123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853 |
- /* ***** BEGIN LICENSE BLOCK *****
- * Source last modified: $Id: sbrhfadj.c,v 1.3 2005/05/24 16:01:55 albertofloyd Exp $
- *
- * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
- *
- * The contents of this file, and the files included with this file,
- * are subject to the current version of the RealNetworks Public
- * Source License (the "RPSL") available at
- * http://www.helixcommunity.org/content/rpsl unless you have licensed
- * the file under the current version of the RealNetworks Community
- * Source License (the "RCSL") available at
- * http://www.helixcommunity.org/content/rcsl, in which case the RCSL
- * will apply. You may also obtain the license terms directly from
- * RealNetworks. You may not use this file except in compliance with
- * the RPSL or, if you have a valid RCSL with RealNetworks applicable
- * to this file, the RCSL. Please see the applicable RPSL or RCSL for
- * the rights, obligations and limitations governing use of the
- * contents of the file.
- *
- * This file is part of the Helix DNA Technology. RealNetworks is the
- * developer of the Original Code and owns the copyrights in the
- * portions it created.
- *
- * This file, and the files included with this file, is distributed
- * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
- * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
- * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
- * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
- * ENJOYMENT OR NON-INFRINGEMENT.
- *
- * Technology Compatibility Kit Test Suite(s) Location:
- * http://www.helixcommunity.org/content/tck
- *
- * Contributor(s):
- *
- * ***** END LICENSE BLOCK ***** */
- /**************************************************************************************
- * Fixed-point HE-AAC decoder
- * Jon Recker (jrecker@real.com)
- * February 2005
- *
- * sbrhfadj.c - high frequency adjustment for SBR
- **************************************************************************************/
- #include "sbr.h"
- #include "assembly.h"
- /* invBandTab[i] = 1.0 / (i + 1), Q31 */
- static const int invBandTab[64] PROGMEM = {
- 0x7fffffff, 0x40000000, 0x2aaaaaab, 0x20000000, 0x1999999a, 0x15555555, 0x12492492, 0x10000000,
- 0x0e38e38e, 0x0ccccccd, 0x0ba2e8ba, 0x0aaaaaab, 0x09d89d8a, 0x09249249, 0x08888889, 0x08000000,
- 0x07878788, 0x071c71c7, 0x06bca1af, 0x06666666, 0x06186186, 0x05d1745d, 0x0590b216, 0x05555555,
- 0x051eb852, 0x04ec4ec5, 0x04bda12f, 0x04924925, 0x0469ee58, 0x04444444, 0x04210842, 0x04000000,
- 0x03e0f83e, 0x03c3c3c4, 0x03a83a84, 0x038e38e4, 0x03759f23, 0x035e50d8, 0x03483483, 0x03333333,
- 0x031f3832, 0x030c30c3, 0x02fa0be8, 0x02e8ba2f, 0x02d82d83, 0x02c8590b, 0x02b93105, 0x02aaaaab,
- 0x029cbc15, 0x028f5c29, 0x02828283, 0x02762762, 0x026a439f, 0x025ed098, 0x0253c825, 0x02492492,
- 0x023ee090, 0x0234f72c, 0x022b63cc, 0x02222222, 0x02192e2a, 0x02108421, 0x02082082, 0x02000000,
- };
- /**************************************************************************************
- * Function: EstimateEnvelope
- *
- * Description: estimate power of generated HF QMF bands in one time-domain envelope
- * (4.6.18.7.3)
- *
- * Inputs: initialized PSInfoSBR struct
- * initialized SBRHeader struct for this SCE/CPE block
- * initialized SBRGrid struct for this channel
- * initialized SBRFreq struct for this SCE/CPE block
- * index of current envelope
- *
- * Outputs: power of each QMF subband, stored as integer (Q0) * 2^N, N >= 0
- *
- * Return: none
- **************************************************************************************/
- static void EstimateEnvelope(PSInfoSBR *psi, SBRHeader *sbrHdr, SBRGrid *sbrGrid, SBRFreq *sbrFreq, int env)
- {
- int i, m, iStart, iEnd, xre, xim, nScale, expMax;
- int p, n, mStart, mEnd, invFact, t;
- int *XBuf;
- U64 eCurr;
- unsigned char *freqBandTab;
- /* estimate current envelope */
