123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541 |
- /*
- This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
- Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
- The implementation is verified against the test vectors in:
- National Institute of Standards and Technology Special Publication 800-38A 2001 ED
- ECB-AES128
- ----------
- plain-text:
- 6bc1bee22e409f96e93d7e117393172a
- ae2d8a571e03ac9c9eb76fac45af8e51
- 30c81c46a35ce411e5fbc1191a0a52ef
- f69f2445df4f9b17ad2b417be66c3710
- key:
- 2b7e151628aed2a6abf7158809cf4f3c
- resulting cipher
- 3ad77bb40d7a3660a89ecaf32466ef97
- f5d3d58503b9699de785895a96fdbaaf
- 43b1cd7f598ece23881b00e3ed030688
- 7b0c785e27e8ad3f8223207104725dd4
- NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
- You should pad the end of the string with zeros if this is not the case.
- For AES192/256 the key size is proportionally larger.
- */
- #include <stdint.h> // for uint8_t
- /*****************************************************************************/
- /* Includes: */
- /*****************************************************************************/
- #include <string.h> // for memcpy, size_t
- #include "aes.h" // for AES_ctx, AES_BLOCKLEN, CBC, ECB, CTR, AES192
- /*****************************************************************************/
- /* Defines: */
- /*****************************************************************************/
- // The number of columns comprising a state in AES. This is a constant in AES. Value=4
- #define Nb 4
- #if defined(AES256) && (AES256 == 1)
- #define Nk 8
- #define Nr 14
- #elif defined(AES192) && (AES192 == 1)
- #define Nk 6
- #define Nr 12
- #else
- #define Nk 4 // The number of 32 bit words in a key.
- #define Nr 10 // The number of rounds in AES Cipher.
- #endif
- // jcallan@github points out that declaring Multiply as a function
- // reduces code size considerably with the Keil ARM compiler.
- // See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
- #ifndef MULTIPLY_AS_A_FUNCTION
- #define MULTIPLY_AS_A_FUNCTION 0
- #endif
- /*****************************************************************************/
- /* Private variables: */
- /*****************************************************************************/
- // state - array holding the intermediate results during decryption.
- typedef uint8_t state_t[4][4];
- // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
- // The numbers below can be computed dynamically trading ROM for RAM -
- // This can be useful in (embedded) bootloader applications, where ROM is often limited.
- static const uint8_t sbox[256] = {
- //0 1 2 3 4 5 6 7 8 9 A B C D E F
- 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
- 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
- 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
- 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
- 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
- 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
- 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
- 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
- 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
- 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
- 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
- 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
- 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
- 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
- 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
- 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
- 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
- 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
- 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
- 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
- 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
- 0xb0, 0x54, 0xbb, 0x16};
- #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
- static const uint8_t rsbox[256] = {
- 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e,
- 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
- 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32,
- 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
- 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49,
- 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
- 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50,
- 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
- 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05,
- 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
- 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
- 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
- 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8,
- 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
- 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b,
- 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
- 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59,
- 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
- 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d,
- 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
- 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63,
- 0x55, 0x21, 0x0c, 0x7d};
- #endif
- // The round constant word array, Rcon[i], contains the values given by
- // x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
- static const uint8_t Rcon[11] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10,
- 0x20, 0x40, 0x80, 0x1b, 0x36};
- /*
- * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
- * that you can remove most of the elements in the Rcon array, because they are unused.
- *
- * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
- *
- * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),
- * up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
- */
- /*****************************************************************************/
- /* Private functions: */
- /*****************************************************************************/
- /*
- static uint8_t getSBoxValue(uint8_t num)
- {
- return sbox[num];
- }
- */
- #define getSBoxValue(num) (sbox[(num)])
- // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
- static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key) {
- unsigned i, j, k;
- uint8_t tempa[4]; // Used for the column/row operations
- // The first round key is the key itself.
