| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 | 
							- /* ***** BEGIN LICENSE BLOCK *****  
 
-  * Source last modified: $Id: sbrmath.c,v 1.1 2005/02/26 01:47:35 jrecker Exp $ 
 
-  *   
 
-  * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.  
 
-  *       
 
-  * The contents of this file, and the files included with this file, 
 
-  * are subject to the current version of the RealNetworks Public 
 
-  * Source License (the "RPSL") available at 
 
-  * http://www.helixcommunity.org/content/rpsl unless you have licensed 
 
-  * the file under the current version of the RealNetworks Community 
 
-  * Source License (the "RCSL") available at 
 
-  * http://www.helixcommunity.org/content/rcsl, in which case the RCSL 
 
-  * will apply. You may also obtain the license terms directly from 
 
-  * RealNetworks.  You may not use this file except in compliance with 
 
-  * the RPSL or, if you have a valid RCSL with RealNetworks applicable 
 
-  * to this file, the RCSL.  Please see the applicable RPSL or RCSL for 
 
-  * the rights, obligations and limitations governing use of the 
 
-  * contents of the file. 
 
-  *   
 
-  * This file is part of the Helix DNA Technology. RealNetworks is the 
 
-  * developer of the Original Code and owns the copyrights in the 
 
-  * portions it created. 
 
-  *   
 
-  * This file, and the files included with this file, is distributed 
 
-  * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY 
 
-  * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS 
 
-  * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES 
 
-  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET 
 
-  * ENJOYMENT OR NON-INFRINGEMENT. 
 
-  *  
 
-  * Technology Compatibility Kit Test Suite(s) Location:  
 
-  *    http://www.helixcommunity.org/content/tck  
 
-  *  
 
-  * Contributor(s):  
 
-  *   
 
-  * ***** END LICENSE BLOCK ***** */  
 
- /**************************************************************************************
 
-  * Fixed-point HE-AAC decoder
 
-  * Jon Recker (jrecker@real.com)
 
-  * February 2005
 
-  *
 
-  * sbrmath.c - fixed-point math functions for SBR
 
-  **************************************************************************************/
 
- #include "sbr.h"
 
- #include "assembly.h"
 
- #define Q28_2	0x20000000	/* Q28: 2.0 */
 
- #define Q28_15	0x30000000	/* Q28: 1.5 */
 
- #define NUM_ITER_IRN		5
 
- /**************************************************************************************
 
-  * Function:    InvRNormalized
 
-  *
 
-  * Description: use Newton's method to solve for x = 1/r
 
-  *
 
-  * Inputs:      r = Q31, range = [0.5, 1) (normalize your inputs to this range)
 
-  *
 
-  * Outputs:     none
 
-  *
 
-  * Return:      x = Q29, range ~= [1.0, 2.0]
 
-  *
 
-  * Notes:       guaranteed to converge and not overflow for any r in [0.5, 1)
 
-  * 
 
-  *              xn+1  = xn - f(xn)/f'(xn)
 
-  *              f(x)  = 1/r - x = 0 (find root)
 
-  *                    = 1/x - r
 
-  *              f'(x) = -1/x^2
 
-  *
 
-  *              so xn+1 = xn - (1/xn - r) / (-1/xn^2)
 
-  *                      = xn * (2 - r*xn)
 
-  *
 
-  *              NUM_ITER_IRN = 2, maxDiff = 6.2500e-02 (precision of about 4 bits)
 
-  *              NUM_ITER_IRN = 3, maxDiff = 3.9063e-03 (precision of about 8 bits)
 
-  *              NUM_ITER_IRN = 4, maxDiff = 1.5288e-05 (precision of about 16 bits)
 
-  *              NUM_ITER_IRN = 5, maxDiff = 3.0034e-08 (precision of about 24 bits)
 
-  **************************************************************************************/
 
- int InvRNormalized(int r)
 
- {
 
- 	int i, xn, t;
 
- 	/* r =   [0.5, 1.0) 
 
- 	 * 1/r = (1.0, 2.0] 
 
- 	 *   so use 1.5 as initial guess 
 
- 	 */
 
- 	xn = Q28_15;
 
