123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849 |
- // Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "freertos/FreeRTOS.h"
- #include "freertos/semphr.h"
- #include <stdatomic.h>
- #include "sdkconfig.h"
- #include "spi_common_internal.h"
- #include "esp_intr_alloc.h"
- #include "soc/soc_caps.h"
- #include "stdatomic.h"
- #include "esp_log.h"
- #include <strings.h>
- #include "esp_heap_caps.h"
- /*
- * This lock is designed to solve the conflicts between SPI devices (used in tasks) and
- * the background operations (ISR or cache access).
- *
- * There are N (device/task) + 1 (BG) acquiring processer candidates that may touch the bus.
- *
- * The core of the lock is a `status` atomic variable, which is always available. No intermediate
- * status is allowed. The atomic operations (mainly `atomic_fetch_and`, `atomic_fetch_or`)
- * atomically read the status, and bitwisely write status value ORed / ANDed with given masks.
- *
- * Definitions of the status:
- * - [30] WEAK_BG_FLAG, active when the BG is the cache
- * - [29:20] LOCK bits, active when corresponding device is asking for acquiring
- * - [19:10] PENDING bits, active when the BG acknowledges the REQ bits, but hasn't fully handled them.
- * - [ 9: 0] REQ bits, active when corresponding device is requesting for BG operations.
- *
- * The REQ bits together PENDING bits are called BG bits, which represent the actual BG request
- * state of devices. Either one of REQ or PENDING being active indicates the device has pending BG
- * requests. Reason of having two bits instead of one is in the appendix below.
- *
- * Acquiring processer means the current processor (task or ISR) allowed to touch the critical
- * resources, or the SPI bus.
- *
- * States of the lock:
- * - STATE_IDLE: There's no acquiring processor. No device is acquiring the bus, and no BG
- * operation is in progress.
- *
- * - STATE_ACQ: The acquiring processor is a device task. This means one of the devices is
- * acquiring the bus.
- *
- * - STATE_BG: The acquiring processor is the ISR, and there is no acquiring device.
- *
- * - STATE_BG_ACQ: The acquiring processor is the ISR, and there is an acquiring device.
- *
- *
- * Whenever a bit is written to the status, it means the a device on a task is trying to acquire
- * the lock (either for the task, or the ISR). When there is no LOCK bits or BG bits active, the
- * caller immediately become the acquiring processor. Otherwise, the task has to block, and the ISR
- * will not be invoked until scheduled by the current acquiring processor.
- *
- * The acquiring processor is responsible to assign the next acquiring processor by calling the
- * scheduler, usually after it finishes some requests, and cleared the corresponding status bit.
- * But there is one exception, when the last bit is cleared from the status, after which there is
- * no other LOCK bits or BG bits active, the acquiring processor lost its role immediately, and
- * don't need to call the scheduler to assign the next acquiring processor.
- *
- * The acquiring processor may also choose to assign a new acquiring device when there is no, by
- * calling `spi_bus_lock_bg_rotate_acq_dev` in the ISR. But the acquiring processor, in this case,
- * is still the ISR, until it calls the scheduler.
- *
- *
- * Transition of the FSM:
- *
- * - STATE_IDLE: no acquiring device, nor acquiring processor, no LOCK or BG bits active
- * -> STATE_BG: by `req_core`
- * -> STATE_ACQ: by `acquire_core`
- *
- * - STATE_BG:
- * * No acquiring device, the ISR is the acquiring processor, there is BG bits active, but no LOCK
- * bits
- * * The BG operation should be enabled while turning into this state.
- *
- * -> STATE_IDLE: by `bg_exit_core` after `clear_pend_core` for all BG bits
- * -> STATE_BG_ACQ: by `schedule_core`, when there is new LOCK bit set (by `acquire_core`)
- *
- * - STATE_BG_ACQ:
- * * There is acquiring device, the ISR is the acquiring processor, there may be BG bits active for
- * the acquiring device.
- * * The BG operation should be enabled while turning into this state.
- *
- * -> STATE_ACQ: by `bg_exit_core` after `clear_pend_core` for all BG bits for the acquiring
- * device.
- *
- * Should not go to the STATE_ACQ (unblock the acquiring task) until all requests of the
- * acquiring device are finished. This is to preserve the sequence of foreground (polling) and
- * background operations of the device. The background operations queued before the acquiring
- * should be completed first.
- *
- * - STATE_ACQ:
- * * There is acquiring device, the task is the acquiring processor, there is no BG bits active for
- * the acquiring device.
- * * The acquiring task (if blocked at `spi_bus_lock_acquire_start` or `spi_bus_lock_wait_bg_done`)
- * should be resumed while turning into this state.