- for (i = 0; i < Nk; ++i) {
- RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
- RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
- RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
- RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
- }
- // All other round keys are found from the previous round keys.
- for (i = Nk; i < Nb * (Nr + 1); ++i) {
- {
- k = (i - 1) * 4;
- tempa[0] = RoundKey[k + 0];
- tempa[1] = RoundKey[k + 1];
- tempa[2] = RoundKey[k + 2];
- tempa[3] = RoundKey[k + 3];
- }
- if (i % Nk == 0) {
- // This function shifts the 4 bytes in a word to the left once.
- // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
- // Function RotWord()
- {
- const uint8_t u8tmp = tempa[0];
- tempa[0] = tempa[1];
- tempa[1] = tempa[2];
- tempa[2] = tempa[3];
- tempa[3] = u8tmp;
- }
- // SubWord() is a function that takes a four-byte input word and
- // applies the S-box to each of the four bytes to produce an output word.
- // Function Subword()
- {
- tempa[0] = getSBoxValue(tempa[0]);
- tempa[1] = getSBoxValue(tempa[1]);
- tempa[2] = getSBoxValue(tempa[2]);
- tempa[3] = getSBoxValue(tempa[3]);
- }
- tempa[0] = tempa[0] ^ Rcon[i / Nk];
- }
- #if defined(AES256) && (AES256 == 1)
- if (i % Nk == 4) {
- // Function Subword()
- {
- tempa[0] = getSBoxValue(tempa[0]);
- tempa[1] = getSBoxValue(tempa[1]);
- tempa[2] = getSBoxValue(tempa[2]);
- tempa[3] = getSBoxValue(tempa[3]);
- }
- }
- #endif
- j = i * 4;
- k = (i - Nk) * 4;
- RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
- RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
- RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
- RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
- }
- }
- void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key) {
- KeyExpansion(ctx->RoundKey, key);
- }
- #if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
- void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key,
- const uint8_t* iv) {
- KeyExpansion(ctx->RoundKey, key);
- memcpy(ctx->Iv, iv, AES_BLOCKLEN);
- }
- void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv) {
- memcpy(ctx->Iv, iv, AES_BLOCKLEN);
- }
- #endif
- // This function adds the round key to state.
- // The round key is added to the state by an XOR function.
- static void AddRoundKey(uint8_t round, state_t* state,
- const uint8_t* RoundKey) {
- uint8_t i, j;
- for (i = 0; i < 4; ++i) {
- for (j = 0; j < 4; ++j) {
- (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
- }
- }
- }
- // The SubBytes Function Substitutes the values in the
- // state matrix with values in an S-box.
- static void SubBytes(state_t* state) {
- uint8_t i, j;
- for (i = 0; i < 4; ++i) {
- for (j = 0; j < 4; ++j) {
- (*state)[j][i] = getSBoxValue((*state)[j][i]);
- }
- }
- }
- // The ShiftRows() function shifts the rows in the state to the left.
- // Each row is shifted with different offset.
- // Offset = Row number. So the first row is not shifted.
