123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 |
- /* ***** BEGIN LICENSE BLOCK *****
- * Source last modified: $Id: dct4.c,v 1.1 2005/02/26 01:47:34 jrecker Exp $
- *
- * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
- *
- * The contents of this file, and the files included with this file,
- * are subject to the current version of the RealNetworks Public
- * Source License (the "RPSL") available at
- * http://www.helixcommunity.org/content/rpsl unless you have licensed
- * the file under the current version of the RealNetworks Community
- * Source License (the "RCSL") available at
- * http://www.helixcommunity.org/content/rcsl, in which case the RCSL
- * will apply. You may also obtain the license terms directly from
- * RealNetworks. You may not use this file except in compliance with
- * the RPSL or, if you have a valid RCSL with RealNetworks applicable
- * to this file, the RCSL. Please see the applicable RPSL or RCSL for
- * the rights, obligations and limitations governing use of the
- * contents of the file.
- *
- * This file is part of the Helix DNA Technology. RealNetworks is the
- * developer of the Original Code and owns the copyrights in the
- * portions it created.
- *
- * This file, and the files included with this file, is distributed
- * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
- * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
- * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
- * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
- * ENJOYMENT OR NON-INFRINGEMENT.
- *
- * Technology Compatibility Kit Test Suite(s) Location:
- * http://www.helixcommunity.org/content/tck
- *
- * Contributor(s):
- *
- * ***** END LICENSE BLOCK ***** */
- /**************************************************************************************
- * Fixed-point HE-AAC decoder
- * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
- * February 2005
- *
- * dct4.c - optimized DCT-IV
- **************************************************************************************/
- #include "coder.h"
- #include "assembly.h"
- static const int nmdctTab[NUM_IMDCT_SIZES] PROGMEM = {128, 1024};
- static const int postSkip[NUM_IMDCT_SIZES] PROGMEM = {15, 1};
- /**************************************************************************************
- * Function: PreMultiply
- *
- * Description: pre-twiddle stage of DCT4
- *
- * Inputs: table index (for transform size)
- * buffer of nmdct samples
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: minimum 1 GB in, 2 GB out, gains 5 (short) or 8 (long) frac bits
- * i.e. gains 2-7= -5 int bits (short) or 2-10 = -8 int bits (long)
- * normalization by -1/N is rolled into tables here (see trigtabs.c)
- * uses 3-mul, 3-add butterflies instead of 4-mul, 2-add
- **************************************************************************************/
- static void PreMultiply(int tabidx, int *zbuf1)
- {
- int i, nmdct, ar1, ai1, ar2, ai2, z1, z2;
- int t, cms2, cps2a, sin2a, cps2b, sin2b;
- int *zbuf2;
- const int *csptr;
- nmdct = nmdctTab[tabidx];
- zbuf2 = zbuf1 + nmdct - 1;
- csptr = cos4sin4tab + cos4sin4tabOffset[tabidx];
- /* whole thing should fit in registers - verify that compiler does this */
- for (i = nmdct >> 2; i != 0; i--) {
- /* cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin) */
- cps2a = *csptr++;
- sin2a = *csptr++;
- cps2b = *csptr++;
- sin2b = *csptr++;
- ar1 = *(zbuf1 + 0);
- ai2 = *(zbuf1 + 1);
- ai1 = *(zbuf2 + 0);
- ar2 = *(zbuf2 - 1);