- *
- * -> STATE_BG_ACQ: by `req_core`
- * -> STATE_BG_ACQ (other device): by `acquire_end_core`, when there is LOCK bit for another
- * device, and the new acquiring device has active BG bits.
- * -> STATE_ACQ (other device): by `acquire_end_core`, when there is LOCK bit for another devices,
- * but the new acquiring device has no active BG bits.
- * -> STATE_BG: by `acquire_end_core` when there is no LOCK bit active, but there are active BG
- * bits.
- * -> STATE_IDLE: by `acquire_end_core` when there is no LOCK bit, nor BG bit active.
- *
- * The `req_core` used in the task is a little special. It asks for acquiring processor for the
- * ISR. When it succeed for the first time, it will invoke the ISR (hence passing the acquiring
- * role to the BG). Otherwise it will not block, the ISR will be automatically be invoked by other
- * acquiring processor. The caller of `req_core` will never become acquiring processor by this
- * function.
- *
- *
- * Appendix: The design, that having both request bit and pending bit, is to solve the
- * concurrency issue between tasks and the bg, when the task can queue several requests,
- * however the request bit cannot represent the number of requests queued.
- *
- * Here's the workflow of task and ISR work concurrently:
- * - Task: (a) Write to Queue -> (b) Write request bit
- * The Task have to write request bit (b) after the data is prepared in the queue (a),
- * otherwise the BG may fail to read from the queue when it sees the request bit set.
- *
- * - BG: (c) Read queue -> (d) Clear request bit
- * Since the BG cannot know the number of requests queued, it have to repeatedly check the
- * queue (c), until it find the data is empty, and then clear the request bit (d).
- *
- * The events are possible to happen in the order: (c) -> (a) -> (b) -> (d). This may cause a false
- * clear of the request bit. And there will be data prepared in the queue, but the request bit is
- * inactive.
- *
- * (e) move REQ bits to PEND bits, happen before (c) is introduced to solve this problem. In this
- * case (d) is changed to clear the PEND bit. Even if (e) -> (c) -> (a) -> (b) -> (d), only PEND
- * bit is cleared, while the REQ bit is still active.
- */
- struct spi_bus_lock_dev_t;
- typedef struct spi_bus_lock_dev_t spi_bus_lock_dev_t;
- typedef struct spi_bus_lock_t spi_bus_lock_t;
- #define MAX_DEV_NUM 10
- // Bit 29-20: lock bits, Bit 19-10: pending bits
- // Bit 9-0: request bits, Bit 30:
- #define LOCK_SHIFT 20
- #define PENDING_SHIFT 10
- #define REQ_SHIFT 0
- #define WEAK_BG_FLAG BIT(30) /**< The bus is permanently requested by background operations.
- * This flag is weak, will not prevent acquiring of devices. But will help the BG to be re-enabled again after the bus is release.
- */
- // get the bit mask wher bit [high-1, low] are all 1'b1 s.
- #define BIT1_MASK(high, low) ((UINT32_MAX << (high)) ^ (UINT32_MAX << (low)))
- #define LOCK_BIT(mask) ((mask) << LOCK_SHIFT)
- #define REQUEST_BIT(mask) ((mask) << REQ_SHIFT)
- #define PENDING_BIT(mask) ((mask) << PENDING_SHIFT)
- #define DEV_MASK(id) (LOCK_BIT(1<<id) | PENDING_BIT(1<<id) | REQUEST_BIT(1<<id))
- #define ID_DEV_MASK(mask) (ffs(mask) - 1)
- #define REQ_MASK BIT1_MASK(REQ_SHIFT+MAX_DEV_NUM, REQ_SHIFT)
- #define PEND_MASK BIT1_MASK(PENDING_SHIFT+MAX_DEV_NUM, PENDING_SHIFT)
- #define BG_MASK BIT1_MASK(REQ_SHIFT+MAX_DEV_NUM*2, REQ_SHIFT)
- #define LOCK_MASK BIT1_MASK(LOCK_SHIFT+MAX_DEV_NUM, LOCK_SHIFT)
- #define DEV_REQ_MASK(dev) ((dev)->mask & REQ_MASK)
- #define DEV_PEND_MASK(dev) ((dev)->mask & PEND_MASK)
- #define DEV_BG_MASK(dev) ((dev)->mask & BG_MASK)
- struct spi_bus_lock_t {
- /**
- * The core of the lock. These bits are status of the lock, which should be always available.
- * No intermediate status is allowed. This is realized by atomic operations, mainly
- * `atomic_fetch_and`, `atomic_fetch_or`, which atomically read the status, and bitwise write
- * status value ORed / ANDed with given masks.
