| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547 | // Formatting library for C++ - formatting library implementation tests//// Copyright (c) 2012 - present, Victor Zverovich// All rights reserved.//// For the license information refer to format.h.#include <algorithm>#include <cstring>// clang-format off#include "test-assert.h"// clang-format on#include "fmt/format.h"#include "gmock/gmock.h"#include "util.h"using fmt::detail::bigint;using fmt::detail::fp;using fmt::detail::max_value;static_assert(!std::is_copy_constructible<bigint>::value, "");static_assert(!std::is_copy_assignable<bigint>::value, "");TEST(bigint_test, construct) {  EXPECT_EQ(fmt::to_string(bigint()), "");  EXPECT_EQ(fmt::to_string(bigint(0x42)), "42");  EXPECT_EQ(fmt::to_string(bigint(0x123456789abcedf0)), "123456789abcedf0");}TEST(bigint_test, compare) {  bigint n1(42);  bigint n2(42);  EXPECT_EQ(compare(n1, n2), 0);  n2 <<= 32;  EXPECT_LT(compare(n1, n2), 0);  bigint n3(43);  EXPECT_LT(compare(n1, n3), 0);  EXPECT_GT(compare(n3, n1), 0);  bigint n4(42 * 0x100000001);  EXPECT_LT(compare(n2, n4), 0);  EXPECT_GT(compare(n4, n2), 0);}TEST(bigint_test, add_compare) {  EXPECT_LT(      add_compare(bigint(0xffffffff), bigint(0xffffffff), bigint(1) <<= 64), 0);  EXPECT_LT(add_compare(bigint(1) <<= 32, bigint(1), bigint(1) <<= 96), 0);  EXPECT_GT(add_compare(bigint(1) <<= 32, bigint(0), bigint(0xffffffff)), 0);  EXPECT_GT(add_compare(bigint(0), bigint(1) <<= 32, bigint(0xffffffff)), 0);  EXPECT_GT(add_compare(bigint(42), bigint(1), bigint(42)), 0);  EXPECT_GT(add_compare(bigint(0xffffffff), bigint(1), bigint(0xffffffff)), 0);  EXPECT_LT(add_compare(bigint(10), bigint(10), bigint(22)), 0);  EXPECT_LT(add_compare(bigint(0x100000010), bigint(0x100000010),                        bigint(0x300000010)),            0);  EXPECT_GT(add_compare(bigint(0x1ffffffff), bigint(0x100000002),                        bigint(0x300000000)),            0);  EXPECT_EQ(add_compare(bigint(0x1ffffffff), bigint(0x100000002),                        bigint(0x300000001)),            0);  EXPECT_LT(add_compare(bigint(0x1ffffffff), bigint(0x100000002),                        bigint(0x300000002)),            0);  EXPECT_LT(add_compare(bigint(0x1ffffffff), bigint(0x100000002),                        bigint(0x300000003)),            0);}TEST(bigint_test, shift_left) {  bigint n(0x42);  n <<= 0;  EXPECT_EQ(fmt::to_string(n), "42");  n <<= 1;  EXPECT_EQ(fmt::to_string(n), "84");  n <<= 25;  EXPECT_EQ(fmt::to_string(n), "108000000");}TEST(bigint_test, multiply) {  bigint n(0x42);  EXPECT_THROW(n *= 0, assertion_failure);  n *= 1;  EXPECT_EQ(fmt::to_string(n), "42");  n *= 2;  EXPECT_EQ(fmt::to_string(n), "84");  n *= 0x12345678;  EXPECT_EQ(fmt::to_string(n), "962fc95e0");  bigint bigmax(max_value<uint32_t>());  bigmax *= max_value<uint32_t>();  EXPECT_EQ(fmt::to_string(bigmax), "fffffffe00000001");  const auto max64 = max_value<uint64_t>();  bigmax = max64;  bigmax *= max64;  EXPECT_EQ(fmt::to_string(bigmax), "fffffffffffffffe0000000000000001");  const auto max128 = (fmt::detail::uint128_t(max64) << 64) | max64;  bigmax = max128;  bigmax *= max128;  EXPECT_EQ(fmt::to_string(bigmax),            "fffffffffffffffffffffffffffffffe00000000000000000000000000000001");}TEST(bigint_test, square) {  bigint n0(0);  n0.square();  EXPECT_EQ(fmt::to_string(n0), "0");  bigint n1(0x100);  n1.square();  EXPECT_EQ(fmt::to_string(n1), "10000");  bigint n2(0xfffffffff);  n2.square();  