ソースを参照

RP2040: Unify platform libraries

Most of the RP2040 code is shared between the platforms,
so unify them into same folder with some #ifdefs.
Petteri Aimonen 2 年 前
コミット
8fcccef3bf
29 ファイル変更227 行追加4552 行削除
  1. 0 664
      lib/ZuluSCSI_platform_BS2/ZuluSCSI_platform.cpp
  2. 0 197
      lib/ZuluSCSI_platform_BS2/ZuluSCSI_platform.h
  3. 0 28
      lib/ZuluSCSI_platform_BS2/bsp.h
  4. 0 217
      lib/ZuluSCSI_platform_BS2/rp2040.ld
  5. 0 189
      lib/ZuluSCSI_platform_BS2/rp2040_btldr.ld
  6. 0 828
      lib/ZuluSCSI_platform_BS2/rp2040_sdio.cpp
  7. 0 73
      lib/ZuluSCSI_platform_BS2/rp2040_sdio.h
  8. 0 36
      lib/ZuluSCSI_platform_BS2/scsi2sd_time.h
  9. 0 407
      lib/ZuluSCSI_platform_BS2/scsiPhy.cpp
  10. 0 97
      lib/ZuluSCSI_platform_BS2/scsiPhy.h
  11. 0 1049
      lib/ZuluSCSI_platform_BS2/scsi_accel_rp2040.cpp
  12. 0 65
      lib/ZuluSCSI_platform_BS2/scsi_accel_rp2040.h
  13. 0 518
      lib/ZuluSCSI_platform_BS2/sd_card_sdio.cpp
  14. 0 103
      lib/ZuluSCSI_platform_BS2/sd_card_spi.cpp
  15. 24 2
      lib/ZuluSCSI_platform_RP2040/ZuluSCSI_platform.cpp
  16. 19 62
      lib/ZuluSCSI_platform_RP2040/ZuluSCSI_platform.h
  17. 61 0
      lib/ZuluSCSI_platform_RP2040/ZuluSCSI_platform_gpio.h
  18. 54 0
      lib/ZuluSCSI_platform_RP2040/ZuluSCSI_platform_gpio_BS2.h
  19. 6 1
      lib/ZuluSCSI_platform_RP2040/rp2040_sdio.cpp
  20. 3 1
      lib/ZuluSCSI_platform_RP2040/rp2040_sdio_BS2.pio
  21. 3 3
      lib/ZuluSCSI_platform_RP2040/rp2040_sdio_BS2.pio.h
  22. 9 0
      lib/ZuluSCSI_platform_RP2040/run_pioasm.sh
  23. 16 0
      lib/ZuluSCSI_platform_RP2040/scsiHostPhy.cpp
  24. 9 0
      lib/ZuluSCSI_platform_RP2040/scsiPhy.cpp
  25. 0 0
      lib/ZuluSCSI_platform_RP2040/scsi_accel_BS2.pio
  26. 0 0
      lib/ZuluSCSI_platform_RP2040/scsi_accel_BS2.pio.h
  27. 4 0
      lib/ZuluSCSI_platform_RP2040/scsi_accel_host.cpp
  28. 15 9
      lib/ZuluSCSI_platform_RP2040/scsi_accel_rp2040.cpp
  29. 4 3
      platformio.ini

+ 0 - 664
lib/ZuluSCSI_platform_BS2/ZuluSCSI_platform.cpp

@@ -1,664 +0,0 @@
-/** 
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-#include "ZuluSCSI_platform.h"
-#include "ZuluSCSI_log.h"
-#include "ZuluSCSI_config.h"
-#include <SdFat.h>
-#include <scsi.h>
-#include <assert.h>
-#include <hardware/gpio.h>
-#include <hardware/uart.h>
-#include <hardware/spi.h>
-#include <hardware/flash.h>
-#include <hardware/structs/xip_ctrl.h>
-#include <hardware/structs/usb.h>
-#include <platform/mbed_error.h>
-#include <multicore.h>
-#include <USB/PluggableUSBSerial.h>
-
-extern "C" {
-
-const char *g_platform_name = PLATFORM_NAME;
-static bool g_scsi_initiator = false;
-static uint32_t g_flash_chip_size = 0;
-static bool g_uart_initialized = false;
-
-void mbed_error_hook(const mbed_error_ctx * error_context);
-
-/***************/
-/* GPIO init   */
-/***************/
-
-// Helper function to configure whole GPIO in one line
-static void gpio_conf(uint gpio, enum gpio_function fn, bool pullup, bool pulldown, bool output, bool initial_state, bool fast_slew)
-{
-    gpio_put(gpio, initial_state);
-    gpio_set_dir(gpio, output);
-    gpio_set_pulls(gpio, pullup, pulldown);
-    gpio_set_function(gpio, fn);
-
-    if (fast_slew)
-    {
-        padsbank0_hw->io[gpio] |= PADS_BANK0_GPIO0_SLEWFAST_BITS;
-    }
-}
-
-void platform_init()
-{
-    // Make sure second core is stopped
-    multicore_reset_core1();
-
-    /* First configure the pins that affect external buffer directions.
-     * RP2040 defaults to pulldowns, while these pins have external pull-ups.
-     */
-    //        pin             function       pup   pdown  out    state fast
-    gpio_conf(SCSI_DATA_DIR,  GPIO_FUNC_SIO, false,false, true,  false, true);
-    gpio_conf(SCSI_OUT_BSY,   GPIO_FUNC_SIO, false,false, true,  true, false);
-    gpio_conf(SCSI_OUT_SEL,   GPIO_FUNC_SIO, false,false, true,  true, false);
-    gpio_conf(SCSI_IN_ACK,    GPIO_FUNC_SIO, false, false, false, false, false);
-    gpio_conf(SCSI_IN_ATN,    GPIO_FUNC_SIO, false, false, false, false, false);
-
-    delay(10); // 10 ms delay to let pull-ups do their work
-
-    /* Initialize logging to SWO pin (UART0) */
-    gpio_conf(SWO_PIN,        GPIO_FUNC_UART,false,false, true,  false, true);
-    uart_init(uart0, 1000000);
-    g_uart_initialized = true;
-    mbed_set_error_hook(mbed_error_hook);
-
-    logmsg("Platform: ", g_platform_name);
-    logmsg("FW Version: ", g_log_firmwareversion);
-
-    g_log_debug = false;
-    
-    logmsg ("SCSI termination is handled by a hardware jumper");
-
-    // Get flash chip size
-    uint8_t cmd_read_jedec_id[4] = {0x9f, 0, 0, 0};
-    uint8_t response_jedec[4] = {0};
-    __disable_irq();
-    flash_do_cmd(cmd_read_jedec_id, response_jedec, 4);
-    __enable_irq();
-    g_flash_chip_size = (1 << response_jedec[3]);
-    logmsg("Flash chip size: ", (int)(g_flash_chip_size / 1024), " kB");
-
-    // SD card pins
-    // Card is used in SDIO mode for main program, and in SPI mode for crash handler & bootloader.