- iStart = sbrGrid->envTimeBorder[env] + HF_ADJ;
- iEnd = sbrGrid->envTimeBorder[env+1] + HF_ADJ;
- if (sbrGrid->freqRes[env]) {
- n = sbrFreq->nHigh;
- freqBandTab = sbrFreq->freqHigh;
- } else {
- n = sbrFreq->nLow;
- freqBandTab = sbrFreq->freqLow;
- }
- /* ADS should inline MADD64 (smlal) properly, but check to make sure */
- expMax = 0;
- if (sbrHdr->interpFreq) {
- for (m = 0; m < sbrFreq->numQMFBands; m++) {
- eCurr.w64 = 0;
- XBuf = psi->XBuf[iStart][sbrFreq->kStart + m];
- for (i = iStart; i < iEnd; i++) {
- /* scale to int before calculating power (precision not critical, and avoids overflow) */
- xre = (*XBuf) >> FBITS_OUT_QMFA; XBuf += 1;
- xim = (*XBuf) >> FBITS_OUT_QMFA; XBuf += (2*64 - 1);
- eCurr.w64 = MADD64(eCurr.w64, xre, xre);
- eCurr.w64 = MADD64(eCurr.w64, xim, xim);
- }
- /* eCurr.w64 is now Q(64 - 2*FBITS_OUT_QMFA) (64-bit word)
- * if energy is too big to fit in 32-bit word (> 2^31) scale down by power of 2
- */
- nScale = 0;
- if (eCurr.r.hi32) {
- nScale = (32 - CLZ(eCurr.r.hi32)) + 1;
- t = (int)(eCurr.r.lo32 >> nScale); /* logical (unsigned) >> */
- t |= eCurr.r.hi32 << (32 - nScale);
- } else if (eCurr.r.lo32 >> 31) {
- nScale = 1;
- t = (int)(eCurr.r.lo32 >> nScale); /* logical (unsigned) >> */
- } else {
- t = (int)eCurr.r.lo32;
- }
- invFact = invBandTab[(iEnd - iStart)-1];
- psi->eCurr[m] = MULSHIFT32(t, invFact);
- psi->eCurrExp[m] = nScale + 1; /* +1 for invFact = Q31 */
- if (psi->eCurrExp[m] > expMax)
- expMax = psi->eCurrExp[m];
- }
- } else {
- for (p = 0; p < n; p++) {
- mStart = freqBandTab[p];
- mEnd = freqBandTab[p+1];
- eCurr.w64 = 0;
- for (i = iStart; i < iEnd; i++) {
- XBuf = psi->XBuf[i][mStart];
- for (m = mStart; m < mEnd; m++) {
- xre = (*XBuf++) >> FBITS_OUT_QMFA;
- xim = (*XBuf++) >> FBITS_OUT_QMFA;
- eCurr.w64 = MADD64(eCurr.w64, xre, xre);
- eCurr.w64 = MADD64(eCurr.w64, xim, xim);
- }
- }
- nScale = 0;
- if (eCurr.r.hi32) {
- nScale = (32 - CLZ(eCurr.r.hi32)) + 1;
- t = (int)(eCurr.r.lo32 >> nScale); /* logical (unsigned) >> */
- t |= eCurr.r.hi32 << (32 - nScale);
- } else if (eCurr.r.lo32 >> 31) {
- nScale = 1;
- t = (int)(eCurr.r.lo32 >> nScale); /* logical (unsigned) >> */
- } else {
- t = (int)eCurr.r.lo32;
- }
- invFact = invBandTab[(iEnd - iStart)-1];
- invFact = MULSHIFT32(invBandTab[(mEnd - mStart)-1], invFact) << 1;
- t = MULSHIFT32(t, invFact);
- for (m = mStart; m < mEnd; m++) {
- psi->eCurr[m - sbrFreq->kStart] = t;
- psi->eCurrExp[m - sbrFreq->kStart] = nScale + 1; /* +1 for invFact = Q31 */
- }
- if (psi->eCurrExp[mStart - sbrFreq->kStart] > expMax)
- expMax = psi->eCurrExp[mStart - sbrFreq->kStart];
- }
- }
- psi->eCurrExpMax = expMax;
- }
- /**************************************************************************************
- * Function: GetSMapped
- *
- * Description: calculate SMapped (4.6.18.7.2)
- *
- * Inputs: initialized PSInfoSBR struct
- * initialized SBRGrid struct for this channel
- * initialized SBRFreq struct for this SCE/CPE block
- * initialized SBRChan struct for this channel
- * index of current envelope
- * index of current QMF band
- * la flag for this envelope
- *
- * Outputs: none
- *
- * Return: 1 if a sinusoid is present in this band, 0 if not
- **************************************************************************************/
- static int GetSMapped(SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int env, int band, int la)
- {
- int bandStart, bandEnd, oddFlag, r;
- if (sbrGrid->freqRes[env]) {
- /* high resolution */
- bandStart = band;
- bandEnd = band+1;
- } else {
- /* low resolution (see CalcFreqLow() for mapping) */
- oddFlag = sbrFreq->nHigh & 0x01;
- bandStart = (band > 0 ? 2*band - oddFlag : 0); /* starting index for freqLow[band] */
- bandEnd = 2*(band+1) - oddFlag; /* ending index for freqLow[band+1] */
- }
- /* sMapped = 1 if sIndexMapped == 1 for any frequency in this band */
- for (band = bandStart; band < bandEnd; band++) {