EXPECT_EQ(fmt::to_string(n2), "ffffffffe000000001");  bigint n3(max_value<uint64_t>());  n3.square();  EXPECT_EQ(fmt::to_string(n3), "fffffffffffffffe0000000000000001");  bigint n4;  n4.assign_pow10(10);  EXPECT_EQ(fmt::to_string(n4), "2540be400");}TEST(bigint_test, divmod_assign_zero_divisor) {  bigint zero(0);  EXPECT_THROW(bigint(0).divmod_assign(zero), assertion_failure);  EXPECT_THROW(bigint(42).divmod_assign(zero), assertion_failure);}TEST(bigint_test, divmod_assign_self) {  bigint n(100);  EXPECT_THROW(n.divmod_assign(n), assertion_failure);}TEST(bigint_test, divmod_assign_unaligned) {  // (42 << 340) / pow(10, 100):  bigint n1(42);  n1 <<= 340;  bigint n2;  n2.assign_pow10(100);  int result = n1.divmod_assign(n2);  EXPECT_EQ(result, 9406);  EXPECT_EQ(fmt::to_string(n1),            "10f8353019583bfc29ffc8f564e1b9f9d819dbb4cf783e4507eca1539220p96");}TEST(bigint_test, divmod_assign) {  // 100 / 10:  bigint n1(100);  int result = n1.divmod_assign(bigint(10));  EXPECT_EQ(result, 10);  EXPECT_EQ(fmt::to_string(n1), "0");  // pow(10, 100) / (42 << 320):  n1.assign_pow10(100);  result = n1.divmod_assign(bigint(42) <<= 320);  EXPECT_EQ(result, 111);  EXPECT_EQ(fmt::to_string(n1),            "13ad2594c37ceb0b2784c4ce0bf38ace408e211a7caab24308a82e8f10p96");  // 42 / 100:  bigint n2(42);  n1.assign_pow10(2);  result = n2.divmod_assign(n1);  EXPECT_EQ(result, 0);  EXPECT_EQ(fmt::to_string(n2), "2a");}template <bool is_iec559> void run_double_tests() {  fmt::print("warning: double is not IEC559, skipping FP tests\n");}template <> void run_double_tests<true>() {  // Construct from double.  EXPECT_EQ(fp(1.23), fp(0x13ae147ae147aeu, -52));}TEST(fp_test, double_tests) {  run_double_tests<std::numeric_limits<double>::is_iec559>();}TEST(fp_test, normalize) {  const auto v = fp(0xbeef, 42);  auto normalized = normalize(v);  EXPECT_EQ(normalized.f, 0xbeef000000000000);  EXPECT_EQ(normalized.e, -6);}TEST(fp_test, multiply) {  auto v = fp(123ULL << 32, 4) * fp(56ULL << 32, 7);  EXPECT_EQ(v.f, 123u * 56u);  EXPECT_EQ(v.e, 4 + 7 + 64);  v = fp(123ULL << 32, 4) * fp(567ULL << 31, 8);  EXPECT_EQ(v.f, (123 * 567 + 1u) / 2);  EXPECT_EQ(v.e, 4 + 8 + 64);}TEST(fp_test, get_cached_power) {  using limits = std::numeric_limits<double>;  for (auto exp = limits::min_exponent; exp <= limits::max_exponent; ++exp) {    int dec_exp = 0;    auto power = fmt::detail::get_cached_power(exp, dec_exp);    bigint exact, cache(power.f);    if (dec_exp >= 0) {      exact.assign_pow10(dec_exp);      if (power.e <= 0)        exact <<= -power.e;      else        cache <<= power.e;      exact.align(cache);      cache.align(exact);      auto exact_str = fmt::to_string(exact);      auto cache_str = fmt::to_string(cache);      EXPECT_EQ(exact_str.size(), cache_str.size());      EXPECT_EQ(exact_str.substr(0, 15), cache_str.substr(0, 15));      int diff = cache_str[15] - exact_str[15];      if (diff == 1)        EXPECT_GT(exact_str[16], '8');      else        EXPECT_EQ(diff, 0);    } else {      cache.assign_pow10(-dec_exp);      cache *= power.f + 1;  // Inexact check.      