-    //        pin             function       pup   pdown  out    state fast
-    gpio_conf(SD_SPI_SCK,     GPIO_FUNC_SPI, true, false, true,  true, true);
-    gpio_conf(SD_SPI_MOSI,    GPIO_FUNC_SPI, true, false, true,  true, true);
-    gpio_conf(SD_SPI_MISO,    GPIO_FUNC_SPI, true, false, false, true, true);
-    gpio_conf(SD_SPI_CS,      GPIO_FUNC_SIO, true, false, true,  true, true);
-    gpio_conf(SDIO_D1,        GPIO_FUNC_SIO, true, false, false, true, true);
-    gpio_conf(SDIO_D2,        GPIO_FUNC_SIO, true, false, false, true, true);
-
-    // LED pin
-    gpio_conf(LED_PIN,        GPIO_FUNC_SIO, false,false, true,  false, false);
-
-}
-
-// late_init() only runs in main application, SCSI not needed in bootloader
-void platform_late_init()
-{
-
-    g_scsi_initiator = false;
-    logmsg("SCSI target/disk mode, acting as a SCSI disk");
-
-    /* Initialize SCSI pins to required modes.
-     * SCSI pins should be inactive / input at this point.
-     */
-
-    // SCSI data bus direction is switched by DATA_DIR signal.
-    // Pullups make sure that no glitches occur when switching direction.
-    //        pin             function       pup   pdown  out    state fast
-    gpio_conf(SCSI_IO_DB0,    GPIO_FUNC_SIO, true, false, false, true, true);
-    gpio_conf(SCSI_IO_DB1,    GPIO_FUNC_SIO, true, false, false, true, true);
-    gpio_conf(SCSI_IO_DB2,    GPIO_FUNC_SIO, true, false, false, true, true);
-    gpio_conf(SCSI_IO_DB3,    GPIO_FUNC_SIO, true, false, false, true, true);
-    gpio_conf(SCSI_IO_DB4,    GPIO_FUNC_SIO, true, false, false, true, true);
-    gpio_conf(SCSI_IO_DB5,    GPIO_FUNC_SIO, true, false, false, true, true);
-    gpio_conf(SCSI_IO_DB6,    GPIO_FUNC_SIO, true, false, false, true, true);
-    gpio_conf(SCSI_IO_DB7,    GPIO_FUNC_SIO, true, false, false, true, true);
-    gpio_conf(SCSI_IO_DBP,    GPIO_FUNC_SIO, true, false, false, true, true);
-
-
-    // Act as SCSI device / target
-
-    // SCSI control outputs
-    //        pin             function       pup   pdown  out    state fast
-    gpio_conf(SCSI_OUT_IO,    GPIO_FUNC_SIO, false,false, true,  true, true);
-    gpio_conf(SCSI_OUT_MSG,   GPIO_FUNC_SIO, false,false, true,  true, true);
-
-    // REQ pin is switched between PIO and SIO, pull-up makes sure no glitches
-    gpio_conf(SCSI_OUT_REQ,   GPIO_FUNC_SIO, true ,false, true,  true, true);
-
-    // Shared pins are changed to input / output depending on communication phase
-    gpio_conf(SCSI_IN_SEL,    GPIO_FUNC_SIO, true, false, false, true, true);
-    if (SCSI_OUT_CD != SCSI_IN_SEL)
-    {
-        gpio_conf(SCSI_OUT_CD,    GPIO_FUNC_SIO, false,false, true,  true, true);
-    }
-
-    gpio_conf(SCSI_IN_BSY,    GPIO_FUNC_SIO, true, false, false, true, true);
-    if (SCSI_OUT_MSG != SCSI_IN_BSY)
-    {
-        gpio_conf(SCSI_OUT_MSG,    GPIO_FUNC_SIO, false,false, true,  true, true);
-    }
-
-    // SCSI control inputs
-    //        pin             function       pup   pdown  out    state fast
-    gpio_conf(SCSI_IN_ACK,    GPIO_FUNC_SIO, false, false, false, true, false);
-    gpio_conf(SCSI_IN_ATN,    GPIO_FUNC_SIO, false, false, false, true, false);
-    gpio_conf(SCSI_IN_RST,    GPIO_FUNC_SIO, true, false, false, true, false);
-}
-
-bool platform_is_initiator_mode_enabled()
-{
-    return g_scsi_initiator;
-}
-
-void platform_disable_led(void)
-{   
-    //        pin      function       pup   pdown  out    state fast
-    gpio_conf(LED_PIN, GPIO_FUNC_SIO, false,false, false, false, false);
-    logmsg("Disabling status LED");
-}
-
-/*****************************************/
-/* Crash handlers                        */
-/*****************************************/
-
-extern SdFs SD;
-extern uint32_t __StackTop;
-
-void platform_emergency_log_save()
-{
-    platform_set_sd_callback(NULL, NULL);
-
-    SD.begin(SD_CONFIG_CRASH);
-    FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
-
-    if (!crashfile.isOpen())
-    {
-        // Try to reinitialize
-        int max_retry = 10;
-        while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH));
-
-        crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
-    }
-
-    uint32_t startpos = 0;
-    crashfile.write(log_get_buffer(&startpos));
-    crashfile.write(log_get_buffer(&startpos));
-    crashfile.flush();
-    crashfile.close();
-}
-
-void mbed_error_hook(const mbed_error_ctx * error_context)
-{
-    logmsg("--------------");
-    logmsg("CRASH!");
-    logmsg("Platform: ", g_platform_name);
-    logmsg("FW Version: ", g_log_firmwareversion);
-    logmsg("error_status: ", (uint32_t)error_context->error_status);
-    logmsg("error_address: ", error_context->error_address);
-    logmsg("error_value: ", error_context->error_value);
-
-    uint32_t *p = (uint32_t*)((uint32_t)error_context->thread_current_sp & ~3);
-    for (int i = 0; i < 8; i++)
-    {
-        if (p == &__StackTop) break; // End of stack
-
-        logmsg("STACK ", (uint32_t)p, ":    ", p[0], " ", p[1], " ", p[2], " ", p[3]);
-        p += 4;
-    }
-
-    platform_emergency_log_save();
-
-    while (1)
-    {
-        // Flash the crash address on the LED
-        // Short pulse means 0, long pulse means 1
-        int base_delay = 1000;
-        for (int i = 31; i >= 0; i--)
-        {
-            LED_OFF();
-            for (int j = 0; j < base_delay; j++) delay_ns(100000);
-
-            int delay = (error_context->error_address & (1 << i)) ? (3 * base_delay) : base_delay;
-            LED_ON();
-            for (int j = 0; j < delay; j++) delay_ns(100000);
-            LED_OFF();
-        }
-
-        for (int j = 0; j < base_delay * 10; j++) delay_ns(100000);
-    }
-}
-
-/*****************************************/
-/* Debug logging and watchdog            */
-/*****************************************/
-
-// Send log data to USB UART if USB is connected.
