTP(ms) (((((u64_t) (ms)) << 22) / 1000) << 10)
  57. #define NTP2TS(ntp, rate) ((((ntp) >> 16) * (rate)) >> 16)
  58. #define TS2NTP(ts, rate) (((((u64_t) (ts)) << 16) / (rate)) << 16)
  59. #define MS2TS(ms, rate) ((((u64_t) (ms)) * (rate)) / 1000)
  60. #define TS2MS(ts, rate) NTP2MS(TS2NTP(ts,rate))
  61. extern log_level raop_loglevel;
  62. static log_level *loglevel = &raop_loglevel;
  63. //#define __RTP_STORE
  64. // default buffer size
  65. #define BUFFER_FRAMES ( (150 * RAOP_SAMPLE_RATE * 2) / (352 * 100) )
  66. #define MAX_PACKET 1408
  67. #define MIN_LATENCY 11025
  68. #define MAX_LATENCY ( (120 * RAOP_SAMPLE_RATE * 2) / 100 )
  69. #define RTP_STACK_SIZE (4*1024)
  70. #define RTP_SYNC (0x01)
  71. #define NTP_SYNC (0x02)
  72. #define RESEND_TO 200
  73. enum { DATA = 0, CONTROL, TIMING };
  74. static const u8_t silence_frame[MAX_PACKET] = { 0 };
  75. typedef u16_t seq_t;
  76. typedef struct audio_buffer_entry { // decoded audio packets
  77. int ready;
  78. u32_t rtptime, last_resend;
  79. s16_t *data;
  80. int len;
  81. } abuf_t;
  82. typedef struct rtp_s {
  83. #ifdef __RTP_STORE
  84. FILE *rtpIN, *rtpOUT;
  85. #endif
  86. bool running;
  87. unsigned char aesiv[16];
  88. #ifdef WIN32
  89. AES_KEY aes;
  90. #else
  91. mbedtls_aes_context aes;
  92. #endif
  93. bool decrypt;
  94. u8_t *decrypt_buf;
  95. u32_t frame_size, frame_duration;
  96. u32_t in_frames, out_frames;
  97. struct in_addr host;
  98. struct sockaddr_in rtp_host;
  99. struct {
  100. unsigned short rport, lport;
  101. int sock;
  102. } rtp_sockets[3]; // data, control, timing
  103. struct timing_s {
  104. u64_t local, remote;
  105. } timing;
  106. struct {
  107. u32_t rtp, time;
  108. u8_t status;
  109. } synchro;
  110. struct {
  111. u32_t time;
  112. seq_t seqno;
  113. u32_t rtptime;
  114. } record;
  115. int latency; // rtp hold depth in samples
  116. u32_t resent_req, resent_rec; // total resent + recovered frames
  117. u32_t silent_frames; // total silence frames
  118. u32_t discarded;
  119. abuf_t audio_buffer[BUFFER_FRAMES];
  120. seq_t ab_read, ab_write;
  121. pthread_mutex_t ab_mutex;
  122. #ifdef WIN32
  123. pthread_t thread;
  124. #else
  125. TaskHandle_t thread, joiner;
  126. StaticTask_t *xTaskBuffer;
  127. StackType_t *xStack;
  128. #endif
  129. struct alac_codec_s *alac_codec;
  130. int flush_seqno;
  131. bool playing;
  132. raop_data_cb_t data_cb;
  133. raop_cmd_cb_t cmd_cb;
  134. } rtp_t;
  135. #define BUFIDX(seqno) ((seq_t)(seqno) % BUFFER_FRAMES)
  136. static void buffer_alloc(abuf_t *audio_buffer, int size);
  137. static void buffer_release(abuf_t *audio_buffer);
  138. static void buffer_reset(abuf_t *audio_buffer);
  139. static void buffer_push_packet(rtp_t *ctx);
  140. static bool rtp_request_resend(rtp_t *ctx, seq_t first, seq_t last);
  141. static bool rtp_request_timing(rtp_t *ctx);
  142. static void* rtp_thread_func(void *arg);
  143. static int seq_order(seq_t a, seq_t b);
  144. /*---------------------------------------------------------------------------*/