- /* gain 2 ints bit from MULSHIFT32 by Q30, but drop 7 or 10 int bits from table scaling of 1/M
- * max per-sample gain (ignoring implicit scaling) = MAX(sin(angle)+cos(angle)) = 1.414
- * i.e. gain 1 GB since worst case is sin(angle) = cos(angle) = 0.707 (Q30), gain 2 from
- * extra sign bits, and eat one in adding
- */
- t = MULSHIFT32(sin2a, ar1 + ai1);
- z2 = MULSHIFT32(cps2a, ai1) - t;
- cms2 = cps2a - 2*sin2a;
- z1 = MULSHIFT32(cms2, ar1) + t;
- *zbuf1++ = z1; /* cos*ar1 + sin*ai1 */
- *zbuf1++ = z2; /* cos*ai1 - sin*ar1 */
- t = MULSHIFT32(sin2b, ar2 + ai2);
- z2 = MULSHIFT32(cps2b, ai2) - t;
- cms2 = cps2b - 2*sin2b;
- z1 = MULSHIFT32(cms2, ar2) + t;
- *zbuf2-- = z2; /* cos*ai2 - sin*ar2 */
- *zbuf2-- = z1; /* cos*ar2 + sin*ai2 */
- }
- }
- /**************************************************************************************
- * Function: PostMultiply
- *
- * Description: post-twiddle stage of DCT4
- *
- * Inputs: table index (for transform size)
- * buffer of nmdct samples
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: minimum 1 GB in, 2 GB out - gains 2 int bits
- * uses 3-mul, 3-add butterflies instead of 4-mul, 2-add
- **************************************************************************************/
- static void PostMultiply(int tabidx, int *fft1)
- {
- int i, nmdct, ar1, ai1, ar2, ai2, skipFactor;
- int t, cms2, cps2, sin2;
- int *fft2;
- const int *csptr;
- nmdct = nmdctTab[tabidx];
- csptr = cos1sin1tab;
- skipFactor = postSkip[tabidx];
- fft2 = fft1 + nmdct - 1;
- /* load coeffs for first pass
- * cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin)
- */
- cps2 = *csptr++;
- sin2 = *csptr;
- csptr += skipFactor;
- cms2 = cps2 - 2*sin2;
- for (i = nmdct >> 2; i != 0; i--) {
- ar1 = *(fft1 + 0);
- ai1 = *(fft1 + 1);
- ar2 = *(fft2 - 1);
- ai2 = *(fft2 + 0);
- /* gain 2 ints bit from MULSHIFT32 by Q30
- * max per-sample gain = MAX(sin(angle)+cos(angle)) = 1.414
- * i.e. gain 1 GB since worst case is sin(angle) = cos(angle) = 0.707 (Q30), gain 2 from
- * extra sign bits, and eat one in adding
- */
- t = MULSHIFT32(sin2, ar1 + ai1);
- *fft2-- = t - MULSHIFT32(cps2, ai1); /* sin*ar1 - cos*ai1 */
- *fft1++ = t + MULSHIFT32(cms2, ar1); /* cos*ar1 + sin*ai1 */
- cps2 = *csptr++;
- sin2 = *csptr;
- csptr += skipFactor;
- ai2 = -ai2;
- t = MULSHIFT32(sin2, ar2 + ai2);
- *fft2-- = t - MULSHIFT32(cps2, ai2); /* sin*ar1 - cos*ai1 */
- cms2 = cps2 - 2*sin2;
- *fft1++ = t + MULSHIFT32(cms2, ar2); /* cos*ar1 + sin*ai1 */
- }
- }
- /**************************************************************************************
- * Function: PreMultiplyRescale
- *
- * Description: pre-twiddle stage of DCT4, with rescaling for extra guard bits
- *
- * Inputs: table index (for transform size)
- * buffer of nmdct samples
- * number of guard bits to add to input before processing
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: see notes on PreMultiply(), above
- **************************************************************************************/
- /* __attribute__ ((section (".data"))) */ static void PreMultiplyRescale(int tabidx, int *zbuf1, int es)
- {
- int i, nmdct, ar1, ai1, ar2, ai2, z1, z2;
- int t, cms2, cps2a, sin2a, cps2b, sin2b;
- int *zbuf2;
- const int *csptr;
- nmdct = nmdctTab[tabidx];
- zbuf2 = zbuf1 + nmdct - 1;
- csptr = cos4sin4tab + cos4sin4tabOffset[tabidx];
- /* whole thing should fit in registers - verify that compiler does this */
- for (i = nmdct >> 2; i != 0; i--) {
- /* cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin) */