-// Data is retrieved from the shared log ring buffer and
-// this function sends as much as fits in USB CDC buffer.
-//
-// This is normally called by platform_reset_watchdog() in
-// the normal polling loop. If code hangs, the watchdog_callback()
-// also starts calling this after 2 seconds.
-// This ensures that log messages get passed even if code hangs,
-// but does not unnecessarily delay normal execution.
-static void usb_log_poll()
-{
-    static uint32_t logpos = 0;
-
-    if (_SerialUSB.ready())
-    {
-        // Retrieve pointer to log start and determine number of bytes available.
-        uint32_t newlogpos = logpos;
-        const char *data = log_get_buffer(&newlogpos);
-
-        // Limit to CDC packet size
-        uint32_t len = (newlogpos - logpos);
-        if (len == 0) return;
-        if (len > CDC_MAX_PACKET_SIZE) len = CDC_MAX_PACKET_SIZE;
-
-        // Update log position by the actual number of bytes sent
-        // If USB CDC buffer is full, this may be 0
-        uint32_t actual = 0;
-        _SerialUSB.send_nb((uint8_t*)data, len, &actual);
-        logpos += actual;
-    }
-}
-
-// This function is called for every log message.
-void platform_log(const char *s)
-{
-    if (g_uart_initialized)
-    {
-        uart_puts(uart0, s);
-    }
-}
-
-static int g_watchdog_timeout;
-static bool g_watchdog_initialized;
-
-static void watchdog_callback(unsigned alarm_num)
-{
-    g_watchdog_timeout -= 1000;
-
-    if (g_watchdog_timeout < WATCHDOG_CRASH_TIMEOUT - 1000)
-    {
-        // Been stuck for at least a second, start dumping USB log
-        usb_log_poll();
-    }
-
-    if (g_watchdog_timeout <= WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT)
-    {
-        if (!scsiDev.resetFlag)
-        {
-            logmsg("--------------");
-            logmsg("WATCHDOG TIMEOUT, attempting bus reset");
-            logmsg("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in);
-
-            uint32_t *p = (uint32_t*)__get_PSP();
-            for (int i = 0; i < 8; i++)
-            {
-                if (p == &__StackTop) break; // End of stack
-
-                logmsg("STACK ", (uint32_t)p, ":    ", p[0], " ", p[1], " ", p[2], " ", p[3]);
-                p += 4;
-            }
-
-            scsiDev.resetFlag = 1;
-        }
-
-        if (g_watchdog_timeout <= 0)
-        {
-            logmsg("--------------");
-            logmsg("WATCHDOG TIMEOUT!");
-            logmsg("Platform: ", g_platform_name);
-            logmsg("FW Version: ", g_log_firmwareversion);
-            logmsg("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in);
-
-            uint32_t *p = (uint32_t*)__get_PSP();
-            for (int i = 0; i < 8; i++)
-            {
-                if (p == &__StackTop) break; // End of stack
-
-                logmsg("STACK ", (uint32_t)p, ":    ", p[0], " ", p[1], " ", p[2], " ", p[3]);
-                p += 4;
-            }
-
-            usb_log_poll();
-            platform_emergency_log_save();
-
-            platform_boot_to_main_firmware();
-        }
-    }
-
-    hardware_alarm_set_target(3, delayed_by_ms(get_absolute_time(), 1000));
-}
-
-// This function can be used to periodically reset watchdog timer for crash handling.
-// It can also be left empty if the platform does not use a watchdog timer.
-void platform_reset_watchdog()
-{
-    g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT;
-
-    if (!g_watchdog_initialized)
-    {
-        hardware_alarm_claim(3);
-        hardware_alarm_set_callback(3, &watchdog_callback);
-        hardware_alarm_set_target(3, delayed_by_ms(get_absolute_time(), 1000));
-        g_watchdog_initialized = true;
-    }
-
-    usb_log_poll();
-}
-
-/*****************************************/
-/* Flash reprogramming from bootloader   */
-/*****************************************/
-
-#ifdef PLATFORM_BOOTLOADER_SIZE
-
-extern uint32_t __real_vectors_start;
-extern uint32_t __StackTop;
-static volatile void *g_bootloader_exit_req;
-
-__attribute__((section(".time_critical.platform_rewrite_flash_page")))
-bool platform_rewrite_flash_page(uint32_t offset, uint8_t buffer[PLATFORM_FLASH_PAGE_SIZE])
-{
-    if (offset == PLATFORM_BOOTLOADER_SIZE)
-    {
-        if (buffer[3] != 0x20 || buffer[7] != 0x10)
-        {
-            logmsg("Invalid firmware file, starts with: ", bytearray(buffer, 16));
-            return false;
-        }
-    }
-
-    if (NVIC_GetEnableIRQ(USBCTRL_IRQn))
-    {
-        logmsg("Disabling USB during firmware flashing");
-        NVIC_DisableIRQ(USBCTRL_IRQn);
-        usb_hw->main_ctrl = 0;
-    }
-
-    dbgmsg("Writing flash at offset ", offset, " data ", bytearray(buffer, 4));
-    assert(offset % PLATFORM_FLASH_PAGE_SIZE == 0);
-    assert(offset >= PLATFORM_BOOTLOADER_SIZE);
-
-    // Avoid any mbed timer interrupts triggering during the flashing.