  145. static struct alac_codec_s* alac_init(int fmtp[32]) {
  146. struct alac_codec_s *alac;
  147. unsigned sample_rate;
  148. unsigned char sample_size, channels;
  149. struct {
  150. uint32_t frameLength;
  151. uint8_t compatibleVersion;
  152. uint8_t bitDepth;
  153. uint8_t pb;
  154. uint8_t mb;
  155. uint8_t kb;
  156. uint8_t numChannels;
  157. uint16_t maxRun;
  158. uint32_t maxFrameBytes;
  159. uint32_t avgBitRate;
  160. uint32_t sampleRate;
  161. } config;
  162. config.frameLength = htonl(fmtp[1]);
  163. config.compatibleVersion = fmtp[2];
  164. config.bitDepth = fmtp[3];
  165. config.pb = fmtp[4];
  166. config.mb = fmtp[5];
  167. config.kb = fmtp[6];
  168. config.numChannels = fmtp[7];
  169. config.maxRun = htons(fmtp[8]);
  170. config.maxFrameBytes = htonl(fmtp[9]);
  171. config.avgBitRate = htonl(fmtp[10]);
  172. config.sampleRate = htonl(fmtp[11]);
  173. alac = alac_create_decoder(sizeof(config), (unsigned char*) &config, &sample_size, &sample_rate, &channels);
  174. if (!alac) {
  175. LOG_ERROR("cannot create alac codec", NULL);
  176. return NULL;
  177. }
  178. return alac;
  179. }
  180. /*---------------------------------------------------------------------------*/
  181. rtp_resp_t rtp_init(struct in_addr host, int latency, char *aeskey, char *aesiv, char *fmtpstr,
  182. short unsigned pCtrlPort, short unsigned pTimingPort,
  183. raop_cmd_cb_t cmd_cb, raop_data_cb_t data_cb)
  184. {
  185. int i = 0;
  186. char *arg;
  187. int fmtp[12];
  188. bool rc = true;
  189. rtp_t *ctx = calloc(1, sizeof(rtp_t));
  190. rtp_resp_t resp = { 0, 0, 0, NULL };
  191. if (!ctx) return resp;
  192. ctx->host = host;
  193. ctx->decrypt = false;
  194. ctx->cmd_cb = cmd_cb;
  195. ctx->data_cb = data_cb;
  196. ctx->rtp_host.sin_family = AF_INET;
  197. ctx->rtp_host.sin_addr.s_addr = INADDR_ANY;
  198. pthread_mutex_init(&ctx->ab_mutex, 0);
  199. ctx->flush_seqno = -1;
  200. ctx->latency = latency;
  201. ctx->ab_read = ctx->ab_write;
  202. #ifdef __RTP_STORE
  203. ctx->rtpIN = fopen("airplay.rtpin", "wb");
  204. ctx->rtpOUT = fopen("airplay.rtpout", "wb");
  205. #endif
  206. ctx->rtp_sockets[CONTROL].rport = pCtrlPort;
  207. ctx->rtp_sockets[TIMING].rport = pTimingPort;
  208. if (aesiv && aeskey) {
  209. memcpy(ctx->aesiv, aesiv, 16);
  210. #ifdef WIN32
  211. AES_set_decrypt_key((unsigned char*) aeskey, 128, &ctx->aes);
  212. #else
  213. memset(&ctx->aes, 0, sizeof(mbedtls_aes_context));
  214. mbedtls_aes_setkey_dec(&ctx->aes, (unsigned char*) aeskey, 128);
  215. #endif
  216. ctx->decrypt = true;
  217. ctx->decrypt_buf = malloc(MAX_PACKET);
  218. }
  219. memset(fmtp, 0, sizeof(fmtp));
  220. while ((arg = strsep(&fmtpstr, " \t")) != NULL) fmtp[i++] = atoi(arg);
  221. ctx->frame_size = fmtp[1];
  222. ctx->frame_duration = (ctx->frame_size * 1000) / RAOP_SAMPLE_RATE;
  223. // alac decoder
  224. ctx->alac_codec = alac_init(fmtp);
  225. rc &= ctx->alac_codec != NULL;
  226. buffer_alloc(ctx->audio_buffer, ctx->frame_size*4);
  227. // create rtp ports
  228. for (i = 0; i < 3; i++) {
  229. ctx->rtp_sockets[i].sock = bind_socket(&ctx->rtp_sockets[i].lport, SOCK_DGRAM);
