| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462 | /* ***** BEGIN LICENSE BLOCK *****  * Version: RCSL 1.0/RPSL 1.0  *   * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.  *       * The contents of this file, and the files included with this file, are  * subject to the current version of the RealNetworks Public Source License  * Version 1.0 (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the RealNetworks Community Source License Version 1.0  * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,  * in which case the RCSL will apply. You may also obtain the license terms  * directly from RealNetworks.  You may not use this file except in  * compliance with the RPSL or, if you have a valid RCSL with RealNetworks  * applicable to this file, the RCSL.  Please see the applicable RPSL or  * RCSL for the rights, obligations and limitations governing use of the  * contents of the file.   *   * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the portions  * it created.  *   * This file, and the files included with this file, is distributed and made  * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER  * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS  * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.  *  * Technology Compatibility Kit Test Suite(s) Location:  *    http://www.helixcommunity.org/content/tck  *  * Contributor(s):  *   * ***** END LICENSE BLOCK ***** */ /************************************************************************************** * Fixed-point MP3 decoder * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com) * July 2003 * * huffman.c - Huffman decoding of transform coefficients **************************************************************************************/#include "coder.h"#define PGM_READ_UNALIGNED 0 // Only support aligned reads, faster/* helper macros - see comments in hufftabs.c about the format of the huffman tables */#define GetMaxbits(x)   ((int)( (((unsigned short)(x)) >>  0) & 0x000f))#define GetHLen(x)      ((int)( (((unsigned short)(x)) >> 12) & 0x000f))#define GetCWY(x)       ((int)( (((unsigned short)(x)) >>  8) & 0x000f))#define GetCWX(x)       ((int)( (((unsigned short)(x)) >>  4) & 0x000f))#define GetSignBits(x)  ((int)( (((unsigned short)(x)) >>  0) & 0x000f))#define GetHLenQ(x)     ((int)( (((unsigned char)(x)) >> 4) & 0x0f))#define GetCWVQ(x)      ((int)( (((unsigned char)(x)) >> 3) & 0x01))#define GetCWWQ(x)      ((int)( (((unsigned char)(x)) >> 2) & 0x01))#define GetCWXQ(x)      ((int)( (((unsigned char)(x)) >> 1) & 0x01))#define GetCWYQ(x)      ((int)( (((unsigned char)(x)) >> 0) & 0x01))/* apply sign of s to the positive number x (save in MSB, will do two's complement in dequant) */#define ApplySign(x, s)	{ (x) |= ((s) & 0x80000000); }/************************************************************************************** * Function:    DecodeHuffmanPairs * * Description: decode 2-way vector Huffman codes in the "bigValues" region of spectrum * * Inputs:      valid BitStreamInfo struct, pointing to start of pair-wise codes *              pointer to xy buffer to received decoded values *              number of codewords to decode *              index of Huffman table to use *              number of bits remaining in bitstream * * Outputs:     pairs of decoded coefficients in vwxy *              updated BitStreamInfo struct * * Return:      number of bits used, or -1 if out of bits * * Notes:       assumes that nVals is an even number *              si_huff.bit tests every Huffman codeword in every table (though not *                necessarily all linBits outputs for x,y > 15) **************************************************************************************/// no improvement with section=datastatic int DecodeHuffmanPairs(int *xy, int nVals, int tabIdx, int bitsLeft, unsigned char *buf, int bitOffset){	int i, x, y;	int cachedBits, padBits, len, startBits, linBits, maxBits, minBits;	HuffTabType tabType;	unsigned short cw, *tBase, *tCurr;	unsigned int cache;	if(nVals <= 0) 		return 0;	if (bitsLeft < 0)		return -1;	startBits = bitsLeft;	tBase = (unsigned short *)(huffTable + huffTabOffset[tabIdx]);	linBits = huffTabLookup[tabIdx].linBits;	tabType = huffTabLookup[tabIdx].tabType;	ASSERT(!