gds_draw.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. /**
  2. * Copyright (c) 2017-2018 Tara Keeling
  3. * 2020 Philippe G.
  4. *
  5. * This software is released under the MIT License.
  6. * https://opensource.org/licenses/MIT
  7. */
  8. #include <stdio.h>
  9. #include <string.h>
  10. #include <stdint.h>
  11. #include <stdbool.h>
  12. #include <stdlib.h>
  13. #include <math.h>
  14. #include <esp_attr.h>
  15. #include "gds.h"
  16. #include "gds_private.h"
  17. #include "gds_draw.h"
  18. static const unsigned char BitReverseTable256[] =
  19. {
  20. 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
  21. 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
  22. 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
  23. 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
  24. 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
  25. 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  26. 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
  27. 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  28. 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  29. 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
  30. 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  31. 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  32. 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
  33. 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  34. 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
  35. 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
  36. };
  37. __attribute__( ( always_inline ) ) static inline void SwapInt( int* a, int* b ) {
  38. int Temp = *b;
  39. *b = *a;
  40. *a = Temp;
  41. }
  42. inline void IRAM_ATTR GDS_DrawPixelFast( struct GDS_Device* Device, int X, int Y, int Color ) {
  43. uint32_t YBit = ( Y & 0x07 );
  44. uint8_t* FBOffset = NULL;
  45. /*
  46. * We only need to modify the Y coordinate since the pitch
  47. * of the screen is the same as the width.
  48. * Dividing Y by 8 gives us which row the pixel is in but not
  49. * the bit position.
  50. */
  51. Y>>= 3;
  52. FBOffset = Device->Framebuffer + ( ( Y * Device->Width ) + X );
  53. if ( Color == GDS_COLOR_XOR ) {
  54. *FBOffset ^= BIT( YBit );
  55. } else {
  56. *FBOffset = ( Color == GDS_COLOR_WHITE ) ? *FBOffset | BIT( YBit ) : *FBOffset & ~BIT( YBit );
  57. }
  58. }
  59. inline void IRAM_ATTR GDS_DrawPixel4Fast( struct GDS_Device* Device, int X, int Y, int Color ) {
  60. uint32_t YBit = ( Y & 0x07 );
  61. uint8_t* FBOffset = NULL;
  62. /*
  63. * We only need to modify the Y coordinate since the pitch
  64. * of the screen is the same as the width.
  65. * Dividing Y by 8 gives us which row the pixel is in but not
  66. * the bit position.
  67. */
  68. Y>>= 3;
  69. FBOffset = Device->Framebuffer + ( ( Y * Device->Width ) + X );
  70. if ( Color == GDS_COLOR_XOR ) {
  71. *FBOffset ^= BIT( YBit );
  72. } else {
  73. *FBOffset = ( Color == GDS_COLOR_WHITE ) ? *FBOffset | BIT( YBit ) : *FBOffset & ~BIT( YBit );
  74. }
  75. }
  76. void IRAM_ATTR GDS_DrawHLine( struct GDS_Device* Device, int x, int y, int Width, int Color ) {
  77. int XEnd = x + Width;
  78. Device->Dirty = true;
  79. if (x < 0) x = 0;
  80. if (XEnd >= Device->Width) XEnd = Device->Width - 1;
  81. if (y < 0) y = 0;
  82. else if (y >= Device->Height) x = Device->Height - 1;
  83. for ( ; x < XEnd; x++ ) {
  84. if ( IsPixelVisible( Device, x, y ) == true ) {
  85. Device->DrawPixelFast( Device, x, y, Color );
  86. } else {
  87. break;
  88. }
  89. }
  90. }
  91. void IRAM_ATTR GDS_DrawVLine( struct GDS_Device* Device, int x, int y, int Height, int Color ) {
  92. int YEnd = y + Height;
  93. Device->Dirty = true;
  94. for ( ; y < YEnd; y++ ) {
  95. if ( IsPixelVisible( Device, x, y ) == true ) {
  96. GDS_DrawPixel( Device, x, y, Color );
  97. } else {
  98. break;
  99. }
  100. }
  101. }
  102. static inline void IRAM_ATTR DrawWideLine( struct GDS_Device* Device, int x0, int y0, int x1, int y1, int Color ) {
  103. int dx = ( x1 - x0 );
  104. int dy = ( y1 - y0 );
  105. int Error = 0;
  106. int Incr = 1;
  107. int x = x0;
  108. int y = y0;
  109. if ( dy < 0 ) {
  110. Incr = -1;
  111. dy = -dy;
  112. }
  113. Error = ( dy * 2 ) - dx;
  114. for ( ; x < x1; x++ ) {
  115. if ( IsPixelVisible( Device, x, y ) == true ) {
  116. Device->DrawPixelFast( Device, x, y, Color );
  117. }