-    __disable_irq();
-
-    // For some reason any code executed after flashing crashes
-    // unless we disable the XIP cache.
-    // Not sure why this happens, as flash_range_program() is flushing
-    // the cache correctly.
-    // The cache is now enabled from bootloader start until it starts
-    // flashing, and again after reset to main firmware.
-    xip_ctrl_hw->ctrl = 0;
-
-    flash_range_erase(offset, PLATFORM_FLASH_PAGE_SIZE);
-    flash_range_program(offset, buffer, PLATFORM_FLASH_PAGE_SIZE);
-
-    uint32_t *buf32 = (uint32_t*)buffer;
-    uint32_t num_words = PLATFORM_FLASH_PAGE_SIZE / 4;
-    for (int i = 0; i < num_words; i++)
-    {
-        uint32_t expected = buf32[i];
-        uint32_t actual = *(volatile uint32_t*)(XIP_NOCACHE_BASE + offset + i * 4);
-
-        if (actual != expected)
-        {
-            logmsg("Flash verify failed at offset ", offset + i * 4, " got ", actual, " expected ", expected);
-            __enable_irq();
-            return false;
-        }
-    }
-
-    __enable_irq();
-
-    return true;
-}
-
-void platform_boot_to_main_firmware()
-{
-    // To ensure that the system state is reset properly, we perform
-    // a SYSRESETREQ and jump straight from the reset vector to main application.
-    g_bootloader_exit_req = &g_bootloader_exit_req;
-    SCB->AIRCR = 0x05FA0004;
-    while(1);
-}
-
-void btldr_reset_handler()
-{
-    uint32_t* application_base = &__real_vectors_start;
-    if (g_bootloader_exit_req == &g_bootloader_exit_req)
-    {
-        // Boot to main application
-        application_base = (uint32_t*)(XIP_BASE + PLATFORM_BOOTLOADER_SIZE);
-    }
-
-    SCB->VTOR = (uint32_t)application_base;
-    __asm__(
-        "msr msp, %0\n\t"
-        "bx %1" : : "r" (application_base[0]),
-                    "r" (application_base[1]) : "memory");
-}
-
-// Replace the reset handler when building the bootloader
-// The rp2040_btldr.ld places real vector table at an offset.
-__attribute__((section(".btldr_vectors")))
-const void * btldr_vectors[2] = {&__StackTop, (void*)&btldr_reset_handler};
-
-#endif
-
-/************************************/
-/* ROM drive in extra flash space   */
-/************************************/
-
-#ifdef PLATFORM_HAS_ROM_DRIVE
-
-// Reserve up to 352 kB for firmware.
-#define ROMDRIVE_OFFSET (352 * 1024)
-
-uint32_t platform_get_romdrive_maxsize()
-{
-    if (g_flash_chip_size >= ROMDRIVE_OFFSET)
-    {
-        return g_flash_chip_size - ROMDRIVE_OFFSET;
-    }
-    else
-    {
-        // Failed to read flash chip size, default to 2 MB
-        return 2048 * 1024 - ROMDRIVE_OFFSET;
-    }
-}
-
-bool platform_read_romdrive(uint8_t *dest, uint32_t start, uint32_t count)
-{
-    xip_ctrl_hw->stream_ctr = 0;
-
-    while (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))
-    {
-        (void) xip_ctrl_hw->stream_fifo;
-    }
-
-    xip_ctrl_hw->stream_addr = start + ROMDRIVE_OFFSET;
-    xip_ctrl_hw->stream_ctr = count / 4;
-
-    // Transfer happens in multiples of 4 bytes
-    assert(start < platform_get_romdrive_maxsize());
-    assert((count & 3) == 0);
-    assert((((uint32_t)dest) & 3) == 0);
-
-    uint32_t *dest32 = (uint32_t*)dest;
-    uint32_t words_remain = count / 4;
-    while (words_remain > 0)
-    {
-        if (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))
-        {
-            *dest32++ = xip_ctrl_hw->stream_fifo;
-            words_remain--;
-        }
-    }
-
-    return true;
-}
-
-bool platform_write_romdrive(const uint8_t *data, uint32_t start, uint32_t count)
-{
-    assert(start < platform_get_romdrive_maxsize());
-    assert((count % PLATFORM_ROMDRIVE_PAGE_SIZE) == 0);
-
-    __disable_irq();
-    flash_range_erase(start + ROMDRIVE_OFFSET, count);
-    flash_range_program(start + ROMDRIVE_OFFSET, data, count);
-    __enable_irq();
-    return true;
-}
-
-#endif
-
-/**********************************************/
-/* Mapping from data bytes to GPIO BOP values */
-/**********************************************/
-
-/* A lookup table is the fastest way to calculate parity and convert the IO pin mapping for data bus.
- * For RP2040 we expect that the bits are consecutive and in order.
- * The PIO-based parity scheme also requires that the lookup table is aligned to 512-byte increment.
- * The parity table is placed into SRAM4 area to reduce bus contention.