(nVals & 0x01));	ASSERT(tabIdx < HUFF_PAIRTABS);	ASSERT(tabIdx >= 0);	ASSERT(tabType != invalidTab);	/* initially fill cache with any partial byte */	cache = 0;	cachedBits = (8 - bitOffset) & 0x07;	if (cachedBits)		cache = (unsigned int)(*buf++) << (32 - cachedBits);	bitsLeft -= cachedBits;	if (tabType == noBits) {		/* table 0, no data, x = y = 0 */		for (i = 0; i < nVals; i+=2) {			xy[i+0] = 0;			xy[i+1] = 0;		}		return 0;	} else if (tabType == oneShot) {		/* single lookup, no escapes */		maxBits = GetMaxbits(pgm_read_word(&tBase[0]));		tBase++;		padBits = 0;		while (nVals > 0) {			/* refill cache - assumes cachedBits <= 16 */			if (bitsLeft >= 16) {				/* load 2 new bytes into left-justified cache */				cache |= (unsigned int)(*buf++) << (24 - cachedBits);				cache |= (unsigned int)(*buf++) << (16 - cachedBits);				cachedBits += 16;				bitsLeft -= 16;			} else {				/* last time through, pad cache with zeros and drain cache */				if (cachedBits + bitsLeft <= 0)	return -1;				if (bitsLeft > 0)	cache |= (unsigned int)(*buf++) << (24 - cachedBits);				if (bitsLeft > 8)	cache |= (unsigned int)(*buf++) << (16 - cachedBits);				cachedBits += bitsLeft;				bitsLeft = 0;				cache &= (signed int)0x80000000 >> (cachedBits - 1);				padBits = 11;				cachedBits += padBits;	/* okay if this is > 32 (0's automatically shifted in from right) */			}			/* largest maxBits = 9, plus 2 for sign bits, so make sure cache has at least 11 bits */			while (nVals > 0 && cachedBits >= 11 ) {				cw = pgm_read_word(&tBase[cache >> (32 - maxBits)]);				len = GetHLen(cw);				cachedBits -= len;				cache <<= len;				x = GetCWX(cw);		if (x)	{ApplySign(x, cache); cache <<= 1; cachedBits--;}				y = GetCWY(cw);		if (y)	{ApplySign(y, cache); cache <<= 1; cachedBits--;}				/* ran out of bits - should never have consumed padBits */				if (cachedBits < padBits)					return -1;				*xy++ = x;				*xy++ = y;				nVals -= 2;			}		}		bitsLeft += (cachedBits - padBits);		return (startBits - bitsLeft);	} else if (tabType == loopLinbits || tabType == loopNoLinbits) {		tCurr = tBase;		padBits = 0;		while (nVals > 0) {			/* refill cache - assumes cachedBits <= 16 */			if (bitsLeft >= 16) {				/* load 2 new bytes into left-justified cache */				cache |= (unsigned int)(*buf++) << (24 - cachedBits);				cache |= (unsigned int)(*buf++) << (16 - cachedBits);				cachedBits += 16;				bitsLeft -= 16;			} else {				/* last time through, pad cache with zeros and drain cache */				if (cachedBits + bitsLeft <= 0)	return -1;				if (bitsLeft > 0)	cache |= (unsigned int)(*buf++) << (24 - cachedBits);				if (bitsLeft > 8)	cache |= (unsigned int)(*buf++) << (16 - cachedBits);				cachedBits += bitsLeft;				bitsLeft = 0;				cache &= (signed int)0x80000000 >> (cachedBits - 1);				padBits = 11;				cachedBits += padBits;	/* okay if this is > 32 (0's automatically shifted in from right) */			}			/* largest maxBits = 9, plus 2 for sign bits, so make sure cache has at least 11 bits */			while (nVals > 0 && cachedBits >= 11 ) {				maxBits = GetMaxbits(pgm_read_word(&tCurr[0]));				cw = pgm_read_word(&tCurr[(cache >> (32 - maxBits)) + 1]);				len = GetHLen(cw);				if (!len) {					cachedBits -= maxBits;					cache <<= maxBits;					tCurr += cw;					continue;				}				cachedBits -= len;				cache <<= len;							x = GetCWX(cw);				y = GetCWY(cw);				if (x == 15 && tabType == loopLinbits) {					minBits = linBits + 1 + (y ? 