  230. rc &= ctx->rtp_sockets[i].sock > 0;
  231. }
  232. // create http port and start listening
  233. resp.cport = ctx->rtp_sockets[CONTROL].lport;
  234. resp.tport = ctx->rtp_sockets[TIMING].lport;
  235. resp.aport = ctx->rtp_sockets[DATA].lport;
  236. if (rc) {
  237. ctx->running = true;
  238. #ifdef WIN32
  239. pthread_create(&ctx->thread, NULL, rtp_thread_func, (void *) ctx);
  240. #else
  241. // xTaskCreate((TaskFunction_t) rtp_thread_func, "RTP_thread", RTP_TASK_SIZE, ctx, CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT + 1 , &ctx->thread);
  242. ctx->xTaskBuffer = (StaticTask_t*) heap_caps_malloc(sizeof(StaticTask_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  243. ctx->xStack = (StackType_t*) malloc(RTP_STACK_SIZE);
  244. ctx->thread = xTaskCreateStatic( (TaskFunction_t) rtp_thread_func, "RTP_thread", RTP_STACK_SIZE, ctx,
  245. CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT + 1, ctx->xStack, ctx->xTaskBuffer );
  246. #endif
  247. } else {
  248. rtp_end(ctx);
  249. ctx = NULL;
  250. }
  251. resp.ctx = ctx;
  252. return resp;
  253. }
  254. /*---------------------------------------------------------------------------*/
  255. void rtp_end(rtp_t *ctx)
  256. {
  257. int i;
  258. if (!ctx) return;
  259. if (ctx->running) {
  260. #if !defined WIN32
  261. ctx->joiner = xTaskGetCurrentTaskHandle();
  262. #endif
  263. ctx->running = false;
  264. #ifdef WIN32
  265. pthread_join(ctx->thread, NULL);
  266. #else
  267. xTaskNotifyWait(0, 0, NULL, portMAX_DELAY);
  268. free(ctx->xStack);
  269. heap_caps_free(ctx->xTaskBuffer);
  270. #endif
  271. }
  272. for (i = 0; i < 3; i++) closesocket(ctx->rtp_sockets[i].sock);
  273. if (ctx->alac_codec) alac_delete_decoder(ctx->alac_codec);
  274. if (ctx->decrypt_buf) free(ctx->decrypt_buf);
  275. pthread_mutex_destroy(&ctx->ab_mutex);
  276. buffer_release(ctx->audio_buffer);
  277. free(ctx);
  278. #ifdef __RTP_STORE
  279. fclose(ctx->rtpIN);
  280. fclose(ctx->rtpOUT);
  281. #endif
  282. }
  283. /*---------------------------------------------------------------------------*/
  284. bool rtp_flush(rtp_t *ctx, unsigned short seqno, unsigned int rtptime)
  285. {
  286. bool rc = true;
  287. u32_t now = gettime_ms();
  288. if (now < ctx->record.time + 250 || (ctx->record.seqno == seqno && ctx->record.rtptime == rtptime)) {
  289. rc = false;
  290. LOG_ERROR("[%p]: FLUSH ignored as same as RECORD (%hu - %u)", ctx, seqno, rtptime);
  291. } else {
  292. pthread_mutex_lock(&ctx->ab_mutex);
  293. buffer_reset(ctx->audio_buffer);
  294. ctx->playing = false;
  295. ctx->flush_seqno = seqno;
  296. pthread_mutex_unlock(&ctx->ab_mutex);
  297. }
  298. LOG_INFO("[%p]: flush %hu %u", ctx, seqno, rtptime);
  299. return rc;
  300. }
  301. /*---------------------------------------------------------------------------*/
  302. void rtp_record(rtp_t *ctx, unsigned short seqno, unsigned rtptime)
  303. {
  304. ctx->record.seqno = seqno;
  305. ctx->record.rtptime = rtptime;
  306. ctx->record.time = gettime_ms();