exact = 1;      exact <<= -power.e;      exact.align(cache);      auto exact_str = fmt::to_string(exact);      auto cache_str = fmt::to_string(cache);      EXPECT_EQ(exact_str.size(), cache_str.size());      EXPECT_EQ(exact_str.substr(0, 16), cache_str.substr(0, 16));    }  }}TEST(fp_test, dragonbox_max_k) {  using fmt::detail::dragonbox::floor_log10_pow2;  using float_info = fmt::detail::dragonbox::float_info<float>;  EXPECT_EQ(      fmt::detail::const_check(float_info::max_k),      float_info::kappa -          floor_log10_pow2(std::numeric_limits<float>::min_exponent -                           fmt::detail::num_significand_bits<float>() - 1));  using double_info = fmt::detail::dragonbox::float_info<double>;  EXPECT_EQ(      fmt::detail::const_check(double_info::max_k),      double_info::kappa -          floor_log10_pow2(std::numeric_limits<double>::min_exponent -                           fmt::detail::num_significand_bits<double>() - 1));}TEST(fp_test, get_round_direction) {  using fmt::detail::get_round_direction;  using fmt::detail::round_direction;  EXPECT_EQ(get_round_direction(100, 50, 0), round_direction::down);  EXPECT_EQ(get_round_direction(100, 51, 0), round_direction::up);  EXPECT_EQ(get_round_direction(100, 40, 10), round_direction::down);  EXPECT_EQ(get_round_direction(100, 60, 10), round_direction::up);  for (size_t i = 41; i < 60; ++i)    EXPECT_EQ(get_round_direction(100, i, 10), round_direction::unknown);  uint64_t max = max_value<uint64_t>();  EXPECT_THROW(get_round_direction(100, 100, 0), assertion_failure);  EXPECT_THROW(get_round_direction(100, 0, 100), assertion_failure);  EXPECT_THROW(get_round_direction(100, 0, 50), assertion_failure);  // Check that remainder + error doesn't overflow.  EXPECT_EQ(get_round_direction(max, max - 1, 2), round_direction::up);  // Check that 2 * (remainder + error) doesn't overflow.  EXPECT_EQ(get_round_direction(max, max / 2 + 1, max / 2),            round_direction::unknown);  // Check that remainder - error doesn't overflow.  EXPECT_EQ(get_round_direction(100, 40, 41), round_direction::unknown);  // Check that 2 * (remainder - error) doesn't overflow.  EXPECT_EQ(get_round_direction(max, max - 1, 1), round_direction::up);}TEST(fp_test, fixed_handler) {  struct handler : fmt::detail::gen_digits_handler {    char buffer[10];    handler(int prec = 0) : fmt::detail::gen_digits_handler() {      buf = buffer;      precision = prec;    }  };  handler().on_digit('0', 100, 99, 0, false);  EXPECT_THROW(handler().on_digit('0', 100, 100, 0, false), assertion_failure);  namespace digits = fmt::detail::digits;  EXPECT_EQ(handler(1).on_digit('0', 100, 10, 10, false), digits::error);  // Check that divisor - error doesn't overflow.  EXPECT_EQ(handler(1).on_digit('0', 100, 10, 101, false), digits::error);  // Check that 2 * error doesn't overflow.  uint64_t max = max_value<uint64_t>();  EXPECT_EQ(handler(1).on_digit('0', max, 10, max - 1, false), digits::error);}TEST(fp_test, grisu_format_compiles_with_on_ieee_double) {  auto buf = fmt::memory_buffer();  format_float(0.42, -1, fmt::detail::float_specs(), buf);}TEST(format_impl_test, format_error_code) {  std::string msg = "error 42", sep = ": ";  {    auto buffer = fmt::memory_buffer();    format_to(fmt::appender(buffer), "garbage");    fmt::detail::format_error_code(buffer, 42, "test");    EXPECT_EQ(to_string(buffer), "test: " + msg);  }  {    auto buffer = fmt::memory_buffer();    auto prefix =        std::string(fmt::inline_buffer_size - msg.size() - sep.size() + 1, 'x');    fmt::detail::format_error_code(buffer, 42, prefix);    EXPECT_EQ(msg, to_string(buffer));  }  int codes[] = {42, -1};  for (size_t i = 0, n = sizeof(codes) / sizeof(*codes); i < n; ++i) {    // Test maximum buffer size.    msg = fmt::format("error {}", codes[i]);    fmt::memory_buffer buffer;    auto prefix =        std::string(fmt::inline_buffer_size - msg.size() - sep.size(), 'x');    fmt::detail::format_error_code(buffer, codes[i], prefix);    EXPECT_EQ(prefix + sep + msg, to_string(buffer));    size_t size = fmt::inline_buffer_size;    EXPECT_EQ(size, buffer.size());    buffer.resize(0);    // Test with a message that doesn't fit into the buffer.    