- 	/* xn = xn*(2.0 - r*xn) */
 
- 	for (i = NUM_ITER_IRN; i != 0; i--) {
 
- 		t = MULSHIFT32(r, xn);			/* Q31*Q29 = Q28 */
 
- 		t = Q28_2 - t;					/* Q28 */
 
- 		xn = MULSHIFT32(xn, t) << 4;	/* Q29*Q28 << 4 = Q29 */
 
- 	}
 
- 	return xn;
 
- }
 
- #define NUM_TERMS_RPI	5
 
- #define LOG2_EXP_INV	0x58b90bfc	/* 1/log2(e), Q31 */
 
- /* invTab[x] = 1/(x+1), format = Q30 */
 
- static const int invTab[NUM_TERMS_RPI] PROGMEM = {0x40000000, 0x20000000, 0x15555555, 0x10000000, 0x0ccccccd};
 
- /**************************************************************************************
 
-  * Function:    RatioPowInv
 
-  *
 
-  * Description: use Taylor (MacLaurin) series expansion to calculate (a/b) ^ (1/c)
 
-  *
 
-  * Inputs:      a = [1, 64], b = [1, 64], c = [1, 64], a >= b
 
-  *
 
-  * Outputs:     none
 
-  *
 
-  * Return:      y = Q24, range ~= [0.015625, 64]
 
-  **************************************************************************************/
 
- int RatioPowInv(int a, int b, int c)
 
- {
 
- 	int lna, lnb, i, p, t, y;
 
- 	if (a < 1 || b < 1 || c < 1 || a > 64 || b > 64 || c > 64 || a < b)
 
- 		return 0;
 
- 	lna = MULSHIFT32(log2Tab[a], LOG2_EXP_INV) << 1;	/* ln(a), Q28 */
 
- 	lnb = MULSHIFT32(log2Tab[b], LOG2_EXP_INV) << 1;	/* ln(b), Q28 */
 
- 	p = (lna - lnb) / c;	/* Q28 */
 
- 	/* sum in Q24 */
 
- 	y = (1 << 24);
 
- 	t = p >> 4;		/* t = p^1 * 1/1! (Q24)*/
 
- 	y += t;
 
- 	for (i = 2; i <= NUM_TERMS_RPI; i++) {
 
- 		t = MULSHIFT32(invTab[i-1], t) << 2;
 
- 		t = MULSHIFT32(p, t) << 4;	/* t = p^i * 1/i! (Q24) */
 
- 		y += t;
 
- 	}
 
- 	return y;
 
- }
 
- /**************************************************************************************
 
-  * Function:    SqrtFix
 
-  *
 
-  * Description: use binary search to calculate sqrt(q)
 
-  *
 
-  * Inputs:      q = Q30
 
-  *              number of fraction bits in input
 
-  *
 
-  * Outputs:     number of fraction bits in output
 
-  *
 
-  * Return:      lo = Q(fBitsOut)
 
-  *
 
-  * Notes:       absolute precision varies depending on fBitsIn
 
-  *              normalizes input to range [0x200000000, 0x7fffffff] and takes 
 
-  *                floor(sqrt(input)), and sets fBitsOut appropriately
 
-  **************************************************************************************/
 
- int SqrtFix(int q, int fBitsIn, int *fBitsOut)
 
- {
 
- 	int z, lo, hi, mid;
 
- 	if (q <= 0) {
 
- 		*fBitsOut = fBitsIn;
 
- 		return 0;
 
- 	}
 
- 	/* force even fBitsIn */
 
- 	z = fBitsIn & 0x01;
 
- 	q >>= z;
 
- 	fBitsIn -= z;
 
- 	/* for max precision, normalize to [0x20000000, 0x7fffffff] */
 
- 	z = (CLZ(q) - 1);
 
- 	z >>= 1;
 
- 	q <<= (2*z);
 
- 	/* choose initial bounds */
 
- 	lo = 1;
 
- 	if (q >= 0x10000000)
 
- 		lo = 16384;	/* (int)sqrt(0x10000000) */
 
- 	hi = 46340;		/* (int)sqrt(0x7fffffff) */
 
- 	/* do binary search with 32x32->32 multiply test */
 
- 	do {
 
- 		mid = (lo + hi) >> 1;
 
- 		if (mid*mid > q)
 
- 			hi = mid - 1;
 
- 		else
 
- 			lo = mid + 1;
 
- 	} while (hi >= lo);
 
- 	lo--;
 
- 	*fBitsOut = ((fBitsIn + 2*z) >> 1);
 
- 	return lo;
 
- }
 
 
  |