| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 | /* ***** BEGIN LICENSE BLOCK *****   * Source last modified: $Id: sbrfft.c,v 1.1 2005/02/26 01:47:35 jrecker Exp $  *    * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.   *        * The contents of this file, and the files included with this file,  * are subject to the current version of the RealNetworks Public  * Source License (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the current version of the RealNetworks Community  * Source License (the "RCSL") available at  * http://www.helixcommunity.org/content/rcsl, in which case the RCSL  * will apply. You may also obtain the license terms directly from  * RealNetworks.  You may not use this file except in compliance with  * the RPSL or, if you have a valid RCSL with RealNetworks applicable  * to this file, the RCSL.  Please see the applicable RPSL or RCSL for  * the rights, obligations and limitations governing use of the  * contents of the file.  *    * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the  * portions it created.  *    * This file, and the files included with this file, is distributed  * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY  * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS  * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET  * ENJOYMENT OR NON-INFRINGEMENT.  *   * Technology Compatibility Kit Test Suite(s) Location:   *    http://www.helixcommunity.org/content/tck   *   * Contributor(s):   *    * ***** END LICENSE BLOCK ***** */  /************************************************************************************** * Fixed-point HE-AAC decoder * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com) * February 2005 * * sbrfft.c - optimized FFT for SBR QMF filters **************************************************************************************/#include "sbr.h"#include "assembly.h"#define SQRT1_2	0x5a82799a/* swap RE{p0} with RE{p1} and IM{P0} with IM{P1} */#define swapcplx(p0,p1) \	t = p0; t1 = *(&(p0)+1); p0 = p1; *(&(p0)+1) = *(&(p1)+1); p1 = t; *(&(p1)+1) = t1/* nfft = 32, hard coded since small, fixed size FFTstatic const unsigned char bitrevtab32[9] = {	0x01, 0x04, 0x03, 0x06, 0x00, 0x02, 0x05, 0x07, 0x00,};*//* twiddle table for radix 4 pass, format = Q31 */static const int twidTabOdd32[8*6] = {	0x40000000, 0x00000000, 0x40000000, 0x00000000, 0x40000000, 0x00000000, 0x539eba45, 0xe7821d59, 	0x4b418bbe, 0xf383a3e2, 0x58c542c5, 0xdc71898d, 0x5a82799a, 0xd2bec333, 0x539eba45, 0xe7821d59, 	0x539eba45, 0xc4df2862, 0x539eba45, 0xc4df2862, 0x58c542c5, 0xdc71898d, 0x3248d382, 0xc13ad060, 	0x40000000, 0xc0000000, 0x5a82799a, 0xd2bec333, 0x00000000, 0xd2bec333, 0x22a2f4f8, 0xc4df2862, 	0x58c542c5, 0xcac933ae, 0xcdb72c7e, 0xf383a3e2, 0x00000000, 0xd2bec333, 0x539eba45, 0xc4df2862, 	0xac6145bb, 0x187de2a7, 0xdd5d0b08, 0xe7821d59, 0x4b418bbe, 0xc13ad060, 0xa73abd3b, 0x3536cc52, };/************************************************************************************** * Function:    BitReverse32 * * Description: Ken's fast in-place bit reverse * * Inputs:      buffer of 32 complex samples * * Outputs:     bit-reversed samples in same buffer * * Return:      none**************************************************************************************/static void BitReverse32(int *inout){	int t, t1;	swapcplx(inout[2],  inout[32]);	swapcplx(inout[4],  inout[16]);	swapcplx(inout[6],  inout[48]);	swapcplx(inout[10], inout[40]);	swapcplx(inout[12], inout[24]);	swapcplx(inout[14], inout[56]);	swapcplx(inout[18], inout[36]);	swapcplx(inout[22], inout[52]);	swapcplx(inout[26], inout[44]);	swapcplx(inout[30], inout[60]);	swapcplx(inout[38], inout[50]);	swapcplx(inout[46], inout[58]);}/************************************************************************************** * Function:    R8FirstPass32 * * Description: radix-8 trivial pass for decimation-in-time FFT (log2(N) = 5) * * Inputs:      buffer of (bit-reversed) samples * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       assumes 3 guard bits, gains 1 integer bit *              guard bits out = guard bits in - 3 (if inputs are full scale) *                or guard bits in - 2 (if inputs bounded to +/- sqrt(2)/2) *              see scaling comments in fft.c for base AAC *              should compile with no stack spills on ARM (verify compiled output) *              current instruction count (per pass): 16 LDR, 16 STR, 4 SMULL, 61 ALU **************************************************************************************/static void R8FirstPass32(int *r0){	int r1, r2, r3, r4, r5, r6, r7;	int