- */
-
-#define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)
-#define X(n) (\
-    ((n & 0x01) ? 0 : (1 << SCSI_IO_DB0)) | \
-    ((n & 0x02) ? 0 : (1 << SCSI_IO_DB1)) | \
-    ((n & 0x04) ? 0 : (1 << SCSI_IO_DB2)) | \
-    ((n & 0x08) ? 0 : (1 << SCSI_IO_DB3)) | \
-    ((n & 0x10) ? 0 : (1 << SCSI_IO_DB4)) | \
-    ((n & 0x20) ? 0 : (1 << SCSI_IO_DB5)) | \
-    ((n & 0x40) ? 0 : (1 << SCSI_IO_DB6)) | \
-    ((n & 0x80) ? 0 : (1 << SCSI_IO_DB7)) | \
-    (PARITY(n)  ? 0 : (1 << SCSI_IO_DBP)) \
-)
-
-const uint16_t g_scsi_parity_lookup[256] __attribute__((aligned(512), section(".scratch_x.parity"))) =
-{
-    X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),
-    X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),
-    X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),
-    X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),
-    X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),
-    X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),
-    X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),
-    X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),
-    X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),
-    X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),
-    X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),
-    X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),
-    X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),
-    X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),
-    X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),
-    X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)
-};
-
-#undef X
-
-/* Similarly, another lookup table is used to verify parity of received data.
- * This table is indexed by the 8 data bits + 1 parity bit from SCSI bus (active low)
- * Each word contains the data byte (inverted to active-high) and a bit indicating whether parity is valid.
- */
-#define X(n) (\
-    ((n & 0xFF) ^ 0xFF) | \
-    (((PARITY(n & 0xFF) ^ (n >> 8)) & 1) << 8) \
-)
-
-const uint16_t g_scsi_parity_check_lookup[512] __attribute__((aligned(1024), section(".scratch_x.parity"))) =
-{
-    X(0x000), X(0x001), X(0x002), X(0x003), X(0x004), X(0x005), X(0x006), X(0x007), X(0x008), X(0x009), X(0x00a), X(0x00b), X(0x00c), X(0x00d), X(0x00e), X(0x00f),
-    X(0x010), X(0x011), X(0x012), X(0x013), X(0x014), X(0x015), X(0x016), X(0x017), X(0x018), X(0x019), X(0x01a), X(0x01b), X(0x01c), X(0x01d), X(0x01e), X(0x01f),
-    X(0x020), X(0x021), X(0x022), X(0x023), X(0x024), X(0x025), X(0x026), X(0x027), X(0x028), X(0x029), X(0x02a), X(0x02b), X(0x02c), X(0x02d), X(0x02e), X(0x02f),
-    X(0x030), X(0x031), X(0x032), X(0x033), X(0x034), X(0x035), X(0x036), X(0x037), X(0x038), X(0x039), X(0x03a), X(0x03b), X(0x03c), X(0x03d), X(0x03e), X(0x03f),
-    X(0x040), X(0x041), X(0x042), X(0x043), X(0x044), X(0x045), X(0x046), X(0x047), X(0x048), X(0x049), X(0x04a), X(0x04b), X(0x04c), X(0x04d), X(0x04e), X(0x04f),
-    X(0x050), X(0x051), X(0x052), X(0x053), X(0x054), X(0x055), X(0x056), X(0x057), X(0x058), X(0x059), X(0x05a), X(0x05b), X(0x05c), X(0x05d), X(0x05e), X(0x05f),
-    X(0x060), X(0x061), X(0x062), X(0x063), X(0x064), X(0x065), X(0x066), X(0x067), X(0x068), X(0x069), X(0x06a), X(0x06b), X(0x06c), X(0x06d), X(0x06e), X(0x06f),
-    X(0x070), X(0x071), X(0x072), X(0x073), X(0x074), X(0x075), X(0x076), X(0x077), X(0x078), X(0x079), X(0x07a), X(0x07b), X(0x07c), X(0x07d), X(0x07e), X(0x07f),
-    X(0x080), X(0x081), X(0x082), X(0x083), X(0x084), X(0x085), X(0x086), X(0x087), X(0x088), X(0x089), X(0x08a), X(0x08b), X(0x08c), X(0x08d), X(0x08e), X(0x08f),
-    X(0x090), X(0x091), X(0x092), X(0x093), X(0x094), X(0x095), X(0x096), X(0x097), X(0x098), X(0x099), X(0x09a), X(0x09b), X(0x09c), X(0x09d), X(0x09e), X(0x09f),
-    X(0x0a0), X(0x0a1), X(0x0a2), X(0x0a3), X(0x0a4), X(0x0a5), X(0x0a6), X(0x0a7), X(0x0a8), X(0x0a9), X(0x0aa), X(0x0ab), X(0x0ac), X(0x0ad), X(0x0ae), X(0x0af),
-    X(0x0b0), X(0x0b1), X(0x0b2), X(0x0b3), X(0x0b4), X(0x0b5), X(0x0b6), X(0x0b7), X(0x0b8), X(0x0b9), X(0x0ba), X(0x0bb), X(0x0bc), X(0x0bd), X(0x0be), X(0x0bf),
-    X(0x0c0), X(0x0c1), X(0x0c2), X(0x0c3), X(0x0c4), X(0x0c5), X(0x0c6), X(0x0c7), X(0x0c8), X(0x0c9), X(0x0ca), X(0x0cb), X(0x0cc), X(0x0cd), X(0x0ce), X(0x0cf),
-    X(0x0d0), X(0x0d1), X(0x0d2), X(0x0d3), X(0x0d4), X(0x0d5), X(0x0d6), X(0x0d7), X(0x0d8), X(0x0d9), X(0x0da), X(0x0db), X(0x0dc), X(0x0dd), X(0x0de), X(0x0df),
-    X(0x0e0), X(0x0e1), X(0x0e2), X(0x0e3), X(0x0e4), X(0x0e5), X(0x0e6), X(0x0e7), X(0x0e8), X(0x0e9), X(0x0ea), X(0x0eb), X(0x0ec), X(0x0ed), X(0x0ee), X(0x0ef),
