| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 | /* ***** BEGIN LICENSE BLOCK *****   * Source last modified: $Id: fft.c,v 1.1 2005/02/26 01:47:34 jrecker Exp $  *    * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.   *        * The contents of this file, and the files included with this file,  * are subject to the current version of the RealNetworks Public  * Source License (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the current version of the RealNetworks Community  * Source License (the "RCSL") available at  * http://www.helixcommunity.org/content/rcsl, in which case the RCSL  * will apply. You may also obtain the license terms directly from  * RealNetworks.  You may not use this file except in compliance with  * the RPSL or, if you have a valid RCSL with RealNetworks applicable  * to this file, the RCSL.  Please see the applicable RPSL or RCSL for  * the rights, obligations and limitations governing use of the  * contents of the file.  *    * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the  * portions it created.  *    * This file, and the files included with this file, is distributed  * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY  * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS  * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET  * ENJOYMENT OR NON-INFRINGEMENT.  *   * Technology Compatibility Kit Test Suite(s) Location:   *    http://www.helixcommunity.org/content/tck   *   * Contributor(s):   *    * ***** END LICENSE BLOCK ***** */  /************************************************************************************** * Fixed-point HE-AAC decoder * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com) * February 2005 * * fft.c - Ken's optimized radix-4 DIT FFT, optional radix-8 first pass for odd log2(N) **************************************************************************************/#include "coder.h"#include "assembly.h"#define NUM_FFT_SIZES	2static const int nfftTab[NUM_FFT_SIZES] PROGMEM ={64, 512};static const int nfftlog2Tab[NUM_FFT_SIZES] PROGMEM = {6, 9};#define SQRT1_2 0x5a82799a	/* sqrt(1/2) in Q31 */#define swapcplx(p0,p1) \	t = p0; t1 = *(&(p0)+1); p0 = p1; *(&(p0)+1) = *(&(p1)+1); p1 = t; *(&(p1)+1) = t1/************************************************************************************** * Function:    BitReverse * * Description: Ken's fast in-place bit reverse, using super-small table * * Inputs:      buffer of samples *              table index (for transform size) * * Outputs:     bit-reversed samples in same buffer * * Return:      none **************************************************************************************/ /*__attribute__ ((section (".data"))) */ static void BitReverse(int *inout, int tabidx){    int *part0, *part1;	int a,b, t,t1;	const unsigned char* tab = bitrevtab + bitrevtabOffset[tabidx];	int nbits = nfftlog2Tab[tabidx];	part0 = inout;    part1 = inout + (1 << nbits);		while ((a = pgm_read_byte(tab++)) != 0) {        b = pgm_read_byte(tab++);        swapcplx(part0[4*a+0], part0[4*b+0]);	/* 0xxx0 <-> 0yyy0 */        swapcplx(part0[4*a+2], part1[4*b+0]);	/* 0xxx1 <-> 1yyy0 */        swapcplx(part1[4*a+0], part0[4*b+2]);	/* 1xxx0 <-> 0yyy1 */        swapcplx(part1[4*a+2], part1[4*b+2]);	/* 1xxx1 <-> 1yyy1 */    }    do {        swapcplx(part0[4*a+2], part1[4*a+0]);	/* 0xxx1 <-> 1xxx0 */    } while ((a = pgm_read_byte(tab++)) != 0);		}/************************************************************************************** * Function:    R4FirstPass * * Description: radix-4 trivial pass for decimation-in-time FFT * * Inputs:      buffer of (bit-reversed) samples *              number of R4 butterflies per group (i.e. nfft / 4) * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       assumes 2 guard bits, gains no integer bits,  *                guard bits out = guard bits in - 2 **************************************************************************************/ /* __attribute__ ((section (".data"))) */ static void R4FirstPass(int *x, int bg){    int ar, ai, br, bi, cr, ci, dr, di;		for (; bg != 0; bg--) {		ar = x[0] + x[2];		br = x[0] - x[2];		ai = x[1] + x[3];		bi = x[1] - x[3];		cr = x[4] + x[6];		dr = x[4] - x[6];		ci = x[5] + x[7];		di = x[5] - x[7];		/* max per-sample gain = 4.0 (adding 4 inputs together) */		x[0] = ar + cr;		x[4] = ar - cr;		x[1] = ai + ci;		x[5] = ai - ci;		x[2] = br + di;		x[6] = br - di;		x[3] = bi - dr;		x[7] = bi + dr;		x += 8;	}}/************************************************************************************** * Function:    R8FirstPass * * Description: radix-8 trivial pass for decimation-in-time FFT * * Inputs:      buffer of (bit-reversed) samples *              number of R8 butterflies per group (i.e. nfft / 8) * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       assumes 3 guard bits, gains 1 integer bit *              guard bits out = guard bits in - 3 (if inputs are full scale) *                or guard bits in - 2 (if inputs bounded to +/- sqrt(2)/2) *              see scaling comments in code **************************************************************************************/ /* __attribute__ ((section (".data"))) */ static void R8FirstPass(int *x, int bg){    int ar, ai, br, bi, cr, ci, dr, di;	int sr, si, tr, ti, ur, ui, vr, vi;	int wr, wi, xr, xi, yr, yi, zr, zi;	for (; bg != 0; bg--) {		ar = x[0] + x[2];		br = x[0] - x[2];		ai = x[1] + x[3];		bi = x[1] - x[3];		cr = x[4] + x[6];		dr = x[4] - x[6];		ci = x[5] + x[7];		di = x[5] - x[7];		sr = ar + cr;		ur = ar - cr;		si = ai + ci;		ui = ai - ci;		tr = br - di;		vr = br + di;		ti = bi + dr;		vi = bi - dr;		ar = x[ 8] + x[10];		br = x[ 8] - x[10];		ai = x[ 9] + x[11];		bi = x[ 9] - x[11];		cr = x[12] + x[14];		dr = x[12] - x[14];		ci = x[13] + x[15];		di = x[13] - x[15];		/* max gain of wr/wi/yr/yi vs input = 2		 *  (sum of 4 samples >> 1) 		 */		wr = (ar + cr) >> 1;		yr = (ar - cr) >> 1;		wi = (ai + ci) >> 1;		yi = (ai - ci) >> 1;		/* max gain of output vs input = 4		 *  (sum of 4 samples >> 1 + sum of 4 samples >> 1) 		 */		x[ 0] = (sr >> 1) + wr;		x[ 8] = (sr >> 1) - wr;		x[ 1] = (si >> 1) + wi;		x[ 9] = (si >> 1) - wi;		x[ 4] = (ur >> 1) + yi;		x[12] = (ur >> 1) - yi;		x[ 5] = (ui >> 1) - yr;		x[13] = (ui >> 1) + yr;		ar = br - di;		cr = br + di;		ai = bi + dr;		ci = bi - dr;		/* max gain of xr/xi/zr/zi vs input = 4*sqrt(2)/2 = 2*sqrt(2)		 *  (sum of 8 samples, multiply by sqrt(2)/2, implicit >> 1 from Q31) 		 */		xr = MULSHIFT32(SQRT1_2, ar - ai);		xi = MULSHIFT32(SQRT1_2, ar + ai);		zr = MULSHIFT32(SQRT1_2, cr - ci);		zi = MULSHIFT32(SQRT1_2, cr + ci);		/* max gain of output vs input = (2 + 2*sqrt(2) ~= 4.83)		 *  (sum of 4 samples >> 1, plus xr/xi/zr/zi with gain of 2*sqrt(2))		 * in absolute terms, we have max gain of appx 9.656 (4 + 0.707*8)		 *  but we also gain 1 int bit (from MULSHIFT32 or from explicit >> 1)		 */		x[ 6] = (tr >> 1) - xr;		x[14] = (tr >> 1) + xr;		x[ 7] = (ti >> 1) - xi;		x[15] = (ti >> 1) + xi;		x[ 2] = (vr >> 1) + zi;		x[10] = (vr >> 1) - zi;		x[ 3] = (vi >> 1) - zr;		x[11] = (vi >> 1) + zr;		x += 16;	}}/************************************************************************************** * Function:    R4Core * * Description: radix-4 pass for decimation-in-time FFT * * Inputs:      buffer of samples *              number of R4 butterflies per group *              number of R4 groups per pass *              pointer