- if (sbrChan->addHarmonic[1][band]) {
- r = ((sbrFreq->freqHigh[band+1] + sbrFreq->freqHigh[band]) >> 1);
- if (env >= la || sbrChan->addHarmonic[0][r] == 1)
- return 1;
- }
- }
- return 0;
- }
- #define GBOOST_MAX 0x2830afd3 /* Q28, 1.584893192 squared */
- #define ACC_SCALE 6
- /* squared version of table in 4.6.18.7.5 */
- static const int limGainTab[4] PROGMEM = {0x20138ca7, 0x40000000, 0x7fb27dce, 0x80000000}; /* Q30 (0x80000000 = sentinel for GMAX) */
- /**************************************************************************************
- * Function: CalcMaxGain
- *
- * Description: calculate max gain in one limiter band (4.6.18.7.5)
- *
- * Inputs: initialized PSInfoSBR struct
- * initialized SBRHeader struct for this SCE/CPE block
- * initialized SBRGrid struct for this channel
- * initialized SBRFreq struct for this SCE/CPE block
- * index of current channel (0 for SCE, 0 or 1 for CPE)
- * index of current envelope
- * index of current limiter band
- * number of fraction bits in dequantized envelope
- * (max = Q(FBITS_OUT_DQ_ENV - 6) = Q23, can go negative)
- *
- * Outputs: updated gainMax, gainMaxFBits, and sumEOrigMapped in PSInfoSBR struct
- *
- * Return: none
- **************************************************************************************/
- static void CalcMaxGain(PSInfoSBR *psi, SBRHeader *sbrHdr, SBRGrid *sbrGrid, SBRFreq *sbrFreq, int ch, int env, int lim, int fbitsDQ)
- {
- int m, mStart, mEnd, q, z, r;
- int sumEOrigMapped, sumECurr, gainMax, eOMGainMax, envBand;
- unsigned char eCurrExpMax;
- unsigned char *freqBandTab;
- mStart = sbrFreq->freqLimiter[lim]; /* these are offsets from kStart */
- mEnd = sbrFreq->freqLimiter[lim + 1];
- freqBandTab = (sbrGrid->freqRes[env] ? sbrFreq->freqHigh : sbrFreq->freqLow);
- /* calculate max gain to apply to signal in this limiter band */
- sumECurr = 0;
- sumEOrigMapped = 0;
- eCurrExpMax = psi->eCurrExpMax;
- eOMGainMax = psi->eOMGainMax;
- envBand = psi->envBand;
- for (m = mStart; m < mEnd; m++) {
- /* map current QMF band to appropriate envelope band */
- if (m == freqBandTab[envBand + 1] - sbrFreq->kStart) {
- envBand++;
- eOMGainMax = psi->envDataDequant[ch][env][envBand] >> ACC_SCALE; /* summing max 48 bands */
- }
- sumEOrigMapped += eOMGainMax;
- /* easy test for overflow on ARM */
- sumECurr += (psi->eCurr[m] >> (eCurrExpMax - psi->eCurrExp[m]));
- if (sumECurr >> 30) {
- sumECurr >>= 1;
- eCurrExpMax++;
- }
- }
- psi->eOMGainMax = eOMGainMax;
- psi->envBand = envBand;
- psi->gainMaxFBits = 30; /* Q30 tables */
- if (sumECurr == 0) {
- /* any non-zero numerator * 1/EPS_0 is > G_MAX */
- gainMax = (sumEOrigMapped == 0 ? (int)limGainTab[sbrHdr->limiterGains] : (int)0x80000000);
- } else if (sumEOrigMapped == 0) {
- /* 1/(any non-zero denominator) * EPS_0 * limGainTab[x] is appx. 0 */
- gainMax = 0;
- } else {
- /* sumEOrigMapped = Q(fbitsDQ - ACC_SCALE), sumECurr = Q(-eCurrExpMax) */
- gainMax = limGainTab[sbrHdr->limiterGains];
- if (sbrHdr->limiterGains != 3) {
- q = MULSHIFT32(sumEOrigMapped, gainMax); /* Q(fbitsDQ - ACC_SCALE - 2), gainMax = Q30 */
- z = CLZ(sumECurr) - 1;
- r = InvRNormalized(sumECurr << z); /* in = Q(z - eCurrExpMax), out = Q(29 + 31 - z + eCurrExpMax) */
- gainMax = MULSHIFT32(q, r); /* Q(29 + 31 - z + eCurrExpMax + fbitsDQ - ACC_SCALE - 2 - 32) */
- psi->gainMaxFBits = 26 - z + eCurrExpMax + fbitsDQ - ACC_SCALE;
- }
- }
- psi->sumEOrigMapped = sumEOrigMapped;
- psi->gainMax = gainMax;
- }
- /**************************************************************************************
- * Function: CalcNoiseDivFactors
- *
- * Description: calculate 1/(1+Q) and Q/(1+Q) (4.6.18.7.4; 4.6.18.7.5)
- *
- * Inputs: dequantized noise floor scalefactor
- *
- * Outputs: 1/(1+Q) and Q/(1+Q), format = Q31
- *
- * Return: none
- **************************************************************************************/
- static void CalcNoiseDivFactors(int q, int *qp1Inv, int *qqp1Inv)