- cps2a = *csptr++;
- sin2a = *csptr++;
- cps2b = *csptr++;
- sin2b = *csptr++;
- ar1 = *(zbuf1 + 0) >> es;
- ai1 = *(zbuf2 + 0) >> es;
- ai2 = *(zbuf1 + 1) >> es;
- t = MULSHIFT32(sin2a, ar1 + ai1);
- z2 = MULSHIFT32(cps2a, ai1) - t;
- cms2 = cps2a - 2*sin2a;
- z1 = MULSHIFT32(cms2, ar1) + t;
- *zbuf1++ = z1;
- *zbuf1++ = z2;
- ar2 = *(zbuf2 - 1) >> es; /* do here to free up register used for es */
- t = MULSHIFT32(sin2b, ar2 + ai2);
- z2 = MULSHIFT32(cps2b, ai2) - t;
- cms2 = cps2b - 2*sin2b;
- z1 = MULSHIFT32(cms2, ar2) + t;
- *zbuf2-- = z2;
- *zbuf2-- = z1;
- }
- }
- /**************************************************************************************
- * Function: PostMultiplyRescale
- *
- * Description: post-twiddle stage of DCT4, with rescaling for extra guard bits
- *
- * Inputs: table index (for transform size)
- * buffer of nmdct samples
- * number of guard bits to remove from output
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: clips output to [-2^30, 2^30 - 1], guaranteeing at least 1 guard bit
- * see notes on PostMultiply(), above
- **************************************************************************************/
- /* __attribute__ ((section (".data"))) */ static void PostMultiplyRescale(int tabidx, int *fft1, int es)
- {
- int i, nmdct, ar1, ai1, ar2, ai2, skipFactor, z;
- int t, cs2, sin2;
- int *fft2;
- const int *csptr;
- nmdct = nmdctTab[tabidx];
- csptr = cos1sin1tab;
- skipFactor = postSkip[tabidx];
- fft2 = fft1 + nmdct - 1;
- /* load coeffs for first pass
- * cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin)
- */
- cs2 = *csptr++;
- sin2 = *csptr;
- csptr += skipFactor;
- for (i = nmdct >> 2; i != 0; i--) {
- ar1 = *(fft1 + 0);
- ai1 = *(fft1 + 1);
- ai2 = *(fft2 + 0);
- t = MULSHIFT32(sin2, ar1 + ai1);
- z = t - MULSHIFT32(cs2, ai1);
- CLIP_2N_SHIFT(z, es);
- *fft2-- = z;
- cs2 -= 2*sin2;
- z = t + MULSHIFT32(cs2, ar1);
- CLIP_2N_SHIFT(z, es);
- *fft1++ = z;
- cs2 = *csptr++;
- sin2 = *csptr;
- csptr += skipFactor;
- ar2 = *fft2;
- ai2 = -ai2;
- t = MULSHIFT32(sin2, ar2 + ai2);
- z = t - MULSHIFT32(cs2, ai2);
- CLIP_2N_SHIFT(z, es);
- *fft2-- = z;
- cs2 -= 2*sin2;
- z = t + MULSHIFT32(cs2, ar2);
- CLIP_2N_SHIFT(z, es);
- *fft1++ = z;
- cs2 += 2*sin2;
- }
- }
- /**************************************************************************************
- * Function: DCT4
- *
- * Description: type-IV DCT
- *
- * Inputs: table index (for transform size)
- * buffer of nmdct samples
- * number of guard bits in the input buffer
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: operates in-place
- * if number of guard bits in input is < GBITS_IN_DCT4, the input is
- * scaled (>>) before the DCT4 and rescaled (<<, with clipping) after
- * the DCT4 (rare)
- * the output has FBITS_LOST_DCT4 fewer fraction bits than the input
- * the output will always have at least 1 guard bit (GBITS_IN_DCT4 >= 4)
- * int bits gained per stage (PreMul + FFT + PostMul)
- * short blocks = (-5 + 4 + 2) = 1 total
- * long blocks = (-8 + 7 + 2) = 1 total
- **************************************************************************************/
- void DCT4(int tabidx, int *coef, int gb)
- {
- int es;
- /* fast in-place DCT-IV - adds guard bits if necessary */
- if (gb < GBITS_IN_DCT4) {
- es = GBITS_IN_DCT4 - gb;
- PreMultiplyRescale(tabidx, coef, es);
- R4FFT(tabidx, coef);
- PostMultiplyRescale(tabidx, coef, es);
- } else {
- PreMultiply(tabidx, coef);
- R4FFT(tabidx, coef);
- PostMultiply(tabidx, coef);
- }
- }
|