| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476 | /* ***** BEGIN LICENSE BLOCK *****   * Source last modified: $Id: sbrhuff.c,v 1.1 2005/02/26 01:47:35 jrecker Exp $  *    * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.   *        * The contents of this file, and the files included with this file,  * are subject to the current version of the RealNetworks Public  * Source License (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the current version of the RealNetworks Community  * Source License (the "RCSL") available at  * http://www.helixcommunity.org/content/rcsl, in which case the RCSL  * will apply. You may also obtain the license terms directly from  * RealNetworks.  You may not use this file except in compliance with  * the RPSL or, if you have a valid RCSL with RealNetworks applicable  * to this file, the RCSL.  Please see the applicable RPSL or RCSL for  * the rights, obligations and limitations governing use of the  * contents of the file.  *    * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the  * portions it created.  *    * This file, and the files included with this file, is distributed  * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY  * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS  * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET  * ENJOYMENT OR NON-INFRINGEMENT.  *   * Technology Compatibility Kit Test Suite(s) Location:   *    http://www.helixcommunity.org/content/tck   *   * Contributor(s):   *    * ***** END LICENSE BLOCK ***** */  /************************************************************************************** * Fixed-point HE-AAC decoder * Jon Recker (jrecker@real.com) * February 2005 * * sbrhuff.c - functions for unpacking Huffman-coded envelope and noise data **************************************************************************************/#include "sbr.h"#include "assembly.h"/************************************************************************************** * Function:    DecodeHuffmanScalar * * Description: decode one Huffman symbol from bitstream * * Inputs:      pointers to Huffman table and info struct *              left-aligned bit buffer with >= huffTabInfo->maxBits bits * * Outputs:     decoded symbol in *val * * Return:      number of bits in symbol * * Notes:       assumes canonical Huffman codes: *                first CW always 0, we have "count" CW's of length "nBits" bits *                starting CW for codes of length nBits+1 =  *                  (startCW[nBits] + count[nBits]) << 1 *                if there are no codes at nBits, then we just keep << 1 each time  *                  (since count[nBits] = 0) **************************************************************************************/static int DecodeHuffmanScalar(const signed /*short*/ int *huffTab, const HuffInfo *huffTabInfo, unsigned int bitBuf, signed int *val){    unsigned int count, start, shift, t;	const unsigned int /*char*/ *countPtr;	const signed int /*short*/ *map;	map = huffTab + huffTabInfo->offset;	countPtr = huffTabInfo->count;	start = 0;	count = 0;	shift = 32;	do {		start += count;		start <<= 1;		map += count;		count = *countPtr++;		shift--;		t = (bitBuf >> shift) - start;	} while (t >= count);		*val = (signed int)map[t];	return (countPtr - huffTabInfo->count);}/************************************************************************************** * Function:    DecodeOneSymbol * * Description: dequantize one Huffman symbol from bitstream,  *                using table huffTabSBR[huffTabIndex] * * Inputs:      BitStreamInfo struct pointing to start of next Huffman codeword *              index of Huffman table * * Outputs:     bitstream advanced by number of bits in codeword * * Return:      one decoded symbol **************************************************************************************/static int DecodeOneSymbol(BitStreamInfo *bsi, int huffTabIndex){	int nBits, val;	unsigned int bitBuf;	const HuffInfo *hi;	hi = &(huffTabSBRInfo[huffTabIndex]);	bitBuf = GetBitsNoAdvance(bsi, hi->maxBits) << (32 - hi->maxBits);	nBits = DecodeHuffmanScalar(huffTabSBR, hi, bitBuf, &val);	AdvanceBitstream(bsi, nBits);		return val;}/* [1.0, sqrt(2)], format = Q29 (one guard bit for decoupling) */static const int envDQTab[2] PROGMEM = {0x20000000, 0x2d413ccc};/************************************************************************************** * Function:    DequantizeEnvelope * * Description: dequantize envelope scalefactors * * Inputs:      number of scalefactors to process *              amplitude resolution flag for this frame (0 or 1) *              quantized envelope scalefactors *  * Outputs:     dequantized envelope scalefactors * * Return:      extra int bits in output (6 + expMax) *              in other words, output format = Q(FBITS_OUT_DQ_ENV - (6 + expMax)) * * Notes:       dequantized scalefactors have at least 2 GB **************************************************************************************/static int DequantizeEnvelope(int nBands, int ampRes, signed char *envQuant, int *envDequant){	int exp, expMax, i, scalei;	if (nBands <= 0)		return 0;		/* scan for largest dequant value (do separately from envelope decoding to keep code cleaner) */	expMax = 0;	for (i = 0; i < nBands; i++) {		if (envQuant[i] > expMax)			expMax = envQuant[i];	}	/* dequantized envelope gains	 *   envDequant = 64*2^(envQuant / alpha) = 2^(6 + envQuant / alpha)	 *     if ampRes == 0, alpha = 2 and range of envQuant = [0, 127]	 *     if ampRes == 1, alpha = 1 and range of envQuant = [0, 63]	 * also if coupling is on, envDequant is scaled by something in range [0, 2]	 * so range of envDequant = [2^6, 2^69] (no coupling), [2^6, 2^70] (with coupling)	 * 	 * typical range (from observation) of envQuant/alpha = [0, 27] --> largest envQuant ~= 2^33	 * output: Q(29 - (6 + expMax))	 *	 * reference: 14496-3:2001(E)/4.6.18.3.5 and 14496-4:200X/FPDAM8/5.6.5.1.2.1.5	 */	if (ampRes) {		do {			exp = *envQuant++;			scalei = MIN(expMax - exp, 31);			*envDequant++ = envDQTab[0] >> scalei;		} while (--nBands);		return (6 + expMax);	} else {		expMax >>= 1;		do {			exp = *envQuant++;			scalei = MIN(expMax - (exp >> 1), 31);			*envDequant++ = envDQTab[exp & 0x01] >> scalei;		} while (--nBands);		return (6 + expMax);	}}/************************************************************************************** * Function:    DequantizeNoise * * Description: dequantize noise scalefactors * * Inputs:      number of scalefactors to process *              quantized noise scalefactors *  * Outputs:     dequantized noise scalefactors, format = Q(FBITS_OUT_DQ_NOISE) * * Return:      none * * Notes:       dequantized scalefactors have at least 2 GB **************************************************************************************/static void DequantizeNoise(int nBands, signed char *noiseQuant, int *noiseDequant){	int exp, scalei;		if (nBands <= 0)		return;	/* dequantize noise floor gains (4.6.18.3.5):	 *   noiseDequant = 2^(NOISE_FLOOR_OFFSET - noiseQuant)	 *	 * range of noiseQuant = [0, 30] (see 4.6.18.3.6), NOISE_FLOOR_OFFSET = 6	 *   so range of noiseDequant = [2^-24, 2^6]	 */	do {		exp = *noiseQuant++;		scalei = NOISE_FLOOR_OFFSET - exp + FBITS_OUT_DQ_NOISE;	/* 6 + 24 - exp, exp = [0,30] */		if (scalei < 0)			*noiseDequant++ = 0;		else if (scalei < 30)			*noiseDequant++ = 1 << scalei;		else			*noiseDequant++ = 0x3fffffff;	/* leave 2 GB */	} while (--nBands);}/************************************************************************************** * Function:    DecodeSBREnvelope * * Description: decode delta Huffman coded envelope scalefactors from bitstream * * Inputs:      BitStreamInfo struct pointing to start of env data *              initialized PSInfoSBR struct *              initialized SBRGrid struct for this channel *              initialized SBRFreq struct for this SCE/CPE block *              initialized SBRChan struct for this channel *              index of current channel (0 for SCE, 0 or 1 for CPE) *  * Outputs:     dequantized env scalefactors for left channel (before decoupling) *              dequantized env scalefactors for right channel (if coupling off) *                or raw decoded env scalefactors for right channel (if coupling on) * * Return:      none **************************************************************************************/void DecodeSBREnvelope(BitStreamInfo *bsi, PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch){	int huffIndexTime, huffIndexFreq, env, envStartBits, band, nBands, sf, lastEnv;	int freqRes, freqResPrev, dShift, i;	if (psi->couplingFlag && ch) {		dShift = 1;		if (sbrGrid->ampResFrame) {			huffIndexTime = HuffTabSBR_tEnv30b;			huffIndexFreq = HuffTabSBR_fEnv30b;			envStartBits = 5;		} else {			huffIndexTime = HuffTabSBR_tEnv15b;			huffIndexFreq = HuffTabSBR_fEnv15b;			envStartBits = 6;		}	} else {		dShift = 0;		if (sbrGrid->ampResFrame) {			huffIndexTime = HuffTabSBR_tEnv30;			huffIndexFreq = HuffTabSBR_fEnv30;			envStartBits = 6;		} else {			huffIndexTime = HuffTabSBR_tEnv15;			huffIndexFreq = HuffTabSBR_fEnv15;			envStartBits = 7;		}	}	/* range of envDataQuant[] = [0, 127] (see comments in DequantizeEnvelope() for reference) */	for (env = 0; env < sbrGrid->numEnv; env++) {		nBands =      (sbrGrid->freqRes[env] ? sbrFreq->nHigh : sbrFreq->nLow);		freqRes =     (sbrGrid->freqRes[env]);		freqResPrev = (env == 0 ? sbrGrid->freqResPrev : sbrGrid->freqRes[env-1]);		lastEnv =     (env == 0 ? sbrGrid->numEnvPrev-1 : env-1);		if (lastEnv < 0)			lastEnv = 0;	/* first frame */		ASSERT(nBands <= MAX_QMF_BANDS);		if (sbrChan->deltaFlagEnv[env] == 0) {			/* delta coding in freq */			sf = GetBits(bsi, envStartBits) << dShift;			sbrChan->envDataQuant[env][0] = sf;			for (band = 1; band < nBands; band++) {				sf = DecodeOneSymbol(bsi, huffIndexFreq) << dShift;				sbrChan->envDataQuant[env][band] = sf + sbrChan->envDataQuant[env][band-1];			}		} else if (freqRes == freqResPrev) {			/* delta coding in time - same freq resolution for both frames */			for (band = 0; band < nBands; band++) {				sf = DecodeOneSymbol(bsi, huffIndexTime) << dShift;				sbrChan->envDataQuant[env][band] = sf + sbrChan->envDataQuant[lastEnv][band];			}		} else if (freqRes == 0 && freqResPrev == 1) {			/* delta coding in time - low freq resolution for new frame, high freq resolution for old frame */			for (band = 0; band < nBands; band++) {				sf = DecodeOneSymbol(bsi, huffIndexTime) << dShift;				sbrChan->envDataQuant[env][band] = sf;				for (i = 0; i < sbrFreq->nHigh; i++) {					if (sbrFreq->freqHigh[i] == sbrFreq->freqLow[band]) {						sbrChan->envDataQuant[env][band] += sbrChan->envDataQuant[lastEnv][i];						break;					}				}			}		} else if (freqRes == 1 && freqResPrev == 0) {			/* delta coding in time - high freq resolution for new frame, low freq resolution for old frame */			for (band = 0; band < nBands; band++) {				sf = DecodeOneSymbol(bsi, huffIndexTime) << dShift;				sbrChan->envDataQuant[env][band] = sf;				for (i = 0; i < sbrFreq->nLow; i++) {					if (sbrFreq->freqLow[i] <= sbrFreq->freqHigh[band] && sbrFreq->freqHigh[band] < sbrFreq->freqLow[i+1] ) {						sbrChan->envDataQuant[env][band] += sbrChan->envDataQuant[lastEnv][i];						break;					}				}			}		}		/* skip coupling channel */		if (ch != 1 || psi->couplingFlag != 1)			psi->envDataDequantScale[ch][env] = DequantizeEnvelope(nBands, sbrGrid->ampResFrame, sbrChan->envDataQuant[env], psi->envDataDequant[ch][env]);	}	sbrGrid->numEnvPrev = sbrGrid->numEnv;	sbrGrid->freqResPrev = sbrGrid->freqRes[sbrGrid->numEnv-1];}/************************************************************************************** * Function:    DecodeSBRNoise * * Description: decode delta Huffman coded noise scalefactors from bitstream * * Inputs:      BitStreamInfo struct pointing to start of noise data *              initialized PSInfoSBR struct *              initialized SBRGrid struct for this channel *              initialized SBRFreq struct for this SCE/CPE block *              initialized SBRChan struct for this channel *              index of current channel (0 for SCE, 0 or 1 for CPE) *  * Outputs:     dequantized noise scalefactors for left channel (before decoupling) *              dequantized noise scalefactors for right channel (if coupling off) *                or raw decoded noise scalefactors for right channel (if coupling on) * * Return:      none **************************************************************************************/void DecodeSBRNoise(BitStreamInfo *bsi, PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch){	int huffIndexTime, huffIndexFreq, noiseFloor, band, dShift, sf, lastNoiseFloor;	if (psi->couplingFlag && ch) {		dShift = 1;		huffIndexTime = HuffTabSBR_tNoise30b;		huffIndexFreq = HuffTabSBR_fNoise30b;	} else {		dShift = 0;		huffIndexTime = HuffTabSBR_tNoise30;		huffIndexFreq = HuffTabSBR_fNoise30;	}	for (noiseFloor = 0; noiseFloor < sbrGrid->numNoiseFloors; noiseFloor++) {		lastNoiseFloor = (noiseFloor == 0 ? sbrGrid->numNoiseFloorsPrev-1 : noiseFloor-1);		if (lastNoiseFloor < 0)			lastNoiseFloor = 0;	/* first frame */		ASSERT(sbrFreq->numNoiseFloorBands <= MAX_QMF_BANDS);		if (sbrChan->deltaFlagNoise[noiseFloor] == 0) {			/* delta coding in freq */			sbrChan->noiseDataQuant[noiseFloor][0] = GetBits(bsi, 5) << dShift;			for (band = 1; band < sbrFreq->numNoiseFloorBands; band++) {				sf = DecodeOneSymbol(bsi, huffIndexFreq) << dShift;				sbrChan->noiseDataQuant[noiseFloor][band] = sf + sbrChan->noiseDataQuant[noiseFloor][band-1];			}		} else {			/* delta coding in time */			for (band = 0; band < sbrFreq->numNoiseFloorBands; band++) {				sf = DecodeOneSymbol(bsi, huffIndexTime) << dShift;				sbrChan->noiseDataQuant[noiseFloor][band] = sf + sbrChan->noiseDataQuant[lastNoiseFloor][band];			}		}		/* skip coupling channel */		if (ch != 1 || psi->couplingFlag != 1)			DequantizeNoise(sbrFreq->numNoiseFloorBands, sbrChan->noiseDataQuant[noiseFloor], psi->noiseDataDequant[ch][noiseFloor]);	}	sbrGrid->numNoiseFloorsPrev = sbrGrid->numNoiseFloors;}/* dqTabCouple[i] = 2 / (1 + 2^(12 - i)), format = Q30 */static const int dqTabCouple[25] PROGMEM = {	0x0007ff80, 0x000ffe00, 0x001ff802, 0x003fe010, 0x007f8080, 0x00fe03f8, 0x01f81f82, 0x03e0f83e, 	0x07878788, 0x0e38e38e, 0x1999999a, 0x2aaaaaab, 0x40000000, 0x55555555, 0x66666666, 0x71c71c72, 	0x78787878, 0x7c1f07c2, 0x7e07e07e, 0x7f01fc08, 0x7f807f80, 0x7fc01ff0, 0x7fe007fe, 0x7ff00200, 	0x7ff80080, };/************************************************************************************** * Function:    UncoupleSBREnvelope * * Description: scale dequantized envelope scalefactors according to channel  *                coupling rules * * Inputs:      initialized PSInfoSBR struct including *                dequantized envelope data for left channel *              initialized SBRGrid struct for this channel *              initialized SBRFreq struct for this SCE/CPE block *              initialized SBRChan struct for right channel including *                quantized envelope scalefactors *  * Outputs:     dequantized envelope data for left channel (after decoupling) *              dequantized envelope data for right channel (after decoupling) * * Return:      none **************************************************************************************/void UncoupleSBREnvelope(PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChanR){	int env, band, nBands, scalei, E_1;	scalei = (sbrGrid->ampResFrame ? 0 : 1);	for (env = 0; env < sbrGrid->numEnv; env++) {		nBands = (sbrGrid->freqRes[env] ? sbrFreq->nHigh : sbrFreq->nLow);		psi->envDataDequantScale[1][env] = psi->envDataDequantScale[0][env]; /* same scalefactor for L and R */		for (band = 0; band < nBands; band++) {			/* clip E_1 to [0, 24] (scalefactors approach 0 or 2) */			E_1 = sbrChanR->envDataQuant[env][band] >> scalei;			if (E_1 < 0)	E_1 = 0;			if (E_1 > 24)	E_1 = 24;			/* envDataDequant[0] has 1 GB, so << by 2 is okay */			psi->envDataDequant[1][env][band] = MULSHIFT32(psi->envDataDequant[0][env][band], dqTabCouple[24 - E_1]) << 2;			psi->envDataDequant[0][env][band] = MULSHIFT32(psi->envDataDequant[0][env][band], dqTabCouple[E_1]) << 2;		}	}}/************************************************************************************** * Function:    UncoupleSBRNoise * * Description: scale dequantized noise floor scalefactors according to channel  *                coupling rules * * Inputs:      initialized PSInfoSBR struct including *                dequantized noise data for left channel *              initialized SBRGrid struct for this channel *              initialized SBRFreq struct for this SCE/CPE block *              initialized SBRChan struct for this channel including *                quantized noise scalefactors *  * Outputs:     dequantized noise data for left channel (after decoupling) *              dequantized noise data for right channel (after decoupling) * * Return:      none **************************************************************************************/void UncoupleSBRNoise(PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChanR){	int noiseFloor, band, Q_1;		for (noiseFloor = 0; noiseFloor < sbrGrid->numNoiseFloors; noiseFloor++) {		for (band = 0; band < sbrFreq->numNoiseFloorBands; band++) {			/* Q_1 should be in range [0, 24] according to 4.6.18.3.6, but check to make sure */			Q_1 = sbrChanR->noiseDataQuant[noiseFloor][band];			if (Q_1 < 0)	Q_1 = 0;			if (Q_1 > 24)	Q_1 = 24;			/* noiseDataDequant[0] has 1 GB, so << by 2 is okay */			psi->noiseDataDequant[1][noiseFloor][band] = MULSHIFT32(psi->noiseDataDequant[0][noiseFloor][band], dqTabCouple[24 - Q_1]) << 2;			psi->noiseDataDequant[0][noiseFloor][band] = MULSHIFT32(psi->noiseDataDequant[0][noiseFloor][band], dqTabCouple[Q_1]) << 2;		}	}}
 |