-    X(0x0f0), X(0x0f1), X(0x0f2), X(0x0f3), X(0x0f4), X(0x0f5), X(0x0f6), X(0x0f7), X(0x0f8), X(0x0f9), X(0x0fa), X(0x0fb), X(0x0fc), X(0x0fd), X(0x0fe), X(0x0ff),
-    X(0x100), X(0x101), X(0x102), X(0x103), X(0x104), X(0x105), X(0x106), X(0x107), X(0x108), X(0x109), X(0x10a), X(0x10b), X(0x10c), X(0x10d), X(0x10e), X(0x10f),
-    X(0x110), X(0x111), X(0x112), X(0x113), X(0x114), X(0x115), X(0x116), X(0x117), X(0x118), X(0x119), X(0x11a), X(0x11b), X(0x11c), X(0x11d), X(0x11e), X(0x11f),
-    X(0x120), X(0x121), X(0x122), X(0x123), X(0x124), X(0x125), X(0x126), X(0x127), X(0x128), X(0x129), X(0x12a), X(0x12b), X(0x12c), X(0x12d), X(0x12e), X(0x12f),
-    X(0x130), X(0x131), X(0x132), X(0x133), X(0x134), X(0x135), X(0x136), X(0x137), X(0x138), X(0x139), X(0x13a), X(0x13b), X(0x13c), X(0x13d), X(0x13e), X(0x13f),
-    X(0x140), X(0x141), X(0x142), X(0x143), X(0x144), X(0x145), X(0x146), X(0x147), X(0x148), X(0x149), X(0x14a), X(0x14b), X(0x14c), X(0x14d), X(0x14e), X(0x14f),
-    X(0x150), X(0x151), X(0x152), X(0x153), X(0x154), X(0x155), X(0x156), X(0x157), X(0x158), X(0x159), X(0x15a), X(0x15b), X(0x15c), X(0x15d), X(0x15e), X(0x15f),
-    X(0x160), X(0x161), X(0x162), X(0x163), X(0x164), X(0x165), X(0x166), X(0x167), X(0x168), X(0x169), X(0x16a), X(0x16b), X(0x16c), X(0x16d), X(0x16e), X(0x16f),
-    X(0x170), X(0x171), X(0x172), X(0x173), X(0x174), X(0x175), X(0x176), X(0x177), X(0x178), X(0x179), X(0x17a), X(0x17b), X(0x17c), X(0x17d), X(0x17e), X(0x17f),
-    X(0x180), X(0x181), X(0x182), X(0x183), X(0x184), X(0x185), X(0x186), X(0x187), X(0x188), X(0x189), X(0x18a), X(0x18b), X(0x18c), X(0x18d), X(0x18e), X(0x18f),
-    X(0x190), X(0x191), X(0x192), X(0x193), X(0x194), X(0x195), X(0x196), X(0x197), X(0x198), X(0x199), X(0x19a), X(0x19b), X(0x19c), X(0x19d), X(0x19e), X(0x19f),
-    X(0x1a0), X(0x1a1), X(0x1a2), X(0x1a3), X(0x1a4), X(0x1a5), X(0x1a6), X(0x1a7), X(0x1a8), X(0x1a9), X(0x1aa), X(0x1ab), X(0x1ac), X(0x1ad), X(0x1ae), X(0x1af),
-    X(0x1b0), X(0x1b1), X(0x1b2), X(0x1b3), X(0x1b4), X(0x1b5), X(0x1b6), X(0x1b7), X(0x1b8), X(0x1b9), X(0x1ba), X(0x1bb), X(0x1bc), X(0x1bd), X(0x1be), X(0x1bf),
-    X(0x1c0), X(0x1c1), X(0x1c2), X(0x1c3), X(0x1c4), X(0x1c5), X(0x1c6), X(0x1c7), X(0x1c8), X(0x1c9), X(0x1ca), X(0x1cb), X(0x1cc), X(0x1cd), X(0x1ce), X(0x1cf),
-    X(0x1d0), X(0x1d1), X(0x1d2), X(0x1d3), X(0x1d4), X(0x1d5), X(0x1d6), X(0x1d7), X(0x1d8), X(0x1d9), X(0x1da), X(0x1db), X(0x1dc), X(0x1dd), X(0x1de), X(0x1df),
-    X(0x1e0), X(0x1e1), X(0x1e2), X(0x1e3), X(0x1e4), X(0x1e5), X(0x1e6), X(0x1e7), X(0x1e8), X(0x1e9), X(0x1ea), X(0x1eb), X(0x1ec), X(0x1ed), X(0x1ee), X(0x1ef),
-    X(0x1f0), X(0x1f1), X(0x1f2), X(0x1f3), X(0x1f4), X(0x1f5), X(0x1f6), X(0x1f7), X(0x1f8), X(0x1f9), X(0x1fa), X(0x1fb), X(0x1fc), X(0x1fd), X(0x1fe), X(0x1ff),
-};
-
-#undef X
-
-} /* extern "C" */
-
-/* Logging from mbed */
-
-static class LogTarget: public mbed::FileHandle {
-public:
-    virtual ssize_t read(void *buffer, size_t size) { return 0; }
-    virtual ssize_t write(const void *buffer, size_t size)
-    {
-        // A bit inefficient but mbed seems to write() one character
-        // at a time anyways.
-        for (int i = 0; i < size; i++)
-        {
-            char buf[2] = {((const char*)buffer)[i], 0};
-            log_raw(buf);
-        }
-        return size;
-    }
-
-    virtual off_t seek(off_t offset, int whence = SEEK_SET) { return offset; }
-    virtual int close() { return 0; }
-    virtual off_t size() { return 0; }
-} g_LogTarget;
-
-mbed::FileHandle *mbed::mbed_override_console(int fd)
-{
-    return &g_LogTarget;
-}

+ 0 - 197
lib/ZuluSCSI_platform_BS2/ZuluSCSI_platform.h

@@ -1,197 +0,0 @@
-/** 
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-// Platform-specific definitions for ZuluSCSI RP2040 hardware.
-
-#pragma once
-
-#include <stdint.h>
-#include <Arduino.h>
-#include "ZuluSCSI_platform_gpio.h"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* These are used in debug output and default SCSI strings */
-extern const char *g_platform_name;
-#define PLATFORM_NAME "ZuluSCSI BS2"
-#define PLATFORM_REVISION "3.0"
-#define PLATFORM_MAX_SCSI_SPEED S2S_CFG_SPEED_SYNC_10
-#define PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE 32768
-#define PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE 65536
-#define PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE 8192
-#define SD_USE_SDIO 1
-#define PLATFORM_HAS_PARITY_CHECK 1
-
-// NOTE: The driver supports synchronous speeds higher than 10MB/s, but this
-// has not been tested due to lack of fast enough SCSI adapter.
-// #define PLATFORM_MAX_SCSI_SPEED S2S_CFG_SPEED_TURBO
-
-// Debug logging function, can be used to print to e.g. serial port.