- {
- int z, qp1, t, s;
- /* 1 + Q_orig */
- qp1 = (q >> 1);
- qp1 += (1 << (FBITS_OUT_DQ_NOISE - 1)); /* >> 1 to avoid overflow when adding 1.0 */
- z = CLZ(qp1) - 1; /* z <= 31 - FBITS_OUT_DQ_NOISE */
- qp1 <<= z; /* Q(FBITS_OUT_DQ_NOISE + z) = Q31 * 2^-(31 - (FBITS_OUT_DQ_NOISE + z)) */
- t = InvRNormalized(qp1) << 1; /* Q30 * 2^(31 - (FBITS_OUT_DQ_NOISE + z)), guaranteed not to overflow */
- /* normalize to Q31 */
- s = (31 - (FBITS_OUT_DQ_NOISE - 1) - z - 1); /* clearly z >= 0, z <= (30 - (FBITS_OUT_DQ_NOISE - 1)) */
- *qp1Inv = (t >> s); /* s = [0, 31 - FBITS_OUT_DQ_NOISE] */
- *qqp1Inv = MULSHIFT32(t, q) << (32 - FBITS_OUT_DQ_NOISE - s);
- }
- /**************************************************************************************
- * Function: CalcComponentGains
- *
- * Description: calculate gain of envelope, sinusoids, and noise in one limiter band
- * (4.6.18.7.5)
- *
- * Inputs: initialized PSInfoSBR struct
- * initialized SBRHeader struct for this SCE/CPE block
- * initialized SBRGrid struct for this channel
- * initialized SBRFreq struct for this SCE/CPE block
- * initialized SBRChan struct for this channel
- * index of current channel (0 for SCE, 0 or 1 for CPE)
- * index of current envelope
- * index of current limiter band
- * number of fraction bits in dequantized envelope
- *
- * Outputs: gains for envelope, sinusoids and noise
- * number of fraction bits for envelope gain
- * sum of the total gain for each component in this band
- * other updated state variables
- *
- * Return: none
- **************************************************************************************/
- static void CalcComponentGains(PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch, int env, int lim, int fbitsDQ)
- {
- int d, m, mStart, mEnd, q, qm, noiseFloor, sIndexMapped;
- int shift, eCurr, maxFlag, gainMax, gainMaxFBits;
- int gain, sm, z, r, fbitsGain, gainScale;
- unsigned char *freqBandTab;
- mStart = sbrFreq->freqLimiter[lim]; /* these are offsets from kStart */
- mEnd = sbrFreq->freqLimiter[lim + 1];
- gainMax = psi->gainMax;
- gainMaxFBits = psi->gainMaxFBits;
- d = (env == psi->la || env == sbrChan->laPrev ? 0 : 1);
- freqBandTab = (sbrGrid->freqRes[env] ? sbrFreq->freqHigh : sbrFreq->freqLow);
- /* figure out which noise floor this envelope is in (only 1 or 2 noise floors allowed) */
- noiseFloor = 0;
- if (sbrGrid->numNoiseFloors == 2 && sbrGrid->noiseTimeBorder[1] <= sbrGrid->envTimeBorder[env])
- noiseFloor++;
- psi->sumECurrGLim = 0;
- psi->sumSM = 0;
- psi->sumQM = 0;
- /* calculate energy of noise to add in this limiter band */
- for (m = mStart; m < mEnd; m++) {
- if (m == sbrFreq->freqNoise[psi->noiseFloorBand + 1] - sbrFreq->kStart) {
- /* map current QMF band to appropriate noise floor band (NOTE: freqLimiter[0] == freqLow[0] = freqHigh[0]) */
- psi->noiseFloorBand++;
- CalcNoiseDivFactors(psi->noiseDataDequant[ch][noiseFloor][psi->noiseFloorBand], &(psi->qp1Inv), &(psi->qqp1Inv));
- }
- if (m == sbrFreq->freqHigh[psi->highBand + 1] - sbrFreq->kStart)
- psi->highBand++;
- if (m == freqBandTab[psi->sBand + 1] - sbrFreq->kStart) {
- psi->sBand++;
- psi->sMapped = GetSMapped(sbrGrid, sbrFreq, sbrChan, env, psi->sBand, psi->la);
- }
- /* get sIndexMapped for this QMF subband */
- sIndexMapped = 0;
- r = ((sbrFreq->freqHigh[psi->highBand+1] + sbrFreq->freqHigh[psi->highBand]) >> 1);
- if (m + sbrFreq->kStart == r) {
- /* r = center frequency, deltaStep = (env >= la || sIndexMapped'(r, numEnv'-1) == 1) */
- if (env >= psi->la || sbrChan->addHarmonic[0][r] == 1)
- sIndexMapped = sbrChan->addHarmonic[1][psi->highBand];
- }
- /* save sine flags from last envelope in this frame:
- * addHarmonic[0][0...63] = saved sine present flag from previous frame, for each QMF subband
- * addHarmonic[1][0...nHigh-1] = addHarmonic bit from current frame, for each high-res frequency band
- * from MPEG reference code - slightly different from spec