  307. LOG_INFO("[%p]: record %hu %u", ctx, seqno, rtptime);
  308. }
  309. /*---------------------------------------------------------------------------*/
  310. static void buffer_alloc(abuf_t *audio_buffer, int size) {
  311. int i;
  312. for (i = 0; i < BUFFER_FRAMES; i++) {
  313. audio_buffer[i].data = malloc(size);
  314. audio_buffer[i].ready = 0;
  315. }
  316. }
  317. /*---------------------------------------------------------------------------*/
  318. static void buffer_release(abuf_t *audio_buffer) {
  319. int i;
  320. for (i = 0; i < BUFFER_FRAMES; i++) {
  321. free(audio_buffer[i].data);
  322. }
  323. }
  324. /*---------------------------------------------------------------------------*/
  325. static void buffer_reset(abuf_t *audio_buffer) {
  326. int i;
  327. for (i = 0; i < BUFFER_FRAMES; i++) audio_buffer[i].ready = 0;
  328. }
  329. /*---------------------------------------------------------------------------*/
  330. // the sequence numbers will wrap pretty often.
  331. // this returns true if the second arg is after the first
  332. static int seq_order(seq_t a, seq_t b) {
  333. s16_t d = b - a;
  334. return d > 0;
  335. }
  336. /*---------------------------------------------------------------------------*/
  337. static void alac_decode(rtp_t *ctx, s16_t *dest, char *buf, int len, int *outsize) {
  338. unsigned char iv[16];
  339. int aeslen;
  340. assert(len<=MAX_PACKET);
  341. if (ctx->decrypt) {
  342. aeslen = len & ~0xf;
  343. memcpy(iv, ctx->aesiv, sizeof(iv));
  344. #ifdef WIN32
  345. AES_cbc_encrypt((unsigned char*)buf, ctx->decrypt_buf, aeslen, &ctx->aes, iv, AES_DECRYPT);
  346. #else
  347. mbedtls_aes_crypt_cbc(&ctx->aes, MBEDTLS_AES_DECRYPT, aeslen, iv, (unsigned char*) buf, ctx->decrypt_buf);
  348. #endif
  349. memcpy(ctx->decrypt_buf+aeslen, buf+aeslen, len-aeslen);
  350. alac_to_pcm(ctx->alac_codec, (unsigned char*) ctx->decrypt_buf, (unsigned char*) dest, 2, (unsigned int*) outsize);
  351. } else {
  352. alac_to_pcm(ctx->alac_codec, (unsigned char*) buf, (unsigned char*) dest, 2, (unsigned int*) outsize);
  353. }
  354. *outsize *= 4;
  355. }
  356. /*---------------------------------------------------------------------------*/
  357. static void buffer_put_packet(rtp_t *ctx, seq_t seqno, unsigned rtptime, bool first, char *data, int len) {
  358. abuf_t *abuf = NULL;
  359. u32_t playtime;
  360. pthread_mutex_lock(&ctx->ab_mutex);
  361. if (!ctx->playing) {
  362. if ((ctx->flush_seqno == -1 || seq_order(ctx->flush_seqno, seqno)) &&
  363. (ctx->synchro.status & RTP_SYNC) && (ctx->synchro.status & NTP_SYNC)) {
  364. ctx->ab_write = seqno-1;
  365. ctx->ab_read = seqno;
  366. ctx->flush_seqno = -1;
  367. ctx->playing = true;
  368. ctx->resent_req = ctx->resent_rec = ctx->silent_frames = ctx->discarded = 0;
  369. playtime = ctx->synchro.time + (((s32_t)(rtptime - ctx->synchro.rtp)) * 1000) / RAOP_SAMPLE_RATE;
  370. ctx->cmd_cb(RAOP_PLAY, &playtime);
  371. } else {
  372. pthread_mutex_unlock(&ctx->ab_mutex);
  373. return;
  374. }
  375. }
  376. if (seqno == (u16_t) (ctx->ab_write+1)) {
  377. // expected packet