- *
- * The request bits together pending bits represent the actual bg request state of one device.
- * Either one of them being active indicates the device has pending bg requests.
- *
- * Whenever a bit is written to the status, it means the a device on a task is trying to
- * acquire the lock. But this will succeed only when no LOCK or BG bits active.
- *
- * The acquiring processor is responsible to call the scheduler to pass its role to other tasks
- * or the BG, unless it clear the last bit in the status register.
- */
- //// Critical resources, they are only writable by acquiring processor, and stable only when read by the acquiring processor.
- atomic_uint_fast32_t status;
- spi_bus_lock_dev_t* volatile acquiring_dev; ///< The acquiring device
- bool volatile acq_dev_bg_active; ///< BG is the acquiring processor serving the acquiring device, used for the wait_bg to skip waiting quickly.
- bool volatile in_isr; ///< ISR is touching HW
- //// End of critical resources
- atomic_intptr_t dev[DEV_NUM_MAX]; ///< Child locks.
- bg_ctrl_func_t bg_enable; ///< Function to enable background operations.
- bg_ctrl_func_t bg_disable; ///< Function to disable background operations
- void* bg_arg; ///< Argument for `bg_enable` and `bg_disable` functions.
- spi_bus_lock_dev_t* last_dev; ///< Last used device, to decide whether to refresh all registers.
- int periph_cs_num; ///< Number of the CS pins the HW has.
- //debug information
- int host_id; ///< Host ID, for debug information printing
- uint32_t new_req; ///< Last int_req when `spi_bus_lock_bg_start` is called. Debug use.
- };
- struct spi_bus_lock_dev_t {
- SemaphoreHandle_t semphr; ///< Binray semaphore to notify the device it claimed the bus
- spi_bus_lock_t* parent; ///< Pointer to parent spi_bus_lock_t
- uint32_t mask; ///< Bitwise OR-ed mask of the REQ, PEND, LOCK bits of this device
- };
- portMUX_TYPE s_spinlock = portMUX_INITIALIZER_UNLOCKED;
- DRAM_ATTR static const char TAG[] = "bus_lock";
- #define LOCK_CHECK(a, str, ret_val, ...) \
- if (!(a)) { \
- ESP_LOGE(TAG,"%s(%d): "str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
- return (ret_val); \
- }
- static inline int mask_get_id(uint32_t mask);
- static inline int dev_lock_get_id(spi_bus_lock_dev_t *dev_lock);
- /*******************************************************************************
- * atomic operations to the status
- ******************************************************************************/
- SPI_MASTER_ISR_ATTR static inline uint32_t lock_status_fetch_set(spi_bus_lock_t *lock, uint32_t set)
- {
- return atomic_fetch_or(&lock->status, set);
- }
- IRAM_ATTR static inline uint32_t lock_status_fetch_clear(spi_bus_lock_t *lock, uint32_t clear)
- {
- return atomic_fetch_and(&lock->status, ~clear);
- }
- IRAM_ATTR static inline uint32_t lock_status_fetch(spi_bus_lock_t *lock)
- {
- return atomic_load(&lock->status);
- }
- SPI_MASTER_ISR_ATTR static inline void lock_status_init(spi_bus_lock_t *lock)
- {
- atomic_store(&lock->status, 0);
- }
- // return the remaining status bits
- IRAM_ATTR static inline uint32_t lock_status_clear(spi_bus_lock_t* lock, uint32_t clear)
- {
- //the fetch and clear should be atomic, avoid missing the all '0' status when all bits are clear.
- uint32_t state = lock_status_fetch_clear(lock, clear);
- return state & (~clear);
- }
- /*******************************************************************************
- * Schedule service
- *
- * The modification to the status bits may cause rotating of the acquiring processor. It also have
- * effects to `acquired_dev` (the acquiring device), `in_isr` (HW used in BG), and
- * `acq_dev_bg_active` (wait_bg_end can be skipped) members of the lock structure.
- *
- * Most of them should be atomic, and special attention should be paid to the operation
- * sequence.
- ******************************************************************************/
- SPI_MASTER_ISR_ATTR static inline void resume_dev_in_isr(spi_bus_lock_dev_t *dev_lock, BaseType_t *do_yield)
- {
- xSemaphoreGiveFromISR(dev_lock->semphr, do_yield);
- }
- IRAM_ATTR static inline void resume_dev(const spi_bus_lock_dev_t *dev_lock)
- {
- xSemaphoreGive(dev_lock->semphr);
- }
- SPI_MASTER_ISR_ATTR static inline void bg_disable(spi_bus_lock_t *lock)
- {
- BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->bg_disable);
- lock->bg_disable(lock->bg_arg);
- }
- IRAM_ATTR static inline void bg_enable(spi_bus_lock_t* lock)
- {
- BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->bg_enable);
- lock->bg_enable(lock->bg_arg);
- }
- // Set the REQ bit. If we become the acquiring processor, invoke the ISR and pass that to it.