- * (sIndexMapped'(m,LE'-1) can still be 0 when numEnv == psi->la)
- */
- if (env == sbrGrid->numEnv - 1) {
- if (m + sbrFreq->kStart == r)
- sbrChan->addHarmonic[0][m + sbrFreq->kStart] = sbrChan->addHarmonic[1][psi->highBand];
- else
- sbrChan->addHarmonic[0][m + sbrFreq->kStart] = 0;
- }
- gain = psi->envDataDequant[ch][env][psi->sBand];
- qm = MULSHIFT32(gain, psi->qqp1Inv) << 1;
- sm = (sIndexMapped ? MULSHIFT32(gain, psi->qp1Inv) << 1 : 0);
- /* three cases: (sMapped == 0 && delta == 1), (sMapped == 0 && delta == 0), (sMapped == 1) */
- if (d == 1 && psi->sMapped == 0)
- gain = MULSHIFT32(psi->qp1Inv, gain) << 1;
- else if (psi->sMapped != 0)
- gain = MULSHIFT32(psi->qqp1Inv, gain) << 1;
- /* gain, qm, sm = Q(fbitsDQ), gainMax = Q(fbitsGainMax) */
- eCurr = psi->eCurr[m];
- if (eCurr) {
- z = CLZ(eCurr) - 1;
- r = InvRNormalized(eCurr << z); /* in = Q(z - eCurrExp), out = Q(29 + 31 - z + eCurrExp) */
- gainScale = MULSHIFT32(gain, r); /* out = Q(29 + 31 - z + eCurrExp + fbitsDQ - 32) */
- fbitsGain = 29 + 31 - z + psi->eCurrExp[m] + fbitsDQ - 32;
- } else {
- /* if eCurr == 0, then gain is unchanged (divide by EPS = 1) */
- gainScale = gain;
- fbitsGain = fbitsDQ;
- }
- /* see if gain for this band exceeds max gain */
- maxFlag = 0;
- if (gainMax != (int)0x80000000) {
- if (fbitsGain >= gainMaxFBits) {
- shift = MIN(fbitsGain - gainMaxFBits, 31);
- maxFlag = ((gainScale >> shift) > gainMax ? 1 : 0);
- } else {
- shift = MIN(gainMaxFBits - fbitsGain, 31);
- maxFlag = (gainScale > (gainMax >> shift) ? 1 : 0);
- }
- }
- if (maxFlag) {
- /* gainScale > gainMax, calculate ratio with 32/16 division */
- q = 0;
- r = gainScale; /* guaranteed > 0, else maxFlag could not have been set */
- z = CLZ(r);
- if (z < 16) {
- q = 16 - z;
- r >>= q; /* out = Q(fbitsGain - q) */
- }
- z = CLZ(gainMax) - 1;
- r = (gainMax << z) / r; /* out = Q((fbitsGainMax + z) - (fbitsGain - q)) */
- q = (gainMaxFBits + z) - (fbitsGain - q); /* r = Q(q) */
- if (q > 30) {
- r >>= MIN(q - 30, 31);
- } else {
- z = MIN(30 - q, 30);
- CLIP_2N_SHIFT30(r, z); /* let r = Q30 since range = [0.0, 1.0) (clip to 0x3fffffff = 0.99999) */
- }
- qm = MULSHIFT32(qm, r) << 2;
- gain = MULSHIFT32(gain, r) << 2;
- psi->gLimBuf[m] = gainMax;
- psi->gLimFbits[m] = gainMaxFBits;
- } else {
- psi->gLimBuf[m] = gainScale;
- psi->gLimFbits[m] = fbitsGain;
- }
- /* sumSM, sumQM, sumECurrGLim = Q(fbitsDQ - ACC_SCALE) */
- psi->smBuf[m] = sm;
- psi->sumSM += (sm >> ACC_SCALE);
- psi->qmLimBuf[m] = qm;
- if (env != psi->la && env != sbrChan->laPrev && sm == 0)
- psi->sumQM += (qm >> ACC_SCALE);
- /* eCurr * gain^2 same as gain^2, before division by eCurr
- * (but note that gain != 0 even if eCurr == 0, since it's divided by eps)
- */
- if (eCurr)
- psi->sumECurrGLim += (gain >> ACC_SCALE);
- }
- }
- /**************************************************************************************
- * Function: ApplyBoost
- *
- * Description: calculate and apply boost factor for envelope, sinusoids, and noise
- * in this limiter band (4.6.18.7.5)
- *
- * Inputs: initialized PSInfoSBR struct
- * initialized SBRFreq struct for this SCE/CPE block
- * index of current limiter band
- * number of fraction bits in dequantized envelope
- *
- * Outputs: envelope gain, sinusoids and noise after scaling by gBoost
- * format = Q(FBITS_GLIM_BOOST) for envelope gain,
- * = Q(FBITS_QLIM_BOOST) for noise
- * = Q(FBITS_OUT_QMFA) for sinusoids
- *
- * Return: none
- *
- * Notes: after scaling, each component has at least 1 GB
- **************************************************************************************/
- static void ApplyBoost(PSInfoSBR *psi, SBRFreq *sbrFreq, int lim, int fbitsDQ)
- {
- int m, mStart, mEnd, q, z, r;
- int sumEOrigMapped, gBoost;
- mStart = sbrFreq->freqLimiter[lim]; /* these are offsets from kStart */
- mEnd = sbrFreq->freqLimiter[lim + 1];
- sumEOrigMapped = psi->sumEOrigMapped >> 1;