-// May get called from interrupt handlers.
-void platform_log(const char *s);
-void platform_emergency_log_save();
-
-// Timing and delay functions.
-// Arduino platform already provides these
-unsigned long millis(void);
-void delay(unsigned long ms);
-
-// Short delays, can be called from interrupt mode
-static inline void delay_ns(unsigned long ns)
-{
-    delayMicroseconds((ns + 999) / 1000);
-}
-
-// Approximate fast delay
-static inline void delay_100ns()
-{
-    asm volatile ("nop \n nop \n nop \n nop \n nop \n nop \n nop \n nop \n nop \n nop \n nop");
-}
-
-// Initialize SD card and GPIO configuration
-void platform_init();
-
-// Initialization for main application, not used for bootloader
-void platform_late_init();
-
-// Disable the status LED
-void platform_disable_led(void);
-
-// Query whether initiator mode is enabled on targets with PLATFORM_HAS_INITIATOR_MODE
-bool platform_is_initiator_mode_enabled();
-
-// Setup soft watchdog if supported
-void platform_reset_watchdog();
-
-// Set callback that will be called during data transfer to/from SD card.
-// This can be used to implement simultaneous transfer to SCSI bus.
-typedef void (*sd_callback_t)(uint32_t bytes_complete);
-void platform_set_sd_callback(sd_callback_t func, const uint8_t *buffer);
-
-// Reprogram firmware in main program area.
-#ifndef RP2040_DISABLE_BOOTLOADER
-#define PLATFORM_BOOTLOADER_SIZE (128 * 1024)
-#define PLATFORM_FLASH_TOTAL_SIZE (1024 * 1024)
-#define PLATFORM_FLASH_PAGE_SIZE 4096
-bool platform_rewrite_flash_page(uint32_t offset, uint8_t buffer[PLATFORM_FLASH_PAGE_SIZE]);
-void platform_boot_to_main_firmware();
-#endif
-
-// ROM drive in the unused external flash area
-#ifndef RP2040_DISABLE_ROMDRIVE
-#define PLATFORM_HAS_ROM_DRIVE 1
-// Check maximum available space for ROM drive in bytes
-uint32_t platform_get_romdrive_maxsize();
-
-// Read ROM drive area
-bool platform_read_romdrive(uint8_t *dest, uint32_t start, uint32_t count);
-
-// Reprogram ROM drive area
-#define PLATFORM_ROMDRIVE_PAGE_SIZE 4096
-bool platform_write_romdrive(const uint8_t *data, uint32_t start, uint32_t count);
-#endif
-
-// Parity lookup tables for write and read from SCSI bus.
-// These are used by macros below and the code in scsi_accel_rp2040.cpp
-extern const uint16_t g_scsi_parity_lookup[256];
-extern const uint16_t g_scsi_parity_check_lookup[512];
-
-// Below are GPIO access definitions that are used from scsiPhy.cpp.
-
-// Write a single SCSI pin.
-// Example use: SCSI_OUT(ATN, 1) sets SCSI_ATN to low (active) state.
-#define SCSI_OUT(pin, state) \
-    *(state ? &sio_hw->gpio_clr : &sio_hw->gpio_set) = 1 << (SCSI_OUT_ ## pin)
-
-// Read a single SCSI pin.
-// Example use: SCSI_IN(ATN), returns 1 for active low state.
-#define SCSI_IN(pin) \
-    ((sio_hw->gpio_in & (1 << (SCSI_IN_ ## pin))) ? 0 : 1)
-
-// Set pin directions for initiator vs. target mode
-#define SCSI_ENABLE_INITIATOR() \
-    (sio_hw->gpio_oe_set = (1 << SCSI_OUT_ACK) | \
-                           (1 << SCSI_OUT_ATN)), \
-    (sio_hw->gpio_oe_clr = (1 << SCSI_IN_IO) | \
-                           (1 << SCSI_IN_CD) | \
-                           (1 << SCSI_IN_MSG) | \
-                           (1 << SCSI_IN_REQ))
-
-// Enable driving of shared control pins
-#define SCSI_ENABLE_CONTROL_OUT() \
-    (sio_hw->gpio_oe_set = (1 << SCSI_OUT_CD) | \
-                           (1 << SCSI_OUT_MSG))
-
-// Set SCSI data bus to output
-#define SCSI_ENABLE_DATA_OUT() \
-    (sio_hw->gpio_set = (1 << SCSI_DATA_DIR), \
-     sio_hw->gpio_oe_set = SCSI_IO_DATA_MASK)
-
-// Write SCSI data bus, also sets REQ to inactive.
-#define SCSI_OUT_DATA(data) \
-    gpio_put_masked(SCSI_IO_DATA_MASK | (1 << SCSI_OUT_REQ), \
-                    g_scsi_parity_lookup[(uint8_t)(data)] | (1 << SCSI_OUT_REQ)), \
-    SCSI_ENABLE_DATA_OUT()
-
-// Release SCSI data bus and REQ signal
-#define SCSI_RELEASE_DATA_REQ() \
-    (sio_hw->gpio_oe_clr = SCSI_IO_DATA_MASK, \
-     sio_hw->gpio_clr = (1 << SCSI_DATA_DIR), \
-     sio_hw->gpio_set = (1 << SCSI_OUT_REQ))
-
-// Release all SCSI outputs
-#define SCSI_RELEASE_OUTPUTS() \
-    SCSI_RELEASE_DATA_REQ(), \
-    sio_hw->gpio_set = (1 << SCSI_OUT_IO) | \
-                       (1 << SCSI_OUT_CD) | \
-                       (1 << SCSI_OUT_MSG) | \
-                       (1 << SCSI_OUT_RST) | \
-                       (1 << SCSI_OUT_BSY) | \
-                       (1 << SCSI_OUT_REQ) | \
-                       (1 << SCSI_OUT_SEL), \
-                       delay(1), \
-    sio_hw->gpio_oe_clr = (1 << SCSI_OUT_CD) | \
-                          (1 << SCSI_OUT_MSG)
-
-// Read SCSI data bus
-#define SCSI_IN_DATA() \
-    (~sio_hw->gpio_in & SCSI_IO_DATA_MASK) >> SCSI_IO_SHIFT
-
-#ifdef __cplusplus
-}
-
-// SD card driver for SdFat
-
-#ifdef SD_USE_SDIO
-class SdioConfig;
-extern SdioConfig g_sd_sdio_config;
-#define SD_CONFIG g_sd_sdio_config
-#define SD_CONFIG_CRASH g_sd_sdio_config
-#else
-class SdSpiConfig;
-extern SdSpiConfig g_sd_spi_config;
-#define SD_CONFIG g_sd_spi_config
-#define SD_CONFIG_CRASH g_sd_spi_config
-#endif
-
-#endif

+ 0 - 28
lib/ZuluSCSI_platform_BS2/bsp.h

@@ -1,28 +0,0 @@
-/** 
- * SCSI2SD V6 - Copyright (C) 2016 Michael McMaster <michael@codesrc.com>
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * This file is licensed under the GPL version 3 or any later version.  
