| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616 | /* ***** BEGIN LICENSE BLOCK *****   * Source last modified: $Id: sbrhfgen.c,v 1.2 2005/05/19 20:45:20 jrecker Exp $  *    * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.   *        * The contents of this file, and the files included with this file,  * are subject to the current version of the RealNetworks Public  * Source License (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the current version of the RealNetworks Community  * Source License (the "RCSL") available at  * http://www.helixcommunity.org/content/rcsl, in which case the RCSL  * will apply. You may also obtain the license terms directly from  * RealNetworks.  You may not use this file except in compliance with  * the RPSL or, if you have a valid RCSL with RealNetworks applicable  * to this file, the RCSL.  Please see the applicable RPSL or RCSL for  * the rights, obligations and limitations governing use of the  * contents of the file.  *    * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the  * portions it created.  *    * This file, and the files included with this file, is distributed  * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY  * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS  * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET  * ENJOYMENT OR NON-INFRINGEMENT.  *   * Technology Compatibility Kit Test Suite(s) Location:   *    http://www.helixcommunity.org/content/tck   *   * Contributor(s):   *    * ***** END LICENSE BLOCK ***** */  /************************************************************************************** * Fixed-point HE-AAC decoder * Jon Recker (jrecker@real.com) * February 2005 * * sbrhfgen.c - high frequency generation for SBR **************************************************************************************/#include "sbr.h"#include "assembly.h"#define FBITS_LPCOEFS	29	/* Q29 for range of (-4, 4) */#define MAG_16			(16 * (1 << (32 - (2*(32-FBITS_LPCOEFS)))))		/* i.e. 16 in Q26 format */#define RELAX_COEF		0x7ffff79c	/* 1.0 / (1.0 + 1e-6), Q31 *//* newBWTab[prev invfMode][curr invfMode], format = Q31 (table 4.158)  * sample file which uses all of these: al_sbr_sr_64_2_fsaac32.aac  */static const int newBWTab[4][4] PROGMEM = {	{0x00000000, 0x4ccccccd, 0x73333333, 0x7d70a3d7},	{0x4ccccccd, 0x60000000, 0x73333333, 0x7d70a3d7},	{0x00000000, 0x60000000, 0x73333333, 0x7d70a3d7},	{0x00000000, 0x60000000, 0x73333333, 0x7d70a3d7},};/************************************************************************************** * Function:    CVKernel1 * * Description: kernel of covariance matrix calculation for p01, p11, p12, p22 * * Inputs:      buffer of low-freq samples, starting at time index = 0,  *                freq index = patch subband * * Outputs:     64-bit accumulators for p01re, p01im, p12re, p12im, p11re, p22re *                stored in accBuf * * Return:      none * * Notes:       this is carefully written to be efficient on ARM *              use the assembly code version in sbrcov.s when building for