1 : 0);					if (cachedBits + bitsLeft < minBits)						return -1;					while (cachedBits < minBits) {						cache |= (unsigned int)(*buf++) << (24 - cachedBits);						cachedBits += 8;						bitsLeft -= 8;					}					if (bitsLeft < 0) {						cachedBits += bitsLeft;						bitsLeft = 0;						cache &= (signed int)0x80000000 >> (cachedBits - 1);					}					x += (int)(cache >> (32 - linBits));					cachedBits -= linBits;					cache <<= linBits;				}				if (x)	{ApplySign(x, cache); cache <<= 1; cachedBits--;}				if (y == 15 && tabType == loopLinbits) {					minBits = linBits + 1;					if (cachedBits + bitsLeft < minBits)						return -1;					while (cachedBits < minBits) {						cache |= (unsigned int)(*buf++) << (24 - cachedBits);						cachedBits += 8;						bitsLeft -= 8;					}					if (bitsLeft < 0) {						cachedBits += bitsLeft;						bitsLeft = 0;						cache &= (signed int)0x80000000 >> (cachedBits - 1);					}					y += (int)(cache >> (32 - linBits));					cachedBits -= linBits;					cache <<= linBits;				}				if (y)	{ApplySign(y, cache); cache <<= 1; cachedBits--;}				/* ran out of bits - should never have consumed padBits */				if (cachedBits < padBits)					return -1;				*xy++ = x;				*xy++ = y;				nVals -= 2;				tCurr = tBase;			}		}		bitsLeft += (cachedBits - padBits);		return (startBits - bitsLeft);	}	/* error in bitstream - trying to access unused Huffman table */	return -1;}/************************************************************************************** * Function:    DecodeHuffmanQuads * * Description: decode 4-way vector Huffman codes in the "count1" region of spectrum * * Inputs:      valid BitStreamInfo struct, pointing to start of quadword codes *              pointer to vwxy buffer to received decoded values *              maximum number of codewords to decode *              index of quadword table (0 = table A, 1 = table B) *              number of bits remaining in bitstream * * Outputs:     quadruples of decoded coefficients in vwxy *              updated BitStreamInfo struct * * Return:      index of the first "zero_part" value (index of the first sample  *                of the quad word after which all samples are 0) *  * Notes:        si_huff.bit tests every vwxy output in both quad tables **************************************************************************************/// no improvement with section=datastatic int DecodeHuffmanQuads(int *vwxy, int nVals, int tabIdx, int bitsLeft, unsigned char *buf, int bitOffset){	int i, v, w, x, y;	int len, maxBits, cachedBits, padBits;	unsigned int cache;	unsigned char cw, *tBase;	if (bitsLeft <= 0)		return 0;	tBase = (unsigned char *)quadTable + quadTabOffset[tabIdx];	maxBits = quadTabMaxBits[tabIdx];	/* initially fill cache with any partial byte */	cache = 0;	cachedBits = (8 - bitOffset) & 0x07;	if (cachedBits)		cache = (unsigned int)(*buf++) << (32 - cachedBits);	bitsLeft -= cachedBits;	i = padBits = 0;	while (i < (nVals - 3)) {		/* refill cache - assumes cachedBits <= 16 */		if (bitsLeft >= 16) {			/* load 2 new bytes into left-justified cache */			cache |= (unsigned int)(*buf++) << (24 - cachedBits);			cache |= (unsigned int)(*buf++) << (16 - cachedBits);			cachedBits += 16;			bitsLeft -= 16;		} else {			/* last time through, pad cache with zeros and drain cache */			if (cachedBits + bitsLeft <= 0) return i;			if (bitsLeft > 0)	cache |= (unsigned int)(*buf++) << (24 - cachedBits);			if (bitsLeft > 8)	cache |= (unsigned int)(*buf++) << (16 - cachedBits);			cachedBits += bitsLeft;			bitsLeft = 0;			cache &= (signed int)0x80000000 >> (cachedBits - 1);			padBits = 10;			cachedBits += padBits;	/* okay if this is > 32 (0's automatically shifted in from right) */		}		/* largest maxBits = 6, plus 4 for sign bits, so make sure cache has at least 10 bits */		while (i < (nVals - 3) && cachedBits >= 10 ) {			cw = pgm_read_byte(&tBase[cache >> (32 - maxBits)]);			len = GetHLenQ(cw);			cachedBits -= len;			cache <<= len;			v = GetCWVQ(cw);	if(v) {ApplySign(v, cache); cache <<= 1; cachedBits--;}			w = GetCWWQ(cw);	if(w) {ApplySign(w, cache); cache <<= 1; cachedBits--;}			x = GetCWXQ(cw);	if(x) {ApplySign(x, cache); cache <<= 1; cachedBits--;}			y = GetCWYQ(cw);	if(y) {ApplySign(y, cache); cache <<= 1; cachedBits--;}			/* ran out of bits - okay (means we're done) */			if (cachedBits < padBits)				return i;			*vwxy++ = v;			*vwxy++ = w;			*vwxy++ = x;			*vwxy++ = y;			i += 4;		}	}	/* decoded max number of quad values */	return