  118. if ( Error > 0 ) {
  119. Error-= ( dx * 2 );
  120. y+= Incr;
  121. }
  122. Error+= ( dy * 2 );
  123. }
  124. }
  125. static inline void IRAM_ATTR DrawTallLine( struct GDS_Device* Device, int x0, int y0, int x1, int y1, int Color ) {
  126. int dx = ( x1 - x0 );
  127. int dy = ( y1 - y0 );
  128. int Error = 0;
  129. int Incr = 1;
  130. int x = x0;
  131. int y = y0;
  132. if ( dx < 0 ) {
  133. Incr = -1;
  134. dx = -dx;
  135. }
  136. Error = ( dx * 2 ) - dy;
  137. for ( ; y < y1; y++ ) {
  138. if ( IsPixelVisible( Device, x, y ) == true ) {
  139. Device->DrawPixelFast( Device, x, y, Color );
  140. }
  141. if ( Error > 0 ) {
  142. Error-= ( dy * 2 );
  143. x+= Incr;
  144. }
  145. Error+= ( dx * 2 );
  146. }
  147. }
  148. void IRAM_ATTR GDS_DrawLine( struct GDS_Device* Device, int x0, int y0, int x1, int y1, int Color ) {
  149. if ( x0 == x1 ) {
  150. GDS_DrawVLine( Device, x0, y0, ( y1 - y0 ), Color );
  151. } else if ( y0 == y1 ) {
  152. GDS_DrawHLine( Device, x0, y0, ( x1 - x0 ), Color );
  153. } else {
  154. Device->Dirty = true;
  155. if ( abs( x1 - x0 ) > abs( y1 - y0 ) ) {
  156. /* Wide ( run > rise ) */
  157. if ( x0 > x1 ) {
  158. SwapInt( &x0, &x1 );
  159. SwapInt( &y0, &y1 );
  160. }
  161. DrawWideLine( Device, x0, y0, x1, y1, Color );
  162. } else {
  163. /* Tall ( rise > run ) */
  164. if ( y0 > y1 ) {
  165. SwapInt( &y0, &y1 );
  166. SwapInt( &x0, &x1 );
  167. }
  168. DrawTallLine( Device, x0, y0, x1, y1, Color );
  169. }
  170. }
  171. }
  172. void IRAM_ATTR GDS_DrawBox( struct GDS_Device* Device, int x1, int y1, int x2, int y2, int Color, bool Fill ) {
  173. int Width = ( x2 - x1 );
  174. int Height = ( y2 - y1 );
  175. Device->Dirty = true;
  176. if ( Fill == false ) {
  177. /* Top side */
  178. GDS_DrawHLine( Device, x1, y1, Width, Color );
  179. /* Bottom side */
  180. GDS_DrawHLine( Device, x1, y1 + Height, Width, Color );
  181. /* Left side */
  182. GDS_DrawVLine( Device, x1, y1, Height, Color );
  183. /* Right side */
  184. GDS_DrawVLine( Device, x1 + Width, y1, Height, Color );
  185. } else {
  186. /* Fill the box by drawing horizontal lines */
  187. for ( ; y1 <= y2; y1++ ) {
  188. GDS_DrawHLine( Device, x1, y1, Width, Color );
  189. }
  190. }
  191. }
  192. /****************************************************************************************
  193. * Process graphic display data from column-oriented data (MSbit first)
  194. */
  195. void GDS_DrawBitmapCBR(struct GDS_Device* Device, uint8_t *Data, int Width, int Height) {
  196. if (!Height) Height = Device->Height;
  197. if (!Width) Width = Device->Width;
  198. // need to do row/col swap and bit-reverse
  199. int Rows = Height / 8;
  200. for (int r = 0; r < Rows; r++) {
  201. uint8_t *optr = Device->Framebuffer + r*Device->Width, *iptr = Data + r;
  202. for (int c = Width; --c >= 0;) {
  203. *optr++ = BitReverseTable256[*iptr];;
  204. iptr += Rows;
  205. }
  206. }
  207. Device->Dirty = true;
  208. }
  209. /****************************************************************************************
  210. * Process graphic display data MSBit first
  211. * WARNING: this has not been tested yet
  212. */
  213. /*
  214. static void draw_raw(int x1, int y1, int x2, int y2, bool by_column, bool MSb, u8_t *data) {
  215. // default end point to display size
  216. if (x2 == -1) x2 = Display.Width - 1;
  217. if (y2 == -1) y2 = Display.Height - 1;
  218. display->dirty = true;
  219. // not a boundary draw
  220. // same comment about bit depth
  221. if (y1 % 8 || y2 % 8 || x1 % 8 | x2 % 8) {
  222. ESP_LOGW(TAG, "can't write on non cols/rows boundaries for now");
  223. } else {
  224. // set addressing mode to match data
  225. if (by_column) {
  226. // copy the window and do row/col exchange
  227. for (int r = y1/8; r <= y2/8; r++) {
  228. uint8_t *optr = Display.Framebuffer + r*Display.Width + x1, *iptr = data + r;
  229. for (int c = x1; c <= x2; c++) {
  230. *optr++ = MSb ? BitReverseTable256[*iptr] : *iptr;
  231. iptr += (y2-y1)/8 + 1;
  232. }
  233. }
  234. } else {
  235. // just copy the window inside the frame buffer
  236. for (int r = y1/8; r <= y2/8; r++) {
  237. uint8_t *optr = Display.Framebuffer + r*Display.Width + x1, *iptr = data + r*(x2-x1+1);
  238. for (int c = x1; c <= x2; c++) *optr++ = *iptr++;
  239. }
  240. }
  241. }
  242. }
  243. */