- // The caller will never become the acquiring processor after this function returns.
- SPI_MASTER_ATTR static inline void req_core(spi_bus_lock_dev_t *dev_handle)
- {
- spi_bus_lock_t *lock = dev_handle->parent;
- // Though `acquired_dev` is critical resource, `dev_handle == lock->acquired_dev`
- // is a stable statement unless `acquire_start` or `acquire_end` is called by current
- // device.
- if (dev_handle == lock->acquiring_dev){
- // Set the REQ bit and check BG bits if we are the acquiring processor.
- // If the BG bits were not active before, invoke the BG again.
- // Avoid competitive risk against the `clear_pend_core`, `acq_dev_bg_active` should be set before
- // setting REQ bit.
- lock->acq_dev_bg_active = true;
- uint32_t status = lock_status_fetch_set(lock, DEV_REQ_MASK(dev_handle));
- if ((status & DEV_BG_MASK(dev_handle)) == 0) {
- bg_enable(lock); //acquiring processor passed to BG
- }
- } else {
- uint32_t status = lock_status_fetch_set(lock, DEV_REQ_MASK(dev_handle));
- if (status == 0) {
- bg_enable(lock); //acquiring processor passed to BG
- }
- }
- }
- //Set the LOCK bit. Handle related stuff and return true if we become the acquiring processor.
- SPI_MASTER_ISR_ATTR static inline bool acquire_core(spi_bus_lock_dev_t *dev_handle)
- {
- spi_bus_lock_t* lock = dev_handle->parent;
- portENTER_CRITICAL_SAFE(&s_spinlock);
- uint32_t status = lock_status_fetch_set(lock, dev_handle->mask & LOCK_MASK);
- portEXIT_CRITICAL_SAFE(&s_spinlock);
- // Check all bits except WEAK_BG
- if ((status & (BG_MASK | LOCK_MASK)) == 0) {
- //succeed at once
- lock->acquiring_dev = dev_handle;
- BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
- if (status & WEAK_BG_FLAG) {
- //Mainly to disable the cache (Weak_BG), that is not able to disable itself
- bg_disable(lock);
- }
- return true;
- }
- return false;
- }
- /**
- * Find the next acquiring processor according to the status. Will directly change
- * the acquiring device if new one found.
- *
- * Cases:
- * - BG should still be the acquiring processor (Return false):
- * 1. Acquiring device has active BG bits: out_desired_dev = new acquiring device
- * 2. No acquiring device, but BG active: out_desired_dev = randomly pick one device with active BG bits
- * - BG should yield to the task (Return true):
- * 3. Acquiring device has no active BG bits: out_desired_dev = new acquiring device
- * 4. No acquiring device while no active BG bits: out_desired_dev=NULL
- *
- * Acquiring device task need to be resumed only when case 3.
- *
- * This scheduling can happen in either task or ISR, so `in_isr` or `bg_active` not touched.
- *
- * @param lock
- * @param status Current status
- * @param out_desired_dev Desired device to work next, see above.
- *
- * @return False if BG should still be the acquiring processor, otherwise True (yield to task).
- */
- IRAM_ATTR static inline bool
- schedule_core(spi_bus_lock_t *lock, uint32_t status, spi_bus_lock_dev_t **out_desired_dev)
- {
- spi_bus_lock_dev_t* desired_dev = NULL;
- uint32_t lock_bits = (status & LOCK_MASK) >> LOCK_SHIFT;
- uint32_t bg_bits = status & BG_MASK;
- bg_bits = ((bg_bits >> REQ_SHIFT) | (bg_bits >> PENDING_SHIFT)) & REQ_MASK;
- bool bg_yield;
- if (lock_bits) {
- int dev_id = mask_get_id(lock_bits);
- desired_dev = (spi_bus_lock_dev_t *)atomic_load(&lock->dev[dev_id]);
- BUS_LOCK_DEBUG_EXECUTE_CHECK(desired_dev);
- lock->acquiring_dev = desired_dev;
- bg_yield = ((bg_bits & desired_dev->mask) == 0);
- lock->acq_dev_bg_active = !bg_yield;
- } else {
- lock->acq_dev_bg_active = false;
- if (bg_bits) {
- int dev_id = mask_get_id(bg_bits);
- desired_dev = (spi_bus_lock_dev_t *)atomic_load(&lock->dev[dev_id]);
- BUS_LOCK_DEBUG_EXECUTE_CHECK(desired_dev);
- lock->acquiring_dev = NULL;
- bg_yield = false;
- } else {
- desired_dev = NULL;
- lock->acquiring_dev = NULL;
- bg_yield = true;
- }
- }
- *out_desired_dev = desired_dev;
- return bg_yield;
- }
- //Clear the LOCK bit and trigger a rescheduling.