to twiddle factors tables * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       gain 2 integer bits per pass (see scaling comments in code) *              min 1 GB in *              gbOut = gbIn - 1 (short block) or gbIn - 2 (long block) *              uses 3-mul, 3-add butterflies instead of 4-mul, 2-add **************************************************************************************/ /* __attribute__ ((section (".data"))) */ static void R4Core(int *x, int bg, int gp, int *wtab){	int ar, ai, br, bi, cr, ci, dr, di, tr, ti;	int wd, ws, wi;	int i, j, step;	int *xptr, *wptr;	for (; bg != 0; gp <<= 2, bg >>= 2) {		step = 2*gp;		xptr = x;		/* max per-sample gain, per group < 1 + 3*sqrt(2) ~= 5.25 if inputs x are full-scale		 * do 3 groups for long block, 2 groups for short block (gain 2 int bits per group)		 *		 * very conservative scaling:		 *   group 1: max gain = 5.25,           int bits gained = 2, gb used = 1 (2^3 = 8)		 *   group 2: max gain = 5.25^2 = 27.6,  int bits gained = 4, gb used = 1 (2^5 = 32)		 *   group 3: max gain = 5.25^3 = 144.7, int bits gained = 6, gb used = 2 (2^8 = 256)		 */		for (i = bg; i != 0; i--) {			wptr = wtab;			for (j = gp; j != 0; j--) {				ar = xptr[0];				ai = xptr[1];				xptr += step;								/* gain 2 int bits for br/bi, cr/ci, dr/di (MULSHIFT32 by Q30)				 * gain 1 net GB				 */				ws = wptr[0];				wi = wptr[1];				br = xptr[0];				bi = xptr[1];				wd = ws + 2*wi;				tr = MULSHIFT32(wi, br + bi);				br = MULSHIFT32(wd, br) - tr;	/* cos*br + sin*bi */				bi = MULSHIFT32(ws, bi) + tr;	/* cos*bi - sin*br */				xptr += step;								ws = wptr[2];				wi = wptr[3];				cr = xptr[0];				ci = xptr[1];				wd = ws + 2*wi;				tr = MULSHIFT32(wi, cr + ci);				cr = MULSHIFT32(wd, cr) - tr;				ci = MULSHIFT32(ws, ci) + tr;				xptr += step;								ws = wptr[4];				wi = wptr[5];				dr = xptr[0];				di = xptr[1];				wd = ws + 2*wi;				tr = MULSHIFT32(wi, dr + di);				dr = MULSHIFT32(wd, dr) - tr;				di = MULSHIFT32(ws, di) + tr;				wptr += 6;				tr = ar;				ti = ai;				ar = (tr >> 2) - br;				ai = (ti >> 2) - bi;				br = (tr >> 2) + br;				bi = (ti >> 2) + bi;				tr = cr;				ti = ci;				cr = tr + dr;				ci = di - ti;				dr = tr - dr;				di = di + ti;				xptr[0] = ar + ci;				xptr[1] = ai + dr;				xptr -= step;				xptr[0] = br - cr;				xptr[1] = bi - di;				xptr -= step;				xptr[0] = ar - ci;				xptr[1] = ai - dr;				xptr -= step;				xptr[0] = br + cr;				xptr[1] = bi + di;				xptr += 2;			}			xptr += 3*step;		}		wtab += 3*step;	}}/************************************************************************************** * Function:    R4FFT * * Description: Ken's very fast in-place radix-4 decimation-in-time FFT * * Inputs:      table index (for transform size) *              buffer of samples (non bit-reversed) * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       assumes 5 guard bits in for nfft <= 512 *              gbOut = gbIn - 4 (assuming input is from PreMultiply) *              gains log2(nfft) - 2 int bits total *                so gain 7 int bits (LONG), 4 int bits (SHORT) **************************************************************************************/void R4FFT(int tabidx, int *x){	int order = nfftlog2Tab[tabidx];	int nfft = nfftTab[tabidx];	/* decimation in time */	BitReverse(x, tabidx);	if (order & 0x1) {		/* long block: order = 9, nfft = 512 */		R8FirstPass(x, nfft >> 3);						/* gain 1 int bit,  lose 2 GB */		R4Core(x, nfft >> 5, 8, (int *)twidTabOdd);		/* gain 6 int bits, lose 2 GB */	} else {		/* short block: order = 6, nfft = 64 */		R4FirstPass(x, nfft >> 2);						/* gain 0 int bits, lose 2 GB */		R4Core(x, nfft >> 4, 4, (int *)twidTabEven);	/* gain 4 int bits, lose 1 GB */	}}
 |