- static void ShiftRows(state_t* state) {
- uint8_t temp;
- // Rotate first row 1 columns to left
- temp = (*state)[0][1];
- (*state)[0][1] = (*state)[1][1];
- (*state)[1][1] = (*state)[2][1];
- (*state)[2][1] = (*state)[3][1];
- (*state)[3][1] = temp;
- // Rotate second row 2 columns to left
- temp = (*state)[0][2];
- (*state)[0][2] = (*state)[2][2];
- (*state)[2][2] = temp;
- temp = (*state)[1][2];
- (*state)[1][2] = (*state)[3][2];
- (*state)[3][2] = temp;
- // Rotate third row 3 columns to left
- temp = (*state)[0][3];
- (*state)[0][3] = (*state)[3][3];
- (*state)[3][3] = (*state)[2][3];
- (*state)[2][3] = (*state)[1][3];
- (*state)[1][3] = temp;
- }
- static uint8_t xtime(uint8_t x) {
- return ((x << 1) ^ (((x >> 7) & 1) * 0x1b));
- }
- // MixColumns function mixes the columns of the state matrix
- static void MixColumns(state_t* state) {
- uint8_t i;
- uint8_t Tmp, Tm, t;
- for (i = 0; i < 4; ++i) {
- t = (*state)[i][0];
- Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
- Tm = (*state)[i][0] ^ (*state)[i][1];
- Tm = xtime(Tm);
- (*state)[i][0] ^= Tm ^ Tmp;
- Tm = (*state)[i][1] ^ (*state)[i][2];
- Tm = xtime(Tm);
- (*state)[i][1] ^= Tm ^ Tmp;
- Tm = (*state)[i][2] ^ (*state)[i][3];
- Tm = xtime(Tm);
- (*state)[i][2] ^= Tm ^ Tmp;
- Tm = (*state)[i][3] ^ t;
- Tm = xtime(Tm);
- (*state)[i][3] ^= Tm ^ Tmp;
- }
- }
- // Multiply is used to multiply numbers in the field GF(2^8)
- // Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
- // The compiler seems to be able to vectorize the operation better this way.
- // See https://github.com/kokke/tiny-AES-c/pull/34
- #if MULTIPLY_AS_A_FUNCTION
- static uint8_t Multiply(uint8_t x, uint8_t y) {
- return (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^
- ((y >> 2 & 1) * xtime(xtime(x))) ^
- ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^
- ((y >> 4 & 1) *
- xtime(xtime(xtime(
- xtime(x)))))); /* this last call to xtime() can be omitted */
- }
- #else
- #define Multiply(x, y) \
- (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ \
- ((y >> 2 & 1) * xtime(xtime(x))) ^ \
- ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ \
- ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x))))))
- #endif
- #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
- /*
- static uint8_t getSBoxInvert(uint8_t num)
- {
- return rsbox[num];
- }
- */
- #define getSBoxInvert(num) (rsbox[(num)])
- // MixColumns function mixes the columns of the state matrix.
- // The method used to multiply may be difficult to understand for the inexperienced.
- // Please use the references to gain more information.
- static void InvMixColumns(state_t* state) {
- int i;
- uint8_t a, b, c, d;
- for (i = 0; i < 4; ++i) {
- a = (*state)[i][0];
- b = (*state)[i][1];
- c = (*state)[i][2];
- d = (*state)[i][3];
- (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^
- Multiply(d, 0x09);
- (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^
- Multiply(d, 0x0d);
- (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^
- Multiply(d, 0x0b);
- (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^
- Multiply(d, 0x0e);
- }
- }
- // The SubBytes Function Substitutes the values in the
- // state matrix with values in an S-box.
- static void InvSubBytes(state_t* state) {
- uint8_t i, j;
- for (i = 0; i < 4; ++i) {
- for (j = 0; j < 4; ++j) {
- (*state)[j][i] = getSBoxInvert((*state)[j][i]);
- }
- }
- }
- static void InvShiftRows(state_t* state) {
- uint8_t temp;
- // Rotate first row 1 columns to right
- temp = (*state)[3][1];
- (*state)[3][1] = (*state)[2][1];
- (*state)[2][1] = (*state)[1][1];
- (*state)[1][1] = (*state)[0][1];
- (*state)[0][1] = temp;
- // Rotate second row 2 columns to right
- temp = (*state)[0][2];
- (*state)[0][2] = (*state)[2][2];
- (*state)[2][2] = temp;
- temp = (*state)[1][2];
- (*state)[1][2] = (*state)[3][2];
- (*state)[3][2] = temp;
- // Rotate third row 3 columns to right
- temp = (*state)[0][3];
- (*state)[0][3] = (*state)[1][3];
- (*state)[1][3] = (*state)[2][3];
- (*state)[2][3] = (*state)[3][3];
- (*state)[3][3] = temp;
- }
- #endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
- // Cipher is the main function that encrypts the PlainText.