- IRAM_ATTR static inline void acquire_end_core(spi_bus_lock_dev_t *dev_handle)
- {
- spi_bus_lock_t* lock = dev_handle->parent;
- //uint32_t status = lock_status_clear(lock, dev_handle->mask & LOCK_MASK);
- spi_bus_lock_dev_t* desired_dev = NULL;
-
- portENTER_CRITICAL_SAFE(&s_spinlock);
- uint32_t status = lock_status_clear(lock, dev_handle->mask & LOCK_MASK);
- bool invoke_bg = !schedule_core(lock, status, &desired_dev);
- portEXIT_CRITICAL_SAFE(&s_spinlock);
- if (invoke_bg) {
- bg_enable(lock);
- } else if (desired_dev) {
- resume_dev(desired_dev);
- } else if (status & WEAK_BG_FLAG) {
- bg_enable(lock);
- }
- }
- // Move the REQ bits to corresponding PEND bits. Must be called by acquiring processor.
- // Have no side effects on the acquiring device/processor.
- SPI_MASTER_ISR_ATTR static inline void update_pend_core(spi_bus_lock_t *lock, uint32_t status)
- {
- uint32_t active_req_bits = status & REQ_MASK;
- #if PENDING_SHIFT > REQ_SHIFT
- uint32_t pending_mask = active_req_bits << (PENDING_SHIFT - REQ_SHIFT);
- #else
- uint32_t pending_mask = active_req_bits >> (REQ_SHIFT - PENDING_SHIFT);
- #endif
- // We have to set the PEND bits and then clear the REQ bits, since BG bits are using bitwise OR logic,
- // this will not influence the effectiveness of the BG bits of every device.
- lock_status_fetch_set(lock, pending_mask);
- lock_status_fetch_clear(lock, active_req_bits);
- }
- // Clear the PEND bit (not REQ bit!) of a device, return the suggestion whether we can try to quit the ISR.
- // Lost the acquiring processor immediately when the BG bits for active device are inactive, indiciating by the return value.
- // Can be called only when ISR is acting as the acquiring processor.
- SPI_MASTER_ISR_ATTR static inline bool clear_pend_core(spi_bus_lock_dev_t *dev_handle)
- {
- bool finished;
- spi_bus_lock_t *lock = dev_handle->parent;
- uint32_t pend_mask = DEV_PEND_MASK(dev_handle);
- BUS_LOCK_DEBUG_EXECUTE_CHECK(lock_status_fetch(lock) & pend_mask);
- uint32_t status = lock_status_clear(lock, pend_mask);
- if (lock->acquiring_dev == dev_handle) {
- finished = ((status & DEV_REQ_MASK(dev_handle)) == 0);
- if (finished) {
- lock->acq_dev_bg_active = false;
- }
- } else {
- finished = (status == 0);
- }
- return finished;
- }
- // Return true if the ISR has already touched the HW, which means previous operations should
- // be terminated first, before we use the HW again. Otherwise return false.
- // In either case `in_isr` will be marked as true, until call to `bg_exit_core` with `wip=false` successfully.
- SPI_MASTER_ISR_ATTR static inline bool bg_entry_core(spi_bus_lock_t *lock)
- {
- BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev || lock->acq_dev_bg_active);
- /*
- * The interrupt is disabled at the entry of ISR to avoid competitive risk as below:
- *
- * The `esp_intr_enable` will be called (b) after new BG request is queued (a) in the task;
- * while `esp_intr_disable` should be called (c) if we check and found the sending queue is empty (d).
- * If (c) happens after (d), if things happens in this sequence:
- * (d) -> (a) -> (b) -> (c), the interrupt will be disabled while there's pending BG request in the queue.
- *
- * To avoid this, interrupt is disabled here, and re-enabled later if required. (c) -> (d) -> (a) -> (b) -> revert (c) if !d
- */
- bg_disable(lock);
- if (lock->in_isr) {
- return false;
- } else {
- lock->in_isr = true;
- return true;
- }
- }
- // Handle the conditions of status and interrupt, avoiding the ISR being disabled when there is any new coming BG requests.