prefix += 'x';    fmt::detail::format_error_code(buffer, codes[i], prefix);    EXPECT_EQ(to_string(buffer), msg);  }}TEST(format_impl_test, compute_width) {  EXPECT_EQ(4,            fmt::detail::compute_width(                fmt::basic_string_view<fmt::detail::char8_type>(                    reinterpret_cast<const fmt::detail::char8_type*>("ёжик"))));}// Tests fmt::detail::count_digits for integer type Int.template <typename Int> void test_count_digits() {  for (Int i = 0; i < 10; ++i) EXPECT_EQ(1u, fmt::detail::count_digits(i));  for (Int i = 1, n = 1, end = max_value<Int>() / 10; n <= end; ++i) {    n *= 10;    EXPECT_EQ(fmt::detail::count_digits(n - 1), i);    EXPECT_EQ(fmt::detail::count_digits(n), i + 1);  }}TEST(format_impl_test, count_digits) {  test_count_digits<uint32_t>();  test_count_digits<uint64_t>();}#if FMT_USE_FLOAT128TEST(format_impl_test, write_float128) {  auto s = std::string();  fmt::detail::write<char>(std::back_inserter(s), __float128(42));  EXPECT_EQ(s, "42");}#endifstruct double_double {  double a;  double b;  explicit constexpr double_double(double a_val = 0, double b_val = 0)      : a(a_val), b(b_val) {}  operator double() const { return a + b; }  auto operator-() const -> double_double { return double_double(-a, -b); }};bool operator>=(const double_double& lhs, const double_double& rhs) {  return lhs.a + lhs.b >= rhs.a + rhs.b;}struct slow_float {  float value;  explicit constexpr slow_float(float val = 0) : value(val) {}  operator float() const { return value; }  auto operator-() const -> slow_float { return slow_float(-value); }};namespace std {template <> struct is_floating_point<double_double> : std::true_type {};template <> struct numeric_limits<double_double> {  // is_iec559 is true for double-double in libstdc++.  static constexpr bool is_iec559 = true;  static constexpr int digits = 106;};template <> struct is_floating_point<slow_float> : std::true_type {};template <> struct numeric_limits<slow_float> : numeric_limits<float> {};}  // namespace stdFMT_BEGIN_NAMESPACEnamespace detail {template <> struct is_fast_float<slow_float> : std::false_type {};namespace dragonbox {template <> struct float_info<slow_float> {  using carrier_uint = uint32_t;  static const int exponent_bits = 8;};}  // namespace dragonbox}  // namespace detailFMT_END_NAMESPACETEST(format_impl_test, write_double_double) {  auto s = std::string();  fmt::detail::write<char>(std::back_inserter(s), double_double(42), {});  // Specializing is_floating_point is broken in MSVC.  if (!FMT_MSC_VERSION) EXPECT_EQ(s, "42");}TEST(format_impl_test, write_dragon_even) {  auto s = std::string();  fmt::detail::write<char>(std::back_inserter(s), slow_float(33554450.0f), {});  // Specializing is_floating_point is broken in MSVC.  if (!FMT_MSC_VERSION) EXPECT_EQ(s, "33554450");}#ifdef _WIN32#  include <windows.h>TEST(format_impl_test, write_console_signature) {  decltype(::WriteConsoleW)* p = fmt::detail::WriteConsoleW;  (void)p;}#endif// A public domain branchless UTF-8 decoder by Christopher Wellons:// https://github.com/skeeto/branchless-utf8constexpr bool