  378. abuf = ctx->audio_buffer + BUFIDX(seqno);
  379. ctx->ab_write = seqno;
  380. LOG_SDEBUG("packet expected seqno:%hu rtptime:%u (W:%hu R:%hu)", seqno, rtptime, ctx->ab_write, ctx->ab_read);
  381. } else if (seq_order(ctx->ab_write, seqno)) {
  382. // newer than expected
  383. if (ctx->latency && seq_order(ctx->latency / ctx->frame_size, seqno - ctx->ab_write - 1)) {
  384. // only get rtp latency-1 frames back (last one is seqno)
  385. LOG_WARN("[%p] too many missing frames %hu seq: %hu, (W:%hu R:%hu)", ctx, seqno - ctx->ab_write - 1, seqno, ctx->ab_write, ctx->ab_read);
  386. ctx->ab_write = seqno - ctx->latency / ctx->frame_size;
  387. }
  388. if (ctx->latency && seq_order(ctx->latency / ctx->frame_size, seqno - ctx->ab_read)) {
  389. // if ab_read is lagging more than http latency, advance it
  390. LOG_WARN("[%p] on hold for too long %hu (W:%hu R:%hu)", ctx, seqno - ctx->ab_read + 1, ctx->ab_write, ctx->ab_read);
  391. ctx->ab_read = seqno - ctx->latency / ctx->frame_size + 1;
  392. }
  393. if (rtp_request_resend(ctx, ctx->ab_write + 1, seqno-1)) {
  394. seq_t i;
  395. u32_t now = gettime_ms();
  396. for (i = ctx->ab_write + 1; seq_order(i, seqno); i++) {
  397. ctx->audio_buffer[BUFIDX(i)].rtptime = rtptime - (seqno-i)*ctx->frame_size;
  398. ctx->audio_buffer[BUFIDX(i)].last_resend = now;
  399. }
  400. }
  401. LOG_DEBUG("[%p]: packet newer seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  402. abuf = ctx->audio_buffer + BUFIDX(seqno);
  403. ctx->ab_write = seqno;
  404. } else if (seq_order(ctx->ab_read, seqno + 1)) {
  405. // recovered packet, not yet sent
  406. abuf = ctx->audio_buffer + BUFIDX(seqno);
  407. ctx->resent_rec++;
  408. LOG_DEBUG("[%p]: packet recovered seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  409. } else {
  410. // too late
  411. LOG_DEBUG("[%p]: packet too late seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  412. }
  413. if (ctx->in_frames++ > 1000) {
  414. LOG_INFO("[%p]: fill [level:%hu rec:%u] [W:%hu R:%hu]", ctx, ctx->ab_write - ctx->ab_read, ctx->resent_rec, ctx->ab_write, ctx->ab_read);
  415. ctx->in_frames = 0;
  416. }
  417. if (abuf) {
  418. alac_decode(ctx, abuf->data, data, len, &abuf->len);
  419. abuf->ready = 1;
  420. // this is the local rtptime when this frame is expected to play
  421. abuf->rtptime = rtptime;
  422. buffer_push_packet(ctx);
  423. #ifdef __RTP_STORE
  424. fwrite(data, len, 1, ctx->rtpIN);
  425. fwrite(abuf->data, abuf->len, 1, ctx->rtpOUT);
  426. #endif
  427. }
  428. pthread_mutex_unlock(&ctx->ab_mutex);
  429. }
  430. /*---------------------------------------------------------------------------*/
  431. // push as many frames as possible through callback
  432. static void buffer_push_packet(rtp_t *ctx) {
  433. abuf_t *curframe = NULL;
  434. u32_t now, playtime, hold = max((ctx->latency * 1000) / (8 * RAOP_SAMPLE_RATE), 100);
  435. int i;
  436. // not ready to play yet
  437. if (!ctx->playing || ctx->synchro.status != (RTP_SYNC | NTP_SYNC)) return;
  438. // maybe re-evaluate time in loop in case data callback blocks ...