ARM! **************************************************************************************/#if (defined (XXXX__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(XXXX__arm__))#ifdef __cplusplusextern "C"#endifvoid CVKernel1(int *XBuf, int *accBuf);#elsevoid CVKernel1(int *XBuf, int *accBuf){	U64 p01re, p01im, p12re, p12im, p11re, p22re;	int n, x0re, x0im, x1re, x1im;	x0re = XBuf[0];	x0im = XBuf[1];	XBuf += (2*64);	x1re = XBuf[0];	x1im = XBuf[1];	XBuf += (2*64);	p01re.w64 = p01im.w64 = 0;	p12re.w64 = p12im.w64 = 0;	p11re.w64 = 0;	p22re.w64 = 0;	p12re.w64 = MADD64(p12re.w64,  x1re, x0re);	p12re.w64 = MADD64(p12re.w64,  x1im, x0im);	p12im.w64 = MADD64(p12im.w64,  x0re, x1im);	p12im.w64 = MADD64(p12im.w64, -x0im, x1re);	p22re.w64 = MADD64(p22re.w64,  x0re, x0re);	p22re.w64 = MADD64(p22re.w64,  x0im, x0im);	for (n = (NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6); n != 0; n--) {		/* 4 input, 3*2 acc, 1 ptr, 1 loop counter = 12 registers (use same for x0im, -x0im) */		x0re = x1re;		x0im = x1im;		x1re = XBuf[0];		x1im = XBuf[1];		p01re.w64 = MADD64(p01re.w64,  x1re, x0re);		p01re.w64 = MADD64(p01re.w64,  x1im, x0im);		p01im.w64 = MADD64(p01im.w64,  x0re, x1im);		p01im.w64 = MADD64(p01im.w64, -x0im, x1re);		p11re.w64 = MADD64(p11re.w64,  x0re, x0re);		p11re.w64 = MADD64(p11re.w64,  x0im, x0im);		XBuf += (2*64);	}	/* these can be derived by slight changes to account for boundary conditions */	p12re.w64 += p01re.w64;	p12re.w64 = MADD64(p12re.w64, x1re, -x0re);	p12re.w64 = MADD64(p12re.w64, x1im, -x0im);	p12im.w64 += p01im.w64;	p12im.w64 = MADD64(p12im.w64, x0re, -x1im);	p12im.w64 = MADD64(p12im.w64, x0im,  x1re);	p22re.w64 += p11re.w64;	p22re.w64 = MADD64(p22re.w64, x0re, -x0re);	p22re.w64 = MADD64(p22re.w64, x0im, -x0im);	accBuf[0]  = p01re.r.lo32;	accBuf[1]  = p01re.r.hi32;	accBuf[2]  = p01im.r.lo32;	accBuf[3]  = p01im.r.hi32;	accBuf[4]  = p11re.r.lo32;	accBuf[5]  = p11re.r.hi32;	accBuf[6]  = p12re.r.lo32;	accBuf[7]  = p12re.r.hi32;	accBuf[8]  = p12im.r.lo32;	accBuf[9]  = p12im.r.hi32;	accBuf[10] = p22re.r.lo32;	accBuf[11] = p22re.r.hi32;}#endif/************************************************************************************** * Function:    CalcCovariance1 * * Description: calculate covariance matrix for p01, p12, p11, p22 (4.6.18.6.2) * * Inputs:      buffer of low-freq samples, starting at time index 0,  *                freq index = patch subband * * Outputs:     complex covariance elements p01re, p01im, p12re, p12im, p11re, p22re *                (p11im = p22im = 0) *              format = integer (Q0) * 2^N, with scalefactor N >= 0 * * Return:      scalefactor N * * Notes:       outputs are normalized to have 1 GB (sign in at least top 2 bits) **************************************************************************************/static int CalcCovariance1(int *XBuf, int *p01reN, int *p01imN, int *p12reN, int *p12imN, int *p11reN, int *p22reN){	int accBuf[2*6];	int n, z, s, loShift, hiShift, gbMask;	U64 p01re, p01im, p12re, p12im, p11re, p22re;	CVKernel1(XBuf, accBuf);	p01re.r.lo32 = accBuf[0];	p01re.r.hi32 = accBuf[1];	p01im.r.lo32 = accBuf[2];	p01im.r.hi32 = accBuf[3];	p11re.r.lo32 = accBuf[4];	p11re.r.hi32 = accBuf[5];	p12re.r.lo32 = accBuf[6];	p12re.r.hi32 = accBuf[7];	p12im.r.lo32 = accBuf[8];	p12im.r.hi32 = accBuf[9];	p22re.r.lo32 = accBuf[10];	p22re.r.hi32 = accBuf[11];	/* 64-bit accumulators now have 2*FBITS_OUT_QMFA fraction bits	 * want to scale them down to integers (32-bit signed, Q0)	 *   with scale factor of 2^n, n >= 0	 * leave 2 GB's for calculating determinant, so take top 30 non-zero bits	 */	gbMask  = ((p01re.r.hi32) ^ (p01re.r.hi32 >> 31)) | ((p01im.r.hi32) ^ (p01im.r.hi32 >> 31));	gbMask |= ((p12re.r.hi32) ^ (p12re.r.hi32 >> 31)) | ((p12im.r.hi32) ^ (p12im.r.hi32 >> 31));	gbMask |= ((p11re.r.hi32) ^ (p11re.r.hi32 >> 31)) | ((p22re.r.hi32) ^ (p22re.r.hi32 >> 31));	if (gbMask == 0) {		s = p01re.r.hi32 >> 31; gbMask  = (p01re.r.lo32 ^ s) - s;		s = p01im.r.hi32 >> 31; gbMask |= (p01im.r.lo32 ^ s) - s;		s = p12re.r.hi32 >> 31; gbMask |= (p12re.r.lo32 ^ s) - s;		s = p12im.r.hi32 >> 31; gbMask |= (p12im.r.lo32 ^ s) - s;		s = p11re.r.hi32 >> 31; gbMask |= (p11re.r.lo32 ^ s) - s;		s = p22re.r.hi32 >> 31; gbMask |= (p22re.r.lo32 ^ s) - s;		z = 32 + CLZ(gbMask);	} else {		gbMask  = FASTABS(p01re.r.hi32) | FASTABS(p01im.r.hi32);		gbMask |= FASTABS(p12re.r.hi32) | FASTABS(p12im.r.hi32);		gbMask |= FASTABS(p11re.r.hi32) | FASTABS(p22re.r.hi32);		z = CLZ(gbMask);	}	n = 64 - z;	/* number of non-zero bits in bottom of 64-bit word */	if (n <= 30) {		loShift = (30 - n);		*p01reN = p01re.r.lo32 << loShift;	*p01imN = p01im.r.lo32 << loShift;		*p12reN = p12re.r.lo32 << loShift;	*p12imN = p12im.r.lo32 << loShift;		*p11reN = p11re.r.lo32 << loShift;	*p22reN = p22re.r.lo32 << loShift;		return -(loShift + 2*FBITS_OUT_QMFA);	} else if (n < 32 + 30) {		loShift = (n - 30);		hiShift = 32 - loShift;		*p01reN = (p01re.r.hi32 << hiShift) | (p01re.r.lo32 >> loShift);		*p01imN = (p01im.r.hi32 << hiShift) | (p01im.r.lo32 >> loShift);		*p12reN = (p12re.r.hi32 << hiShift) | (p12re.r.lo32 >> loShift);		*p12imN = (p12im.r.hi32 << hiShift) | (p12im.r.lo32 >> loShift);		*p11reN = (p11re.r.hi32 << hiShift) | (p11re.r.lo32 >> loShift);		*p22reN = (p22re.r.hi32 << hiShift) | (p22re.r.lo32 >> loShift);		return (loShift - 2*FBITS_OUT_QMFA);	} else {		hiShift = n - (32 + 30);		*p01reN = p01re.r.hi32 >> hiShift;	*p01imN = p01im.r.hi32 >> hiShift;		*p12reN = p12re.r.hi32 >> hiShift;	*p12imN = p12im.r.hi32 >> hiShift;		*p11reN = p11re.r.hi32 >> hiShift;	*p22reN = p22re.r.hi32 >> hiShift;		return (32 - 2*FBITS_OUT_QMFA - hiShift);	}	return 0;}/************************************************************************************** * Function:    CVKernel2 * * Description: kernel of covariance matrix calculation for p02 * * Inputs:      buffer of low-freq samples, starting at time index = 0,  *                freq index = patch subband * * Outputs:     64-bit accumulators for p02re, p02im stored in accBuf * * Return:      none * * Notes:       this is carefully written to be efficient on ARM *              use the assembly code version in sbrcov.s when building for