r8, r9, r10, r11, r12, r14;	/* number of passes = fft size / 8 = 32 / 8 = 4 */	r1 = (32 >> 3);	do {		r2 = r0[8];		r3 = r0[9];		r4 = r0[10];		r5 = r0[11];		r6 = r0[12];		r7 = r0[13];		r8 = r0[14];		r9 = r0[15];		r10 = r2 + r4;		r11 = r3 + r5;		r12 = r6 + r8;		r14 = r7 + r9;		r2 -= r4;		r3 -= r5;		r6 -= r8;		r7 -= r9;		r4 = r2 - r7;		r5 = r2 + r7;		r8 = r3 - r6;		r9 = r3 + r6;		r2 = r4 - r9;		r3 = r4 + r9;		r6 = r5 - r8;		r7 = r5 + r8;		r2 = MULSHIFT32(SQRT1_2, r2);	/* can use r4, r5, r8, or r9 for constant and lo32 scratch reg */		r3 = MULSHIFT32(SQRT1_2, r3);		r6 = MULSHIFT32(SQRT1_2, r6);		r7 = MULSHIFT32(SQRT1_2, r7);		r4 = r10 + r12;		r5 = r10 - r12;		r8 = r11 + r14;		r9 = r11 - r14;			r10 = r0[0];		r11 = r0[2];		r12 = r0[4];		r14 = r0[6];		r10 += r11;		r12 += r14;		r4 >>= 1;		r10 += r12;		r4 += (r10 >> 1);		r0[ 0] = r4;		r4 -= (r10 >> 1);		r4 = (r10 >> 1) - r4;		r0[ 8] = r4;		r9 >>= 1;		r10 -= 2*r12;		r4 = (r10 >> 1) + r9;		r0[ 4] = r4;		r4 = (r10 >> 1) - r9;		r0[12] = r4;		r10 += r12;		r10 -= 2*r11;		r12 -= 2*r14;		r4 =  r0[1];		r9 =  r0[3];		r11 = r0[5];		r14 = r0[7];		r4 += r9;		r11 += r14;		r8 >>= 1;		r4 += r11;		r8 += (r4 >> 1);		r0[ 1] = r8;		r8 -= (r4 >> 1);		r8 = (r4 >> 1) - r8;		r0[ 9] = r8;		r5 >>= 1;		r4 -= 2*r11;		r8 = (r4 >> 1) - r5;		r0[ 5] = r8;		r8 = (r4 >> 1) + r5;		r0[13] = r8;		r4 += r11;		r4 -= 2*r9;		r11 -= 2*r14;		r9 = r10 - r11;		r10 += r11;		r14 = r4 + r12;		r4 -= r12;		r5 = (r10 >> 1) + r7;		r8 = (r4 >> 1) - r6;		r0[ 2] = r5;		r0[ 3] = r8;		r5 = (r9 >> 1) - r2;		r8 = (r14 >> 1) - r3;		r0[ 6] = r5;		r0[ 7] = r8;		r5 = (r10 >> 1) - r7;		r8 = (r4 >> 1) + r6;		r0[10] = r5;		r0[11] = r8;				r5 = (r9 >> 1) + r2;		r8 = (r14 >> 1) + r3;		r0[14] = r5;		r0[15] = r8;		r0 += 16;		r1--;	} while (r1 != 0);}/************************************************************************************** * Function:    R4Core32 * * Description: radix-4 pass for 32-point decimation-in-time FFT * * Inputs:      buffer of samples * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       gain 2 integer bits *              guard bits out = guard bits in - 1 (if inputs are full scale) *              see scaling comments in fft.c for base AAC *              uses 3-mul, 3-add butterflies instead of 4-mul, 2-add *              should compile with no stack spills on ARM (verify compiled output) *              current instruction count (per pass): 16 LDR, 16 STR, 4 SMULL, 61 ALU **************************************************************************************/static void R4Core32(int *r0){	int r2, r3, r4, r5, r6, r7;	int r8, r9, r10, r12, r14;	int *r1;	r1 = (int *)twidTabOdd32;	r10 = 8;	do {		/* can use r14 for lo32 scratch register in all MULSHIFT32 */		r2 = r1[0];		r3 = r1[1];		r4 = r0[16];		r5 = r0[17];		r12 = r4 + r5;		r12 = MULSHIFT32(r3, r12);		r5  = MULSHIFT32(r2, r5) + r12;		r2 += 2*r3;		r4  = MULSHIFT32(r2, r4) - r12;			r2 = r1[2];		r3 = r1[3];		r6 = r0[32];		r7 = r0[33];		r12 = r6 + r7;		r12 = MULSHIFT32(r3, r12);		r7  = MULSHIFT32(r2, r7) + r12;		r2 += 2*r3;		r6  = MULSHIFT32(r2, r6) - r12;				r2 = r1[4];		r3 = r1[5];		r8 = r0[48];		r9 = r0[49];		r12 = r8 + r9;		r12 = MULSHIFT32(r3, r12);		r9  = MULSHIFT32(r2, r9) + r12;		r2 += 2*r3;		r8  = MULSHIFT32(r2, r8) - r12;		r2 = r0[0];		r3 = r0[1];		r12 = r6 + r8;		r8  = r6 - r8;		r14 = r9 - r7;		r9  = r9 + r7;		r6 = (r2 >> 2) - r4;		r7 = (r3 >> 2) - r5;		r4 += (r2 >> 2);		r5 += (r3 >> 2);		r2 = r4 + r12;		r3 = r5 + r9;		r0[0] = r2;		r0[1] = r3;		r2 = r6 - r14;		r3 = r7 - r8;		r0[16] = r2;		r0[17] = r3;		r2 = r4 - r12;		r3 = r5 - r9;		r0[32] = r2;		r0[33] = r3;		r2 = r6 + r14;		r3 = r7 + r8;		r0[48] = r2;		r0[49] = r3;		r0 += 2;		r1 += 6;		r10--;	} while (r10 != 0);}/************************************************************************************** * Function:    FFT32C * * Description: Ken's very fast in-place radix-4 decimation-in-time FFT * * Inputs:      buffer of 32 complex samples (before bit-reversal) * * Outputs:     processed samples in same buffer * * Return:      none * * Notes:       assumes 3 guard bits in, gains 3 integer bits *              guard bits out = guard bits in - 2 *              (guard bit analysis includes assumptions about steps immediately *               before and after, i.e. PreMul and PostMul for DCT) **************************************************************************************/void FFT32C(int *x){	/* decimation in time */	BitReverse32(x);	/* 32-point complex FFT */	R8FirstPass32(x);	/* gain 1 int bit,  lose 2 GB (making assumptions about input) */	R4Core32(x);		/* gain 2 int bits, lose 0 GB (making assumptions about input) */}
 |