  439. now = gettime_ms();
  440. // there is always at least one frame in the buffer
  441. do {
  442. curframe = ctx->audio_buffer + BUFIDX(ctx->ab_read);
  443. playtime = ctx->synchro.time + (((s32_t)(curframe->rtptime - ctx->synchro.rtp)) * 1000) / RAOP_SAMPLE_RATE;
  444. if (now > playtime) {
  445. LOG_DEBUG("[%p]: discarded frame now:%u missed by:%d (W:%hu R:%hu)", ctx, now, now - playtime, ctx->ab_write, ctx->ab_read);
  446. ctx->discarded++;
  447. curframe->ready = 0;
  448. } else if (curframe->ready) {
  449. ctx->data_cb((const u8_t*) curframe->data, curframe->len, playtime);
  450. curframe->ready = 0;
  451. } else if (playtime - now <= hold) {
  452. LOG_DEBUG("[%p]: created zero frame (W:%hu R:%hu)", ctx, ctx->ab_write, ctx->ab_read);
  453. ctx->data_cb(silence_frame, ctx->frame_size * 4, playtime);
  454. ctx->silent_frames++;
  455. } else break;
  456. ctx->ab_read++;
  457. ctx->out_frames++;
  458. } while (seq_order(ctx->ab_read, ctx->ab_write));
  459. if (ctx->out_frames > 1000) {
  460. LOG_INFO("[%p]: drain [level:%hd head:%d ms] [W:%hu R:%hu] [req:%u sil:%u dis:%u]",
  461. ctx, ctx->ab_write - ctx->ab_read, playtime - now, ctx->ab_write, ctx->ab_read,
  462. ctx->resent_req, ctx->silent_frames, ctx->discarded);
  463. ctx->out_frames = 0;
  464. }
  465. LOG_SDEBUG("playtime %u %d [W:%hu R:%hu] %d", playtime, playtime - now, ctx->ab_write, ctx->ab_read, curframe->ready);
  466. // each missing packet will be requested up to (latency_frames / 16) times
  467. for (i = 0; seq_order(ctx->ab_read + i, ctx->ab_write); i += 16) {
  468. abuf_t *frame = ctx->audio_buffer + BUFIDX(ctx->ab_read + i);
  469. if (!frame->ready && now - frame->last_resend > RESEND_TO) {
  470. rtp_request_resend(ctx, ctx->ab_read + i, ctx->ab_read + i);
  471. frame->last_resend = now;
  472. }
  473. }
  474. }
  475. /*---------------------------------------------------------------------------*/
  476. static void *rtp_thread_func(void *arg) {
  477. fd_set fds;
  478. int i, sock = -1;
  479. int count = 0;
  480. bool ntp_sent;
  481. char *packet = malloc(MAX_PACKET);
  482. rtp_t *ctx = (rtp_t*) arg;
  483. for (i = 0; i < 3; i++) {
  484. if (ctx->rtp_sockets[i].sock > sock) sock = ctx->rtp_sockets[i].sock;
  485. // send synchro requets 3 times
  486. ntp_sent = rtp_request_timing(ctx);
  487. }
  488. while (ctx->running) {
  489. ssize_t plen;
  490. char type;
  491. socklen_t rtp_client_len = sizeof(struct sockaddr_storage);
  492. int idx = 0;
  493. char *pktp = packet;
  494. struct timeval timeout = {0, 100*1000};
  495. FD_ZERO(&fds);
  496. for (i = 0; i < 3; i++) { FD_SET(ctx->rtp_sockets[i].sock, &fds); }
  497. if (select(sock + 1, &fds, NULL, NULL, &timeout) <= 0) continue;
  498. for (i = 0; i < 3; i++)
  499. if (FD_ISSET(ctx->rtp_sockets[i].sock, &fds)) idx = i;
  500. plen = recvfrom(ctx->rtp_sockets[idx].sock, packet, MAX_PACKET, 0, (struct sockaddr*) &ctx->rtp_host, &rtp_client_len);
  501. if (!ntp_sent) {
  502. LOG_WARN("[%p]: NTP request not send yet", ctx);
  503. ntp_sent = rtp_request_timing(ctx);