- r = (psi->sumECurrGLim >> 1) + (psi->sumSM >> 1) + (psi->sumQM >> 1); /* 1 GB fine (sm and qm are mutually exclusive in acc) */
- if (r < (1 << (31-28))) {
- /* any non-zero numerator * 1/EPS_0 is > GBOOST_MAX
- * round very small r to zero to avoid scaling problems
- */
- gBoost = (sumEOrigMapped == 0 ? (1 << 28) : GBOOST_MAX);
- z = 0;
- } else if (sumEOrigMapped == 0) {
- /* 1/(any non-zero denominator) * EPS_0 is appx. 0 */
- gBoost = 0;
- z = 0;
- } else {
- /* numerator (sumEOrigMapped) and denominator (r) have same Q format (before << z) */
- z = CLZ(r) - 1; /* z = [0, 27] */
- r = InvRNormalized(r << z);
- gBoost = MULSHIFT32(sumEOrigMapped, r);
- }
- /* gBoost = Q(28 - z) */
- if (gBoost > (GBOOST_MAX >> z)) {
- gBoost = GBOOST_MAX;
- z = 0;
- }
- gBoost <<= z; /* gBoost = Q28, minimum 1 GB */
- /* convert gain, noise, sinusoids to fixed Q format, clipping if necessary
- * (rare, usually only happens at very low bitrates, introduces slight
- * distortion into final HF mapping, but should be inaudible)
- */
- for (m = mStart; m < mEnd; m++) {
- /* let gLimBoost = Q24, since in practice the max values are usually 16 to 20
- * unless limiterGains == 3 (limiter off) and eCurr ~= 0 (i.e. huge gain, but only
- * because the envelope has 0 power anyway)
- */
- q = MULSHIFT32(psi->gLimBuf[m], gBoost) << 2; /* Q(gLimFbits) * Q(28) --> Q(gLimFbits[m]-2) */
- r = SqrtFix(q, psi->gLimFbits[m] - 2, &z);
- z -= FBITS_GLIM_BOOST;
- if (z >= 0) {
- psi->gLimBoost[m] = r >> MIN(z, 31);
- } else {
- z = MIN(30, -z);
- CLIP_2N_SHIFT30(r, z);
- psi->gLimBoost[m] = r;
- }
- q = MULSHIFT32(psi->qmLimBuf[m], gBoost) << 2; /* Q(fbitsDQ) * Q(28) --> Q(fbitsDQ-2) */
- r = SqrtFix(q, fbitsDQ - 2, &z);
- z -= FBITS_QLIM_BOOST; /* << by 14, since integer sqrt of x < 2^16, and we want to leave 1 GB */
- if (z >= 0) {
- psi->qmLimBoost[m] = r >> MIN(31, z);
- } else {
- z = MIN(30, -z);
- CLIP_2N_SHIFT30(r, z);
- psi->qmLimBoost[m] = r;
- }
- q = MULSHIFT32(psi->smBuf[m], gBoost) << 2; /* Q(fbitsDQ) * Q(28) --> Q(fbitsDQ-2) */
- r = SqrtFix(q, fbitsDQ - 2, &z);
- z -= FBITS_OUT_QMFA; /* justify for adding to signal (xBuf) later */
- if (z >= 0) {
- psi->smBoost[m] = r >> MIN(31, z);
- } else {
- z = MIN(30, -z);
- CLIP_2N_SHIFT30(r, z);
- psi->smBoost[m] = r;
- }
- }
- }
- /**************************************************************************************
- * Function: CalcGain
- *
- * Description: calculate and apply proper gain to HF components in one envelope
- * (4.6.18.7.5)
- *
- * Inputs: initialized PSInfoSBR struct
- * initialized SBRHeader struct for this SCE/CPE block
- * initialized SBRGrid struct for this channel
- * initialized SBRFreq struct for this SCE/CPE block
- * initialized SBRChan struct for this channel
- * index of current channel (0 for SCE, 0 or 1 for CPE)
- * index of current envelope
- *
- * Outputs: envelope gain, sinusoids and noise after scaling
- *
- * Return: none
- **************************************************************************************/
- static void CalcGain(PSInfoSBR *psi, SBRHeader *sbrHdr, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch, int env)
- {
- int lim, fbitsDQ;
- /* initialize to -1 so that mapping limiter bands to env/noise bands works right on first pass */
- psi->envBand = -1;
- psi->noiseFloorBand = -1;
- psi->sBand = -1;
- psi->highBand = -1;
- fbitsDQ = (FBITS_OUT_DQ_ENV - psi->envDataDequantScale[ch][env]); /* Q(29 - optional scalefactor) */
- for (lim = 0; lim < sbrFreq->nLimiter; lim++) {
- /* the QMF bands are divided into lim regions (consecutive, non-overlapping) */
- CalcMaxGain(psi, sbrHdr, sbrGrid, sbrFreq, ch, env, lim, fbitsDQ);
- CalcComponentGains(psi, sbrGrid, sbrFreq, sbrChan, ch, env, lim, fbitsDQ);
- ApplyBoost(psi, sbrFreq, lim, fbitsDQ);
- }
- }
- /* hSmooth table from 4.7.18.7.6, format = Q31 */
- static const int hSmoothCoef[MAX_NUM_SMOOTH_COEFS] PROGMEM = {
- 0x2aaaaaab, 0x2697a512, 0x1becfa68, 0x0ebdb043, 0x04130598,