- // When called with `wip=true`, means the ISR is performing some operations. Will enable the interrupt again and exit unconditionally.
- // When called with `wip=false`, will only return `true` when there is no coming BG request. If return value is `false`, the ISR should try again.
- // Will not change acquiring device.
- SPI_MASTER_ISR_ATTR static inline bool bg_exit_core(spi_bus_lock_t *lock, bool wip, BaseType_t *do_yield)
- {
- //See comments in `bg_entry_core`, re-enable interrupt disabled in entry if we do need the interrupt
- if (wip) {
- bg_enable(lock);
- BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev || lock->acq_dev_bg_active);
- return true;
- }
- bool ret;
- uint32_t status = lock_status_fetch(lock);
- if (lock->acquiring_dev) {
- if (status & DEV_BG_MASK(lock->acquiring_dev)) {
- BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->acq_dev_bg_active);
- ret = false;
- } else {
- // The request may happen any time, even after we fetched the status.
- // The value of `acq_dev_bg_active` is random.
- resume_dev_in_isr(lock->acquiring_dev, do_yield);
- ret = true;
- }
- } else {
- BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
- ret = !(status & BG_MASK);
- }
- if (ret) {
- //when successfully exit, but no transaction done, mark BG as inactive
- lock->in_isr = false;
- }
- return ret;
- }
- IRAM_ATTR static inline void dev_wait_prepare(spi_bus_lock_dev_t *dev_handle)
- {
- xSemaphoreTake(dev_handle->semphr, 0);
- }
- SPI_MASTER_ISR_ATTR static inline esp_err_t dev_wait(spi_bus_lock_dev_t *dev_handle, TickType_t wait)
- {
- BaseType_t ret = xSemaphoreTake(dev_handle->semphr, wait);
- if (ret == pdFALSE) return ESP_ERR_TIMEOUT;
- return ESP_OK;
- }
- /*******************************************************************************
- * Initialization & Deinitialization
- ******************************************************************************/
- esp_err_t spi_bus_init_lock(spi_bus_lock_handle_t *out_lock, const spi_bus_lock_config_t *config)
- {
- spi_bus_lock_t* lock = (spi_bus_lock_t*)calloc(sizeof(spi_bus_lock_t), 1);
- if (lock == NULL) {
- return ESP_ERR_NO_MEM;
- }
- lock_status_init(lock);
- lock->acquiring_dev = NULL;
- lock->last_dev = NULL;
- lock->periph_cs_num = config->cs_num;
- lock->host_id = config->host_id;
- *out_lock = lock;
- return ESP_OK;
- }
- void spi_bus_deinit_lock(spi_bus_lock_handle_t lock)
- {
- for (int i = 0; i < DEV_NUM_MAX; i++) {
- assert(atomic_load(&lock->dev[i]) == (intptr_t)NULL);
- }
- free(lock);
- }
- static int try_acquire_free_dev(spi_bus_lock_t *lock, bool cs_required)
- {
- if (cs_required) {
- int i;
- for (i = 0; i < lock->periph_cs_num; i++) {
- intptr_t null = (intptr_t) NULL;
- //use 1 to occupy the slot, actual setup comes later
- if (atomic_compare_exchange_strong(&lock->dev[i], &null, (intptr_t) 1)) {
- break;
- }
- }
- return ((i == lock->periph_cs_num)? -1: i);
- } else {
- int i;
- for (i = DEV_NUM_MAX - 1; i >= 0; i--) {
- intptr_t null = (intptr_t) NULL;
- //use 1 to occupy the slot, actual setup comes later
- if (atomic_compare_exchange_strong(&lock->dev[i], &null, (intptr_t) 1)) {
- break;
- }
- }
- return i;
- }
- }
- esp_err_t spi_bus_lock_register_dev(spi_bus_lock_handle_t lock, spi_bus_lock_dev_config_t *config,
- spi_bus_lock_dev_handle_t *out_dev_handle)
- {
- if (lock == NULL) return ESP_ERR_INVALID_ARG;
- int id = try_acquire_free_dev(lock, config->flags & SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED);
- if (id == -1) return ESP_ERR_NOT_SUPPORTED;
- spi_bus_lock_dev_t* dev_lock = (spi_bus_lock_dev_t*)heap_caps_calloc(sizeof(spi_bus_lock_dev_t), 1, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
- if (dev_lock == NULL) {
- return ESP_ERR_NO_MEM;
- }
- dev_lock->semphr = xSemaphoreCreateBinary();
- if (dev_lock->semphr == NULL) {
- free(dev_lock);
- atomic_store(&lock->dev[id], (intptr_t)NULL);
- return ESP_ERR_NO_MEM;
- }
- dev_lock->parent = lock;
- dev_lock->mask = DEV_MASK(id);
- ESP_LOGV(TAG, "device registered on bus %d slot %d.", lock->host_id, id);
- atomic_store(&lock->dev[id], (intptr_t)dev_lock);
- *out_dev_handle = dev_lock;
- return ESP_OK;
- }
- void spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t dev_handle)
- {