- static void Cipher(state_t* state, const uint8_t* RoundKey) {
- uint8_t round = 0;
- // Add the First round key to the state before starting the rounds.
- AddRoundKey(0, state, RoundKey);
- // There will be Nr rounds.
- // The first Nr-1 rounds are identical.
- // These Nr rounds are executed in the loop below.
- // Last one without MixColumns()
- for (round = 1;; ++round) {
- SubBytes(state);
- ShiftRows(state);
- if (round == Nr) {
- break;
- }
- MixColumns(state);
- AddRoundKey(round, state, RoundKey);
- }
- // Add round key to last round
- AddRoundKey(Nr, state, RoundKey);
- }
- #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
- static void InvCipher(state_t* state, const uint8_t* RoundKey) {
- uint8_t round = 0;
- // Add the First round key to the state before starting the rounds.
- AddRoundKey(Nr, state, RoundKey);
- // There will be Nr rounds.
- // The first Nr-1 rounds are identical.
- // These Nr rounds are executed in the loop below.
- // Last one without InvMixColumn()
- for (round = (Nr - 1);; --round) {
- InvShiftRows(state);
- InvSubBytes(state);
- AddRoundKey(round, state, RoundKey);
- if (round == 0) {
- break;
- }
- InvMixColumns(state);
- }
- }
- #endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
- /*****************************************************************************/
- /* Public functions: */
- /*****************************************************************************/
- #if defined(ECB) && (ECB == 1)
- void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf) {
- // The next function call encrypts the PlainText with the Key using AES algorithm.
- Cipher((state_t*)buf, ctx->RoundKey);
- }
- void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf) {
- // The next function call decrypts the PlainText with the Key using AES algorithm.
- InvCipher((state_t*)buf, ctx->RoundKey);
- }
- #endif // #if defined(ECB) && (ECB == 1)
- #if defined(CBC) && (CBC == 1)
- static void XorWithIv(uint8_t* buf, const uint8_t* Iv) {
- uint8_t i;
- for (i = 0; i < AES_BLOCKLEN;
- ++i) // The block in AES is always 128bit no matter the key size
- {
- buf[i] ^= Iv[i];
- }
- }
- void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) {
- size_t i;
- uint8_t* Iv = ctx->Iv;
- for (i = 0; i < length; i += AES_BLOCKLEN) {
- XorWithIv(buf, Iv);
- Cipher((state_t*)buf, ctx->RoundKey);
- Iv = buf;
- buf += AES_BLOCKLEN;
- }
- /* store Iv in ctx for next call */
- memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
- }
- void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) {
- size_t i;
- uint8_t storeNextIv[AES_BLOCKLEN];
- for (i = 0; i < length; i += AES_BLOCKLEN) {
- memcpy(storeNextIv, buf, AES_BLOCKLEN);
- InvCipher((state_t*)buf, ctx->RoundKey);
- XorWithIv(buf, ctx->Iv);
- memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
- buf += AES_BLOCKLEN;
- }
- }
- #endif // #if defined(CBC) && (CBC == 1)
- #if defined(CTR) && (CTR == 1)
- /* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
- void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) {
- uint8_t buffer[AES_BLOCKLEN];
- size_t i;
- int bi;
- for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) {
- if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
- {
- memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
- Cipher((state_t*)buffer, ctx->RoundKey);
- /* Increment Iv and handle overflow */
- for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) {
- /* inc will overflow */
- if (ctx->Iv[bi] == 255) {
- ctx->Iv[bi] = 0;
- continue;
- }
- ctx->Iv[bi] += 1;
- break;
- }
- bi = 0;
- }
- buf[i] = (buf[i] ^ buffer[bi]);
- }
- }
- #endif // #if defined(CTR) && (CTR == 1)
|