unicode_is_surrogate(uint32_t c) {  return c >= 0xD800U && c <= 0xDFFFU;}FMT_CONSTEXPR char* utf8_encode(char* s, uint32_t c) {  if (c >= (1UL << 16)) {    s[0] = static_cast<char>(0xf0 | (c >> 18));    s[1] = static_cast<char>(0x80 | ((c >> 12) & 0x3f));    s[2] = static_cast<char>(0x80 | ((c >> 6) & 0x3f));    s[3] = static_cast<char>(0x80 | ((c >> 0) & 0x3f));    return s + 4;  } else if (c >= (1UL << 11)) {    s[0] = static_cast<char>(0xe0 | (c >> 12));    s[1] = static_cast<char>(0x80 | ((c >> 6) & 0x3f));    s[2] = static_cast<char>(0x80 | ((c >> 0) & 0x3f));    return s + 3;  } else if (c >= (1UL << 7)) {    s[0] = static_cast<char>(0xc0 | (c >> 6));    s[1] = static_cast<char>(0x80 | ((c >> 0) & 0x3f));    return s + 2;  } else {    s[0] = static_cast<char>(c);    return s + 1;  }}// Make sure it can decode every characterTEST(format_impl_test, utf8_decode_decode_all) {  for (uint32_t i = 0; i < 0x10ffff; i++) {    if (!unicode_is_surrogate(i)) {      int e;      uint32_t c;      char buf[8] = {0};      char* end = utf8_encode(buf, i);      const char* res = fmt::detail::utf8_decode(buf, &c, &e);      EXPECT_EQ(end, res);      EXPECT_EQ(c, i);      EXPECT_EQ(e, 0);    }  }}// Reject everything outside of U+0000..U+10FFFFTEST(format_impl_test, utf8_decode_out_of_range) {  for (uint32_t i = 0x110000; i < 0x1fffff; i++) {    int e;    uint32_t c;    char buf[8] = {0};    utf8_encode(buf, i);    const char* end = fmt::detail::utf8_decode(buf, &c, &e);    EXPECT_NE(e, 0);    EXPECT_EQ(end - buf, 4);  }}// Does it reject all surrogate halves?TEST(format_impl_test, utf8_decode_surrogate_halves) {  for (uint32_t i = 0xd800; i <= 0xdfff; i++) {    int e;    uint32_t c;    char buf[8] = {0};    utf8_encode(buf, i);    fmt::detail::utf8_decode(buf, &c, &e);    EXPECT_NE(e, 0);  }}// How about non-canonical encodings?TEST(format_impl_test, utf8_decode_non_canonical_encodings) {  int e;  uint32_t c;  const char* end;  char buf2[8] = {char(0xc0), char(0xA4)};  end = fmt::detail::utf8_decode(buf2, &c, &e);  EXPECT_NE(e, 0);           // non-canonical len 2  EXPECT_EQ(end, buf2 + 2);  // non-canonical recover 2  char buf3[8] = {char(0xe0), char(0x80), char(0xA4)};  end = fmt::detail::utf8_decode(buf3, &c, &e);  EXPECT_NE(e, 0);           // non-canonical len 3  EXPECT_EQ(end, buf3 + 3);  // non-canonical recover 3  char buf4[8] = {char(0xf0), char(0x80), char(0x80), char(0xA4)};  end = fmt::detail::utf8_decode(buf4, &c, &e);  EXPECT_NE(e, 0);           // non-canonical encoding len 4  EXPECT_EQ(end, buf4 + 4);  // non-canonical recover 4}// Let's try some bogus byte sequencesTEST(format_impl_test, utf8_decode_bogus_byte_sequences) {  int e;  uint32_t c;  // Invalid first byte  char buf0[4] = {char(0xff)};  auto len = fmt::detail::utf8_decode(buf0, &c, &e) - buf0;  EXPECT_NE(e, 0);    // "bogus [ff] 0x%02x U+%04lx", e, (unsigned long)c);  EXPECT_EQ(len, 1);  // "bogus [ff] recovery %d", len);  // Invalid first byte  char buf1[4] = {char(0x80)};  len = fmt::detail::utf8_decode(buf1, &c, &e) - buf1;  EXPECT_NE(e, 0);    // "bogus [80] 0x%02x U+%04lx", e, (unsigned long)c);  EXPECT_EQ(len, 1);  // "bogus [80] recovery %d", len);  // Looks like a two-byte sequence but second byte is wrong  char buf2[4] = {char(0xc0), char(0x0a)};  len = fmt::detail::utf8_decode(buf2, &c, &e) - buf2;  EXPECT_NE(e, 0);    // "bogus [c0 0a] 0x%02x U+%04lx", e, (unsigned long)c  EXPECT_EQ(len, 2);  // "bogus [c0 0a] recovery %d", len);}
 |