- int id = dev_lock_get_id(dev_handle);
- spi_bus_lock_t* lock = dev_handle->parent;
- BUS_LOCK_DEBUG_EXECUTE_CHECK(atomic_load(&lock->dev[id]) == (intptr_t)dev_handle);
- if (lock->last_dev == dev_handle) lock->last_dev = NULL;
- atomic_store(&lock->dev[id], (intptr_t)NULL);
- if (dev_handle->semphr) {
- vSemaphoreDelete(dev_handle->semphr);
- }
- free(dev_handle);
- }
- IRAM_ATTR static inline int mask_get_id(uint32_t mask)
- {
- return ID_DEV_MASK(mask);
- }
- IRAM_ATTR static inline int dev_lock_get_id(spi_bus_lock_dev_t *dev_lock)
- {
- return mask_get_id(dev_lock->mask);
- }
- void spi_bus_lock_set_bg_control(spi_bus_lock_handle_t lock, bg_ctrl_func_t bg_enable, bg_ctrl_func_t bg_disable, void *arg)
- {
- lock->bg_enable = bg_enable;
- lock->bg_disable = bg_disable;
- lock->bg_arg = arg;
- }
- IRAM_ATTR int spi_bus_lock_get_dev_id(spi_bus_lock_dev_handle_t dev_handle)
- {
- return (dev_handle? dev_lock_get_id(dev_handle): -1);
- }
- //will be called when cache disabled
- IRAM_ATTR bool spi_bus_lock_touch(spi_bus_lock_dev_handle_t dev_handle)
- {
- spi_bus_lock_dev_t* last_dev = dev_handle->parent->last_dev;
- dev_handle->parent->last_dev = dev_handle;
- if (last_dev != dev_handle) {
- int last_dev_id = (last_dev? dev_lock_get_id(last_dev): -1);
- ESP_DRAM_LOGV(TAG, "SPI dev changed from %d to %d",
- last_dev_id, dev_lock_get_id(dev_handle));
- }
- return (dev_handle != last_dev);
- }
- /*******************************************************************************
- * Acquiring service
- ******************************************************************************/
- IRAM_ATTR esp_err_t spi_bus_lock_acquire_start(spi_bus_lock_dev_t *dev_handle, TickType_t wait)
- {
- LOCK_CHECK(wait == portMAX_DELAY, "timeout other than portMAX_DELAY not supported", ESP_ERR_INVALID_ARG);
- spi_bus_lock_t* lock = dev_handle->parent;
- // Clear the semaphore before checking
- dev_wait_prepare(dev_handle);
- if (!acquire_core(dev_handle)) {
- //block until becoming the acquiring processor (help by previous acquiring processor)
- esp_err_t err = dev_wait(dev_handle, wait);
- //TODO: add timeout handling here.
- if (err != ESP_OK) return err;
- }
- ESP_DRAM_LOGV(TAG, "dev %d acquired.", dev_lock_get_id(dev_handle));
- BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->acquiring_dev == dev_handle);
- //When arrives at here, requests of this device should already be handled
- uint32_t status = lock_status_fetch(lock);
- (void) status;
- BUS_LOCK_DEBUG_EXECUTE_CHECK((status & DEV_BG_MASK(dev_handle)) == 0);
- return ESP_OK;
- }
- IRAM_ATTR esp_err_t spi_bus_lock_acquire_end(spi_bus_lock_dev_t *dev_handle)
- {
- //release the bus
- spi_bus_lock_t* lock = dev_handle->parent;
- LOCK_CHECK(lock->acquiring_dev == dev_handle, "Cannot release a lock that hasn't been acquired.", ESP_ERR_INVALID_STATE);
- acquire_end_core(dev_handle);
- ESP_LOGV(TAG, "dev %d released.", dev_lock_get_id(dev_handle));
- return ESP_OK;
- }
- SPI_MASTER_ISR_ATTR spi_bus_lock_dev_handle_t spi_bus_lock_get_acquiring_dev(spi_bus_lock_t *lock)
- {
- return lock->acquiring_dev;
- }
- /*******************************************************************************
- * BG (background operation) service
- ******************************************************************************/
- SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_entry(spi_bus_lock_t* lock)
- {
- return bg_entry_core(lock);
- }
- SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_exit(spi_bus_lock_t* lock, bool wip, BaseType_t* do_yield)
- {
- return bg_exit_core(lock, wip, do_yield);
- }
- SPI_MASTER_ATTR esp_err_t spi_bus_lock_bg_request(spi_bus_lock_dev_t *dev_handle)
- {
- req_core(dev_handle);
- return ESP_OK;
- }
- IRAM_ATTR esp_err_t spi_bus_lock_wait_bg_done(spi_bus_lock_dev_handle_t dev_handle, TickType_t wait)
- {
- spi_bus_lock_t *lock = dev_handle->parent;
- LOCK_CHECK(lock->acquiring_dev == dev_handle, "Cannot wait for a device that is not acquired", ESP_ERR_INVALID_STATE);
- LOCK_CHECK(wait == portMAX_DELAY, "timeout other than portMAX_DELAY not supported", ESP_ERR_INVALID_ARG);
- // If no BG bits active, skip quickly. This is ensured by `spi_bus_lock_wait_bg_done`
- // cannot be executed with `bg_request` on the same device concurrently.