i;}/************************************************************************************** * Function:    DecodeHuffman * * Description: decode one granule, one channel worth of Huffman codes * * Inputs:      MP3DecInfo structure filled by UnpackFrameHeader(), UnpackSideInfo(), *                and UnpackScaleFactors() (for this granule) *              buffer pointing to start of Huffman data in MP3 frame *              pointer to bit offset (0-7) indicating starting bit in buf[0] *              number of bits in the Huffman data section of the frame *                (could include padding bits) *              index of current granule and channel * * Outputs:     decoded coefficients in hi->huffDecBuf[ch] (hi pointer in mp3DecInfo) *              updated bitOffset * * Return:      length (in bytes) of Huffman codes *              bitOffset also returned in parameter (0 = MSB, 7 = LSB of  *                byte located at buf + offset) *              -1 if null input pointers, huffBlockBits < 0, or decoder runs  *                out of bits prematurely (invalid bitstream) **************************************************************************************/// .data about 1ms faster per frame/* __attribute__ ((section (".data"))) */ int DecodeHuffman(MP3DecInfo *mp3DecInfo, unsigned char *buf, int *bitOffset, int huffBlockBits, int gr, int ch){	int r1Start, r2Start, rEnd[4];	/* region boundaries */	int i, w, bitsUsed, bitsLeft;	unsigned char *startBuf = buf;	FrameHeader *fh;	SideInfo *si;	SideInfoSub *sis;	//ScaleFactorInfo *sfi;	HuffmanInfo *hi;	/* validate pointers */	if (!mp3DecInfo || !mp3DecInfo->FrameHeaderPS || !mp3DecInfo->SideInfoPS || !mp3DecInfo->ScaleFactorInfoPS || !mp3DecInfo->HuffmanInfoPS)		return -1;	fh = ((FrameHeader *)(mp3DecInfo->FrameHeaderPS));	si = ((SideInfo *)(mp3DecInfo->SideInfoPS));	sis = &si->sis[gr][ch];	//sfi = ((ScaleFactorInfo *)(mp3DecInfo->ScaleFactorInfoPS));	hi = (HuffmanInfo*)(mp3DecInfo->HuffmanInfoPS);	if (huffBlockBits < 0)		return -1;	/* figure out region boundaries (the first 2*bigVals coefficients divided into 3 regions) */	if (sis->winSwitchFlag && sis->blockType == 2) {		if (sis->mixedBlock == 0) {			r1Start = fh->sfBand->s[(sis->region0Count + 1)/3] * 3;		} else {			if (fh->ver == MPEG1) {				r1Start = fh->sfBand->l[sis->region0Count + 1];			} else {				/* see MPEG2 spec for explanation */				w = fh->sfBand->s[4] - fh->sfBand->s[3];				r1Start = fh->sfBand->l[6] + 2*w;			}		}		r2Start = MAX_NSAMP;	/* short blocks don't have region 2 */	} else {		r1Start = fh->sfBand->l[sis->region0Count + 1];		r2Start = fh->sfBand->l[sis->region0Count + 1 + sis->region1Count + 1];	}	/* offset rEnd index by 1 so first region = rEnd[1] - rEnd[0], etc. */	rEnd[3] = MIN(MAX_NSAMP, 2 * sis->nBigvals);	rEnd[2] = MIN(r2Start, rEnd[3]);	rEnd[1] = MIN(r1Start, rEnd[3]);	rEnd[0] = 0;	/* rounds up to first all-zero pair (we don't check last pair for (x,y) == (non-zero, zero)) */	hi->nonZeroBound[ch] = rEnd[3];	/* decode Huffman pairs (rEnd[i] are always even numbers) */	bitsLeft = huffBlockBits;	for (i = 0; i < 3; i++) {		bitsUsed = DecodeHuffmanPairs(hi->huffDecBuf[ch] + rEnd[i], rEnd[i+1] - rEnd[i], sis->tableSelect[i], bitsLeft, buf, *bitOffset);		if (bitsUsed < 0 || bitsUsed > bitsLeft)	/* error - overran end of bitstream */			return -1;		/* update bitstream position */		buf += (bitsUsed + *bitOffset) >> 3;		*bitOffset = (bitsUsed + *bitOffset) & 0x07;		bitsLeft -= bitsUsed;	}	/* decode Huffman quads (if any) */	hi->nonZeroBound[ch] += DecodeHuffmanQuads(hi->huffDecBuf[ch] + rEnd[3], MAX_NSAMP - rEnd[3], sis->count1TableSelect, bitsLeft, buf, *bitOffset);	ASSERT(hi->nonZeroBound[ch] <= MAX_NSAMP);	for (i = hi->nonZeroBound[ch]; i < MAX_NSAMP; i++)		hi->huffDecBuf[ch][i] = 0;		/* If bits used for 576 samples < huffBlockBits, then the extras are considered	 *  to be stuffing bits (throw away, but need to return correct bitstream position) 	 */	buf += (bitsLeft + *bitOffset) >> 3;	*bitOffset = (bitsLeft + *bitOffset) & 0x07;		return (buf - startBuf);}
 |