  504. }
  505. if (plen < 0) continue;
  506. assert(plen <= MAX_PACKET);
  507. type = packet[1] & ~0x80;
  508. pktp = packet;
  509. switch (type) {
  510. seq_t seqno;
  511. unsigned rtptime;
  512. // re-sent packet
  513. case 0x56: {
  514. pktp += 4;
  515. plen -= 4;
  516. }
  517. // data packet
  518. case 0x60: {
  519. seqno = ntohs(*(u16_t*)(pktp+2));
  520. rtptime = ntohl(*(u32_t*)(pktp+4));
  521. // adjust pointer and length
  522. pktp += 12;
  523. plen -= 12;
  524. LOG_SDEBUG("[%p]: seqno:%hu rtp:%u (type: %x, first: %u)", ctx, seqno, rtptime, type, packet[1] & 0x80);
  525. // check if packet contains enough content to be reasonable
  526. if (plen < 16) break;
  527. if ((packet[1] & 0x80) && (type != 0x56)) {
  528. LOG_INFO("[%p]: 1st audio packet received", ctx);
  529. }
  530. buffer_put_packet(ctx, seqno, rtptime, packet[1] & 0x80, pktp, plen);
  531. break;
  532. }
  533. // sync packet
  534. case 0x54: {
  535. u32_t rtp_now_latency = ntohl(*(u32_t*)(pktp+4));
  536. u64_t remote = (((u64_t) ntohl(*(u32_t*)(pktp+8))) << 32) + ntohl(*(u32_t*)(pktp+12));
  537. u32_t rtp_now = ntohl(*(u32_t*)(pktp+16));
  538. u16_t flags = ntohs(*(u16_t*)(pktp+2));
  539. pthread_mutex_lock(&ctx->ab_mutex);
  540. // re-align timestamp and expected local playback time (and magic 11025 latency)
  541. ctx->latency = rtp_now - rtp_now_latency;
  542. if (flags == 7 || flags == 4) ctx->latency += 11025;
  543. if (ctx->latency < MIN_LATENCY) ctx->latency = MIN_LATENCY;
  544. else if (ctx->latency > MAX_LATENCY) ctx->latency = MAX_LATENCY;
  545. ctx->synchro.rtp = rtp_now - ctx->latency;
  546. ctx->synchro.time = ctx->timing.local + (u32_t) NTP2MS(remote - ctx->timing.remote);
  547. // now we are synced on RTP frames
  548. ctx->synchro.status |= RTP_SYNC;
  549. // 1st sync packet received (signals a restart of playback)
  550. if (packet[0] & 0x10) {
  551. LOG_INFO("[%p]: 1st sync packet received", ctx);
  552. }
  553. pthread_mutex_unlock(&ctx->ab_mutex);
  554. LOG_DEBUG("[%p]: sync packet latency:%d rtp_latency:%u rtp:%u remote ntp:%llx, local time:%u local rtp:%u (now:%u)",
  555. ctx, ctx->latency, rtp_now_latency, rtp_now, remote, ctx->synchro.time, ctx->synchro.rtp, gettime_ms());
  556. if (!count--) {
  557. rtp_request_timing(ctx);
  558. count = 3;
  559. }
  560. if ((ctx->synchro.status & RTP_SYNC) && (ctx->synchro.status & NTP_SYNC)) ctx->cmd_cb(RAOP_TIMING, NULL);
  561. break;
  562. }
  563. // NTP timing packet
  564. case 0x53: {
  565. u64_t expected;
  566. u32_t reference = ntohl(*(u32_t*)(pktp+12)); // only low 32 bits in our case
  567. u64_t remote =(((u64_t) ntohl(*(u32_t*)(pktp+16))) << 32) + ntohl(*(u32_t*)(pktp+20));
  568. u32_t roundtrip = gettime_ms() - reference;
  569. // better discard sync packets when roundtrip is suspicious
  570. if (roundtrip > 100) {
  571. LOG_WARN("[%p]: discarding NTP roundtrip of %u ms", ctx, roundtrip);
  572. break;
  573. }
  574. /*
  575. The expected elapsed remote time should be exactly the same as