- };
- /**************************************************************************************
- * Function: MapHF
- *
- * Description: map HF components to proper QMF bands, with optional gain smoothing
- * filter (4.6.18.7.6)
- *
- * Inputs: initialized PSInfoSBR struct
- * initialized SBRHeader struct for this SCE/CPE block
- * initialized SBRGrid struct for this channel
- * initialized SBRFreq struct for this SCE/CPE block
- * initialized SBRChan struct for this channel
- * index of current envelope
- * reset flag (can be non-zero for first envelope only)
- *
- * Outputs: complete reconstructed subband QMF samples for this envelope
- *
- * Return: none
- *
- * Notes: ensures that output has >= MIN_GBITS_IN_QMFS guard bits,
- * so it's not necessary to check anything in the synth QMF
- **************************************************************************************/
- static void MapHF(PSInfoSBR *psi, SBRHeader *sbrHdr, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int env, int hfReset)
- {
- int noiseTabIndex, sinIndex, gainNoiseIndex, hSL;
- int i, iStart, iEnd, m, idx, j, s, n, smre, smim;
- int gFilt, qFilt, xre, xim, gbMask, gbIdx;
- int *XBuf;
- noiseTabIndex = sbrChan->noiseTabIndex;
- sinIndex = sbrChan->sinIndex;
- gainNoiseIndex = sbrChan->gainNoiseIndex; /* oldest entries in filter delay buffer */
- if (hfReset)
- noiseTabIndex = 2; /* starts at 1, double since complex */
- hSL = (sbrHdr->smoothMode ? 0 : 4);
- if (hfReset) {
- for (i = 0; i < hSL; i++) {
- for (m = 0; m < sbrFreq->numQMFBands; m++) {
- sbrChan->gTemp[gainNoiseIndex][m] = psi->gLimBoost[m];
- sbrChan->qTemp[gainNoiseIndex][m] = psi->qmLimBoost[m];
- }
- gainNoiseIndex++;
- if (gainNoiseIndex == MAX_NUM_SMOOTH_COEFS)
- gainNoiseIndex = 0;
- }
- ASSERT(env == 0); /* should only be reset when env == 0 */
- }
- iStart = sbrGrid->envTimeBorder[env];
- iEnd = sbrGrid->envTimeBorder[env+1];
- for (i = iStart; i < iEnd; i++) {
- /* save new values in temp buffers (delay)
- * we only store MAX_NUM_SMOOTH_COEFS most recent values,
- * so don't keep storing the same value over and over
- */
- if (i - iStart < MAX_NUM_SMOOTH_COEFS) {
- for (m = 0; m < sbrFreq->numQMFBands; m++) {
- sbrChan->gTemp[gainNoiseIndex][m] = psi->gLimBoost[m];
- sbrChan->qTemp[gainNoiseIndex][m] = psi->qmLimBoost[m];
- }
- }
- /* see 4.6.18.7.6 */
- XBuf = psi->XBuf[i + HF_ADJ][sbrFreq->kStart];
- gbMask = 0;
- for (m = 0; m < sbrFreq->numQMFBands; m++) {
- if (env == psi->la || env == sbrChan->laPrev) {
- /* no smoothing filter for gain, and qFilt = 0 (only need to do once) */
- if (i == iStart) {
- psi->gFiltLast[m] = sbrChan->gTemp[gainNoiseIndex][m];
- psi->qFiltLast[m] = 0;
- }
- } else if (hSL == 0) {
- /* no smoothing filter for gain, (only need to do once) */
- if (i == iStart) {
- psi->gFiltLast[m] = sbrChan->gTemp[gainNoiseIndex][m];
- psi->qFiltLast[m] = sbrChan->qTemp[gainNoiseIndex][m];
- }
- } else {
- /* apply smoothing filter to gain and noise (after MAX_NUM_SMOOTH_COEFS, it's always the same) */
- if (i - iStart < MAX_NUM_SMOOTH_COEFS) {
- gFilt = 0;
- qFilt = 0;
- idx = gainNoiseIndex;
- for (j = 0; j < MAX_NUM_SMOOTH_COEFS; j++) {
- /* sum(abs(hSmoothCoef[j])) for all j < 1.0 */
- gFilt += MULSHIFT32(sbrChan->gTemp[idx][m], hSmoothCoef[j]);
- qFilt += MULSHIFT32(sbrChan->qTemp[idx][m], hSmoothCoef[j]);
- idx--;
- if (idx < 0)
- idx += MAX_NUM_SMOOTH_COEFS;
- }
- psi->gFiltLast[m] = gFilt << 1; /* restore to Q(FBITS_GLIM_BOOST) (gain of filter < 1.0, so no overflow) */
- psi->qFiltLast[m] = qFilt << 1; /* restore to Q(FBITS_QLIM_BOOST) */
- }
- }
- if (psi->smBoost[m] != 0) {
- /* add scaled signal and sinusoid, don't add noise (qFilt = 0) */
- smre = psi->smBoost[m];
- smim = smre;
- /* sinIndex: [0] xre += sm [1] xim += sm*s [2] xre -= sm [3] xim -= sm*s */
- s = (sinIndex >> 1); /* if 2 or 3, flip sign to subtract sm */
- s <<= 31;
- smre ^= (s >> 31);