ARM! **************************************************************************************/#if (defined (XXXX__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(XXXX__arm__))#ifdef __cplusplusextern "C"#endifvoid CVKernel2(int *XBuf, int *accBuf);#elsevoid CVKernel2(int *XBuf, int *accBuf){	U64 p02re, p02im;	int n, x0re, x0im, x1re, x1im, x2re, x2im;	p02re.w64 = p02im.w64 = 0;	x0re = XBuf[0];	x0im = XBuf[1];	XBuf += (2*64);	x1re = XBuf[0];	x1im = XBuf[1];	XBuf += (2*64);	for (n = (NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6); n != 0; n--) {		/* 6 input, 2*2 acc, 1 ptr, 1 loop counter = 12 registers (use same for x0im, -x0im) */		x2re = XBuf[0];		x2im = XBuf[1];		p02re.w64 = MADD64(p02re.w64,  x2re, x0re);		p02re.w64 = MADD64(p02re.w64,  x2im, x0im);		p02im.w64 = MADD64(p02im.w64,  x0re, x2im);		p02im.w64 = MADD64(p02im.w64, -x0im, x2re);		x0re = x1re;		x0im = x1im;		x1re = x2re;		x1im = x2im;		XBuf += (2*64);	}	accBuf[0] = p02re.r.lo32;	accBuf[1] = p02re.r.hi32;	accBuf[2] = p02im.r.lo32;	accBuf[3] = p02im.r.hi32;}#endif/************************************************************************************** * Function:    CalcCovariance2 * * Description: calculate covariance matrix for p02 (4.6.18.6.2) * * Inputs:      buffer of low-freq samples, starting at time index = 0,  *                freq index = patch subband * * Outputs:     complex covariance element p02re, p02im *              format = integer (Q0) * 2^N, with scalefactor N >= 0 * * Return:      scalefactor N * * Notes:       outputs are normalized to have 1 GB (sign in at least top 2 bits) **************************************************************************************/static int CalcCovariance2(int *XBuf, int *p02reN, int *p02imN){	U64 p02re, p02im;	int n, z, s, loShift, hiShift, gbMask;	int accBuf[2*2];	CVKernel2(XBuf, accBuf);	p02re.r.lo32 = accBuf[0];	p02re.r.hi32 = accBuf[1];	p02im.r.lo32 = accBuf[2];	p02im.r.hi32 = accBuf[3];	/* 64-bit accumulators now have 2*FBITS_OUT_QMFA fraction bits	 * want to scale them down to integers (32-bit signed, Q0)	 *   with scale factor of 2^n, n >= 0	 * leave 1 GB for calculating determinant, so take top 30 non-zero bits	 */	gbMask  = ((p02re.r.hi32) ^ (p02re.r.hi32 >> 31)) | ((p02im.r.hi32) ^ (p02im.r.hi32 >> 31));	if (gbMask == 0) {		s = p02re.r.hi32 >> 31; gbMask  = (p02re.r.lo32 ^ s) - s;		s = p02im.r.hi32 >> 31; gbMask |= (p02im.r.lo32 ^ s) - s;		z = 32 + CLZ(gbMask);	} else {		gbMask  = FASTABS(p02re.r.hi32) | FASTABS(p02im.r.hi32);		z = CLZ(gbMask);	}	n = 64 - z;	/* number of non-zero bits in bottom of 64-bit word */	if (n <= 30) {		loShift = (30 - n);		*p02reN = p02re.r.lo32 << loShift;			*p02imN = p02im.r.lo32 << loShift;		return -(loShift + 2*FBITS_OUT_QMFA);	} else if (n < 32 + 30) {		loShift = (n - 30);		hiShift = 32 - loShift;		*p02reN = (p02re.r.hi32 << hiShift) | (p02re.r.lo32 >> loShift);		*p02imN = (p02im.r.hi32 << hiShift) | (p02im.r.lo32 >> loShift);		return (loShift - 2*FBITS_OUT_QMFA);	} else {		hiShift = n - (32 + 30);		*p02reN = p02re.r.hi32 >> hiShift;			*p02imN = p02im.r.hi32 >> hiShift;		return (32 - 2*FBITS_OUT_QMFA - hiShift);	}	return 0;}/************************************************************************************** * Function:    CalcLPCoefs * * Description: calculate linear prediction coefficients for one subband (4.6.18.6.2) * * Inputs:      buffer of low-freq samples, starting at time index = 0,  *                freq index = patch subband *              number of guard bits in input sample buffer * * Outputs:     complex LP coefficients a0re, a0im, a1re, a1im, format = Q29 * * Return:      none * * Notes:       output coefficients (a0re, a0im, a1re, a1im) clipped to range (-4, 4) *              if the comples coefficients have magnitude >= 4.0, they are all *                set to 0 (see spec) **************************************************************************************/static void CalcLPCoefs(int *XBuf, int *a0re, int *a0im, int *a1re, int *a1im, int gb){	int zFlag, n1, n2, nd, d, dInv, tre, tim;	int p01re, p01im, p02re, p02im, p12re, p12im, p11re, p22re;	/* pre-scale to avoid overflow - probably never happens in practice (see QMFA)	 *   max bit growth per accumulator = 38*2 = 76 mul-adds (X * X)	 *   using 64-bit MADD, so if X has n guard bits, X*X has 2n+1 guard bits	 *   gain 1 extra sign bit per multiply, so ensure ceil(log2(76/2) / 2) = 3 guard bits on inputs	 */	if (gb < 3) {		nd = 3 - gb;		for (n1 = (NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6 + 2); n1 != 0; n1--) {			XBuf[0] >>= nd;	XBuf[1] >>= nd;			XBuf += (2*64);		}		XBuf -= (2*64*(NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6 + 2));	}		/* calculate covariance elements */	n1 = CalcCovariance1(XBuf, &p01re, &p01im, &p12re, &p12im, &p11re, &p22re);	n2 = CalcCovariance2(XBuf, &p02re, &p02im);	/* normalize everything to larger power of 2 scalefactor, call it n1 */	if (n1 < n2) {		nd = MIN(n2 - n1, 31);		p01re >>= nd;	p01im >>= nd;		p12re >>= nd;	p12im >>= nd;		p11re >>= nd;	p22re >>= nd;		n1 = n2;	} else if (n1 > n2) {		nd = MIN(n1 - n2, 31);		p02re >>= nd;	p02im >>= nd;	}	/* calculate determinant of covariance matrix (at least 1 GB in pXX) */	d = MULSHIFT32(p12re, p12re) + MULSHIFT32(p12im, p12im);	d = MULSHIFT32(d, RELAX_COEF) << 1;	d = MULSHIFT32(p11re, p22re) - d;	ASSERT(d >= 0);	/* should never be < 0 */	zFlag = 0;	*a0re = *a0im = 0;	*a1re = *a1im = 0;	if (d > 0) {		/* input =   Q31  d    = Q(-2*n1 - 32 + nd) = Q31 * 2^(31 + 2*n1 + 32 - nd)		 * inverse = Q29  dInv = Q29 * 2^(-31 - 2*n1 - 32 + nd) = Q(29 + 31 + 2*n1 + 32 - nd)		 *		 * numerator has same Q format as d, since it's sum of normalized squares		 * so num * inverse = Q(-2*n1 - 32) * Q(29 + 31 + 2*n1 + 32 - nd)		 *                  = Q(29 + 31 - nd), drop low 32 in MULSHIFT32		 *                  = Q(29 + 31 - 32 - nd) = Q(28 - nd)		 */		nd = CLZ(d) - 1;		d <<= nd;		dInv = InvRNormalized(d);		/* 1 GB in pXX */		tre = MULSHIFT32(p01re, p12re) - MULSHIFT32(p01im, p12im) - MULSHIFT32(p02re, p11re);		tre = MULSHIFT32(tre, dInv);		tim = MULSHIFT32(p01re, p12im) + MULSHIFT32(p01im, p12re) - MULSHIFT32(p02im, p11re);		tim = MULSHIFT32(tim, dInv);		/* if d is extremely small, just set coefs to 0 (would have poor precision anyway) */		if (nd > 28 || (FASTABS(tre) >> (28 - nd)) >= 4 || (FASTABS(tim) >> (28 - nd)) >= 4) {			zFlag = 1;		} else {			*a1re = tre << (FBITS_LPCOEFS - 28 + nd);	/* i.e. convert Q(28 - nd) to Q(29) */			*a1im = tim << (FBITS_LPCOEFS - 28 + nd);		}	}	if (p11re) {		/* input =   Q31  p11re = Q(-n1 + nd) = Q31 * 2^(31 + n1 - nd)		 * inverse = Q29  dInv  = Q29 * 2^(-31 - n1 + nd) = Q(29 + 31 + n1 - nd)		 *		 * numerator is Q(-n1 - 3)		 * so num * inverse = Q(-n1 - 3) * Q(29 + 31 + n1 - nd)		 *                  = Q(29 + 31 - 3 - nd), drop low 32 in MULSHIFT32		 *                  = Q(29 + 31 - 3 - 32 - nd) = Q(25 - nd)		 */		nd = CLZ(p11re) - 1;	/* assume positive */		p11re <<= nd;		dInv = InvRNormalized(p11re);		/* a1re, a1im = Q29, so scaled by (n1 + 3) */		tre = (p01re >> 3) + MULSHIFT32(p12re, *a1re) + MULSHIFT32(p12im, *a1im);		tre = -MULSHIFT32(tre, dInv);		tim = (p01im >> 3) - MULSHIFT32(p12im, *a1re) + MULSHIFT32(p12re, *a1im);		tim = -MULSHIFT32(tim, dInv);		if (nd > 25 || (FASTABS(tre) >> (25 - nd)) >= 4 || (FASTABS(tim) >> (25 - nd)) >= 4) {			zFlag = 1;		} else {			*a0re = tre << (FBITS_LPCOEFS - 25 + nd);	/* i.e. convert Q(25 - nd) to Q(29) */			*a0im = tim << (FBITS_LPCOEFS - 25 + nd);		}	} 	/* see 4.6.18.6.2 - if magnitude of a0 or a1 >= 4 then a0 = a1 = 0 	 * i.e. a0re < 4, a0im < 4, a1re < 4, a1im < 4	 * Q29*Q29 = Q26	 */	if (zFlag || MULSHIFT32(*a0re, *a0re) + MULSHIFT32(*a0im, *a0im) >= MAG_16 || MULSHIFT32(*a1re, *a1re) + MULSHIFT32(*a1im, *a1im) >= MAG_16) {		*a0re = *a0im = 0;		*a1re = *a1im = 0;	}	/* no need to clip - we never changed the XBuf data, just used it to calculate a0 and a1 */	if (gb < 3) {		nd = 3 - gb;		for (n1 = (NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6 + 2); n1 != 0; n1--) {			XBuf[0] <<= nd;	XBuf[1] <<= nd;			XBuf += (2*64);		}	}}/************************************************************************************** * Function:    GenerateHighFreq * * Description: generate high frequencies with SBR (4.6.18.6) * * Inputs:      initialized PSInfoSBR struct *              initialized SBRGrid struct for this channel *              initialized SBRFreq struct for this SCE/CPE block *              initialized SBRChan struct for this channel *              index of current channel (0 for SCE, 0 or 1 for CPE) * * Outputs:     new high frequency samples starting at frequency kStart * * Return:      none **************************************************************************************/void GenerateHighFreq(PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch){	int band, newBW, c, t, gb, gbMask, gbIdx;	int currPatch, p, x, k, g, i, iStart, iEnd, bw, bwsq;	int a0re, a0im, a1re, a1im;	int x1re, x1im, x2re, x2im;	int ACCre, ACCim;	int *XBufLo, *XBufHi;	(void) ch;	/* calculate array of chirp factors */	for (band = 0; band < sbrFreq->numNoiseFloorBands; band++) {		c = sbrChan->chirpFact[band];	/* previous (bwArray') */		newBW = newBWTab[sbrChan->invfMode[0][band]][sbrChan->invfMode[1][band]];		