- if (lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) {
- // Clear the semaphore before checking
- dev_wait_prepare(dev_handle);
- if (lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) {
- //block until becoming the acquiring processor (help by previous acquiring processor)
- esp_err_t err = dev_wait(dev_handle, wait);
- //TODO: add timeout handling here.
- if (err != ESP_OK) return err;
- }
- }
- BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
- BUS_LOCK_DEBUG_EXECUTE_CHECK((lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) == 0);
- return ESP_OK;
- }
- SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_clear_req(spi_bus_lock_dev_t *dev_handle)
- {
- bool finished = clear_pend_core(dev_handle);
- ESP_EARLY_LOGV(TAG, "dev %d served from bg.", dev_lock_get_id(dev_handle));
- return finished;
- }
- SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_check_dev_acq(spi_bus_lock_t *lock,
- spi_bus_lock_dev_handle_t *out_dev_lock)
- {
- BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev);
- uint32_t status = lock_status_fetch(lock);
- return schedule_core(lock, status, out_dev_lock);
- }
- SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_check_dev_req(spi_bus_lock_dev_t *dev_lock)
- {
- spi_bus_lock_t* lock = dev_lock->parent;
- uint32_t status = lock_status_fetch(lock);
- uint32_t dev_status = status & dev_lock->mask;
- // move REQ bits of all device to corresponding PEND bits.
- // To reduce executing time, only done when the REQ bit of the calling device is set.
- if (dev_status & REQ_MASK) {
- update_pend_core(lock, status);
- return true;
- } else {
- return dev_status & PEND_MASK;
- }
- }
- SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_req_exist(spi_bus_lock_t *lock)
- {
- uint32_t status = lock_status_fetch(lock);
- return status & BG_MASK;
- }
- /*******************************************************************************
- * Static variables of the locks of the main flash
- ******************************************************************************/
- #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
- static spi_bus_lock_dev_t lock_main_flash_dev;
- static spi_bus_lock_t main_spi_bus_lock = {
- /*
- * the main bus cache is permanently required, this flag is set here and never clear so that the
- * cache will always be enabled if acquiring devices yield.
- */
- .status = ATOMIC_VAR_INIT(WEAK_BG_FLAG),
- .acquiring_dev = NULL,
- .dev = {ATOMIC_VAR_INIT((intptr_t)&lock_main_flash_dev)},
- .new_req = 0,
- .periph_cs_num = SOC_SPI_PERIPH_CS_NUM(0),
- };
- const spi_bus_lock_handle_t g_main_spi_bus_lock = &main_spi_bus_lock;
- esp_err_t spi_bus_lock_init_main_bus(void)
- {
- spi_bus_main_set_lock(g_main_spi_bus_lock);
- return ESP_OK;
- }
- static StaticSemaphore_t main_flash_semphr;
- static spi_bus_lock_dev_t lock_main_flash_dev = {
- .semphr = NULL,
- .parent = &main_spi_bus_lock,
- .mask = DEV_MASK(0),
- };
- const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev = &lock_main_flash_dev;
- esp_err_t spi_bus_lock_init_main_dev(void)
- {
- g_spi_lock_main_flash_dev->semphr = xSemaphoreCreateBinaryStatic(&main_flash_semphr);
- if (g_spi_lock_main_flash_dev->semphr == NULL) {
- return ESP_ERR_NO_MEM;
- }
- return ESP_OK;
- }
- #else //CONFIG_SPI_FLASH_SHARE_SPI1_BUS
- //when the dev lock is not initialized, point to NULL
- const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev = NULL;
- #endif
|