- smre -= (s >> 31);
- s ^= ((m + sbrFreq->kStart) << 31);
- smim ^= (s >> 31);
- smim -= (s >> 31);
- /* if sinIndex == 0 or 2, smim = 0; if sinIndex == 1 or 3, smre = 0 */
- s = sinIndex << 31;
- smim &= (s >> 31);
- s ^= 0x80000000;
- smre &= (s >> 31);
- noiseTabIndex += 2; /* noise filtered by 0, but still need to bump index */
- } else {
- /* add scaled signal and scaled noise */
- qFilt = psi->qFiltLast[m];
- n = noiseTab[noiseTabIndex++];
- smre = MULSHIFT32(n, qFilt) >> (FBITS_QLIM_BOOST - 1 - FBITS_OUT_QMFA);
- n = noiseTab[noiseTabIndex++];
- smim = MULSHIFT32(n, qFilt) >> (FBITS_QLIM_BOOST - 1 - FBITS_OUT_QMFA);
- }
- noiseTabIndex &= 1023; /* 512 complex numbers */
- gFilt = psi->gFiltLast[m];
- xre = MULSHIFT32(gFilt, XBuf[0]);
- xim = MULSHIFT32(gFilt, XBuf[1]);
- CLIP_2N_SHIFT30(xre, 32 - FBITS_GLIM_BOOST);
- CLIP_2N_SHIFT30(xim, 32 - FBITS_GLIM_BOOST);
- xre += smre; *XBuf++ = xre;
- xim += smim; *XBuf++ = xim;
- gbMask |= FASTABS(xre);
- gbMask |= FASTABS(xim);
- }
- /* update circular buffer index */
- gainNoiseIndex++;
- if (gainNoiseIndex == MAX_NUM_SMOOTH_COEFS)
- gainNoiseIndex = 0;
- sinIndex++;
- sinIndex &= 3;
- /* ensure MIN_GBITS_IN_QMFS guard bits in output
- * almost never occurs in practice, but checking here makes synth QMF logic very simple
- */
- if (gbMask >> (31 - MIN_GBITS_IN_QMFS)) {
- XBuf = psi->XBuf[i + HF_ADJ][sbrFreq->kStart];
- for (m = 0; m < sbrFreq->numQMFBands; m++) {
- xre = XBuf[0]; xim = XBuf[1];
- CLIP_2N(xre, (31 - MIN_GBITS_IN_QMFS));
- CLIP_2N(xim, (31 - MIN_GBITS_IN_QMFS));
- *XBuf++ = xre; *XBuf++ = xim;
- }
- CLIP_2N(gbMask, (31 - MIN_GBITS_IN_QMFS));
- }
- gbIdx = ((i + HF_ADJ) >> 5) & 0x01;
- sbrChan->gbMask[gbIdx] |= gbMask;
- }
- sbrChan->noiseTabIndex = noiseTabIndex;
- sbrChan->sinIndex = sinIndex;
- sbrChan->gainNoiseIndex = gainNoiseIndex;
- }
- /**************************************************************************************
- * Function: AdjustHighFreq
- *
- * Description: adjust high frequencies and add noise and sinusoids (4.6.18.7)
- *
- * Inputs: initialized PSInfoSBR struct
- * initialized SBRHeader struct for this SCE/CPE block
- * initialized SBRGrid struct for this channel
- * initialized SBRFreq struct for this SCE/CPE block
- * initialized SBRChan struct for this channel
- * index of current channel (0 for SCE, 0 or 1 for CPE)
- *
- * Outputs: complete reconstructed subband QMF samples for this channel
- *
- * Return: none
- **************************************************************************************/
- void AdjustHighFreq(PSInfoSBR *psi, SBRHeader *sbrHdr, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch)
- {
- int i, env, hfReset;
- unsigned char frameClass, pointer;
- frameClass = sbrGrid->frameClass;
- pointer = sbrGrid->pointer;
- /* derive la from table 4.159 */
- if ((frameClass == SBR_GRID_FIXVAR || frameClass == SBR_GRID_VARVAR) && pointer > 0)
- psi->la = sbrGrid->numEnv + 1 - pointer;
- else if (frameClass == SBR_GRID_VARFIX && pointer > 1)
- psi->la = pointer - 1;
- else
- psi->la = -1;
- /* for each envelope, estimate gain and adjust SBR QMF bands */
- hfReset = sbrChan->reset;
- for (env = 0; env < sbrGrid->numEnv; env++) {
- EstimateEnvelope(psi, sbrHdr, sbrGrid, sbrFreq, env);
- CalcGain(psi, sbrHdr, sbrGrid, sbrFreq, sbrChan, ch, env);
- MapHF(psi, sbrHdr, sbrGrid, sbrFreq, sbrChan, env, hfReset);
- hfReset = 0; /* only set for first envelope after header reset */
- }
- /* set saved sine flags to 0 for QMF bands outside of current frequency range */
- for (i = 0; i < sbrFreq->freqLimiter[0] + sbrFreq->kStart; i++)
- sbrChan->addHarmonic[0][i] = 0;
- for (i = sbrFreq->freqLimiter[sbrFreq->nLimiter] + sbrFreq->kStart; i < 64; i++)
- sbrChan->addHarmonic[0][i] = 0;
- sbrChan->addHarmonicFlag[0] = sbrChan->addHarmonicFlag[1];
- /* save la for next frame */
- if (psi->la == sbrGrid->numEnv)
- sbrChan->laPrev = 0;
- else
- sbrChan->laPrev = -1;
- }
|