/* weighted average of new and old (can't overflow - total gain = 1.0) */		if (newBW < c)			t = MULSHIFT32(newBW, 0x60000000) + MULSHIFT32(0x20000000, c);	/* new is smaller: 0.75*new + 0.25*old */		else			t = MULSHIFT32(newBW, 0x74000000) + MULSHIFT32(0x0c000000, c);	/* new is larger: 0.90625*new + 0.09375*old */		t <<= 1;		if (t < 0x02000000)	/* below 0.015625, clip to 0 */			t = 0;		if (t > 0x7f800000)	/* clip to 0.99609375 */  			t = 0x7f800000;		/* save curr as prev for next time */		sbrChan->chirpFact[band] = t;		sbrChan->invfMode[0][band] = sbrChan->invfMode[1][band];	}	iStart = sbrGrid->envTimeBorder[0] + HF_ADJ;	iEnd =   sbrGrid->envTimeBorder[sbrGrid->numEnv] + HF_ADJ;	/* generate new high freqs from low freqs, patches, and chirp factors */	k = sbrFreq->kStart;	g = 0;	bw = sbrChan->chirpFact[g];	bwsq = MULSHIFT32(bw, bw) << 1;		gbMask = (sbrChan->gbMask[0] | sbrChan->gbMask[1]);	/* older 32 | newer 8 */	gb = CLZ(gbMask) - 1;	for (currPatch = 0; currPatch < sbrFreq->numPatches; currPatch++) {		for (x = 0; x < sbrFreq->patchNumSubbands[currPatch]; x++) {			/* map k to corresponding noise floor band */			if (k >= sbrFreq->freqNoise[g+1]) {				g++;				bw = sbrChan->chirpFact[g];		/* Q31 */				bwsq = MULSHIFT32(bw, bw) << 1;	/* Q31 */			}					p = sbrFreq->patchStartSubband[currPatch] + x;	/* low QMF band */			XBufHi = psi->XBuf[iStart][k];			if (bw) {				CalcLPCoefs(psi->XBuf[0][p], &a0re, &a0im, &a1re, &a1im, gb);				a0re = MULSHIFT32(bw, a0re);	/* Q31 * Q29 = Q28 */				a0im = MULSHIFT32(bw, a0im);				a1re = MULSHIFT32(bwsq, a1re);				a1im = MULSHIFT32(bwsq, a1im);				XBufLo = psi->XBuf[iStart-2][p];				x2re = XBufLo[0];	/* RE{XBuf[n-2]} */				x2im = XBufLo[1];	/* IM{XBuf[n-2]} */				XBufLo += (64*2);				x1re = XBufLo[0];	/* RE{XBuf[n-1]} */				x1im = XBufLo[1];	/* IM{XBuf[n-1]} */				XBufLo += (64*2);				for (i = iStart; i < iEnd; i++) {					/* a0re/im, a1re/im are Q28 with at least 1 GB, 					 *   so the summing for AACre/im is fine (1 GB in, plus 1 from MULSHIFT32) 					 */					ACCre = MULSHIFT32(x2re, a1re) - MULSHIFT32(x2im, a1im);					ACCim = MULSHIFT32(x2re, a1im) + MULSHIFT32(x2im, a1re);					x2re = x1re;					x2im = x1im;										ACCre += MULSHIFT32(x1re, a0re) - MULSHIFT32(x1im, a0im);					ACCim += MULSHIFT32(x1re, a0im) + MULSHIFT32(x1im, a0re);					x1re = XBufLo[0];	/* RE{XBuf[n]} */					x1im = XBufLo[1];	/* IM{XBuf[n]} */					XBufLo += (64*2);					/* lost 4 fbits when scaling by a0re/im, a1re/im (Q28) */					CLIP_2N_SHIFT30(ACCre, 4);					ACCre += x1re;					CLIP_2N_SHIFT30(ACCim, 4);					ACCim += x1im;					XBufHi[0] = ACCre;					XBufHi[1] = ACCim;					XBufHi += (64*2);					/* update guard bit masks */					gbMask  = FASTABS(ACCre);					gbMask |= FASTABS(ACCim);					gbIdx = (i >> 5) & 0x01;	/* 0 if i < 32, 1 if i >= 32 */					sbrChan->gbMask[gbIdx] |= gbMask;				}			} else {				XBufLo = (int *)psi->XBuf[iStart][p];				for (i = iStart; i < iEnd; i++) {					XBufHi[0] = XBufLo[0];					XBufHi[1] = XBufLo[1];					XBufLo += (64*2); 					XBufHi += (64*2);				}			}			k++;	/* high QMF band */		}	}}
 |