  576. elapsed local time between the two request, corrected by the
  577. drifting
  578. */
  579. expected = ctx->timing.remote + MS2NTP(reference - ctx->timing.local);
  580. ctx->timing.remote = remote;
  581. ctx->timing.local = reference;
  582. // now we are synced on NTP (mutex not needed)
  583. ctx->synchro.status |= NTP_SYNC;
  584. LOG_DEBUG("[%p]: Timing references local:%llu, remote:%llx (delta:%lld, sum:%lld, adjust:%lld, gaps:%d)",
  585. ctx, ctx->timing.local, ctx->timing.remote);
  586. break;
  587. }
  588. }
  589. }
  590. free(packet);
  591. LOG_INFO("[%p]: terminating", ctx);
  592. #ifndef WIN32
  593. xTaskNotify(ctx->joiner, 0, eNoAction);
  594. vTaskDelete(NULL);
  595. #endif
  596. return NULL;
  597. }
  598. /*---------------------------------------------------------------------------*/
  599. static bool rtp_request_timing(rtp_t *ctx) {
  600. unsigned char req[32];
  601. u32_t now = gettime_ms();
  602. int i;
  603. struct sockaddr_in host;
  604. LOG_DEBUG("[%p]: timing request now:%u (port: %hu)", ctx, now, ctx->rtp_sockets[TIMING].rport);
  605. req[0] = 0x80;
  606. req[1] = 0x52|0x80;
  607. *(u16_t*)(req+2) = htons(7);
  608. *(u32_t*)(req+4) = htonl(0); // dummy
  609. for (i = 0; i < 16; i++) req[i+8] = 0;
  610. *(u32_t*)(req+24) = 0;
  611. *(u32_t*)(req+28) = htonl(now); // this is not a real NTP, but a 32 ms counter in the low part of the NTP
  612. if (ctx->host.s_addr != INADDR_ANY) {
  613. host.sin_family = AF_INET;
  614. host.sin_addr = ctx->host;
  615. } else host = ctx->rtp_host;
  616. // no address from sender, need to wait for 1st packet to be received
  617. if (host.sin_addr.s_addr == INADDR_ANY) return false;
  618. host.sin_port = htons(ctx->rtp_sockets[TIMING].rport);
  619. if (sizeof(req) != sendto(ctx->rtp_sockets[TIMING].sock, req, sizeof(req), 0, (struct sockaddr*) &host, sizeof(host))) {
  620. LOG_WARN("[%p]: SENDTO failed (%s)", ctx, strerror(errno));
  621. }
  622. return true;
  623. }
  624. /*---------------------------------------------------------------------------*/
  625. static bool rtp_request_resend(rtp_t *ctx, seq_t first, seq_t last) {
  626. unsigned char req[8]; // *not* a standard RTCP NACK
  627. // do not request silly ranges (happens in case of network large blackouts)
  628. if (seq_order(last, first) || last - first > BUFFER_FRAMES / 2) return false;
  629. ctx->resent_req += last - first + 1;
  630. LOG_DEBUG("resend request [W:%hu R:%hu first=%hu last=%hu]", ctx->ab_write, ctx->ab_read, first, last);
  631. req[0] = 0x80;
  632. req[1] = 0x55|0x80; // Apple 'resend'
  633. *(u16_t*)(req+2) = htons(1); // our seqnum
  634. *(u16_t*)(req+4) = htons(first); // missed seqnum
  635. *(u16_t*)(req+6) = htons(last-first+1); // count
  636. ctx->rtp_host.sin_port = htons(ctx->rtp_sockets[CONTROL].rport);
  637. if (sizeof(req) != sendto(ctx->rtp_sockets[CONTROL].sock, req, sizeof(req), 0, (struct sockaddr*) &ctx->rtp_host, sizeof(ctx->rtp_host))) {
  638. LOG_WARN("[%p]: SENDTO failed (%s)", ctx, strerror(errno));
  639. }
  640. return true;
  641. }