- * It is derived from bsp.h in SCSI2SD V6.
- *  
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-// Dummy file for SCSI2SD.
-
-#pragma once
-
-#define S2S_DMA_ALIGN

+ 0 - 217
lib/ZuluSCSI_platform_BS2/rp2040.ld

@@ -1,217 +0,0 @@
-/** 
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-MEMORY
-{
-    FLASH(rx) : ORIGIN = 0x10000000, LENGTH = 352k
-    RAM(rwx) : ORIGIN = 0x20000000, LENGTH = 240k  /* Leave space for pico-debug */
-    SCRATCH_X(rwx) : ORIGIN = 0x20040000, LENGTH = 4k
-    SCRATCH_Y(rwx) : ORIGIN = 0x20041000, LENGTH = 4k
-}
-ENTRY(_entry_point)
-SECTIONS
-{
-    .flash_begin : {
-        __flash_binary_start = .;
-    } > FLASH
-    .boot2 : {
-        __boot2_start__ = .;
-        KEEP (*(.boot2))
-        __boot2_end__ = .;
-    } > FLASH
-    ASSERT(__boot2_end__ - __boot2_start__ == 256,
-        "ERROR: Pico second stage bootloader must be 256 bytes in size")
-
-    /* If ZuluSCSI SD card bootloader is included, it goes in first 128 kB */
-    .text.bootloader : ALIGN(16) SUBALIGN(16)
-    {
-        KEEP(*(.text.btldr*))
-        . = ALIGN(131072);
-        CHECK_BOOTLOADER_SIZE = 1 / (. <= 131072);
-    } > FLASH
-
-    .text : {
-        __logical_binary_start = .;
-        __real_vectors_start = .;
-        KEEP (*(.vectors))
-        KEEP (*(.binary_info_header))
-        __binary_info_header_end = .;
-        KEEP (*(.reset))
-        KEEP (*(.init))
-        *(.fini)
-        *crtbegin.o(.ctors)
-        *crtbegin?.o(.ctors)
-        *(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors)
-        *(SORT(.ctors.*))
-        *(.ctors)
-        *crtbegin.o(.dtors)
-        *crtbegin?.o(.dtors)
-        *(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors)
-        *(SORT(.dtors.*))
-        *(.dtors)
-        *(.eh_frame*)
-        . = ALIGN(4);
-
-        /* Put only non-timecritical code in flash
-         * This includes e.g. floating point math routines.
-         */
-        *libm*:(.text .text*)
-        *libc*:(.text .text*)
-        *libgcc*:*df*(.text .text*)
-        *USB*(.text .text*)
-        *SPI*(.text .text*)
-        *Spi*(.text .text*)
-        *spi*(.text .text*)
-        *stdc*:(.text .text*)
-        *supc*:(.text .text*)
-        *nosys*:(.text .text*)
-        *libc*:*printf*(.text .text*)
-        *libc*:*toa*(.text .text*)
-        *libminIni.a:(.text .text*)
-
-        /* RP2040 breakpoints in RAM code don't always work very well
-         * because the boot routine tends to overwrite them.
-         * Uncommenting this line puts all code in flash.
-         */
-        /* *(.text .text*) */
-    } > FLASH
-    .rodata : {
-        . = ALIGN(4);
-        *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.flashdata*)))
-        *(.rodata)
-        *(.rodata*)
-        . = ALIGN(4);
-    } > FLASH
-    .ARM.extab :
-    {
-        *(.ARM.extab* .gnu.linkonce.armextab.*)
-    } > FLASH
-    __exidx_start = .;
-    .ARM.exidx :
-    {
-        *(.ARM.exidx* .gnu.linkonce.armexidx.*)
-    } > FLASH
-    __exidx_end = .;
-    . = ALIGN(4);
-    __binary_info_start = .;
-    .binary_info :
-    {
-        KEEP(*(.binary_info.keep.*))
-        *(.binary_info.*)
-    } > FLASH
-    __binary_info_end = .;
-    . = ALIGN(4);
-    __etext = .;
-   .ram_vector_table (COPY): {
-        *(.ram_vector_table)
-    } > RAM
-    .data : {
-        __data_start__ = .;
-        *(vtable)
-
-        /* Time critical code will go here to avoid external flash latency */
-        *(.time_critical*)
-        . = ALIGN(4);
-        *(.text)
-        *(.text*)
-
-        . = ALIGN(4);
-        *(.data*)
-        . = ALIGN(4);
-        *(.after_data.*)
-        . = ALIGN(4);
-        PROVIDE_HIDDEN (__mutex_array_start = .);
-        KEEP(*(SORT(.mutex_array.*)))
-        KEEP(*(.mutex_array))
-        PROVIDE_HIDDEN (__mutex_array_end = .);
-        . = ALIGN(4);
-        PROVIDE_HIDDEN (__preinit_array_start = .);
-        KEEP(*(SORT(.preinit_array.*)))
-        KEEP(*(.preinit_array))
-        PROVIDE_HIDDEN (__preinit_array_end = .);
-        . = ALIGN(4);
-        PROVIDE_HIDDEN (__init_array_start = .);
-        KEEP(*(SORT(.init_array.*)))
-        KEEP(*(.init_array))
-        PROVIDE_HIDDEN (__init_array_end = .);
-        . = ALIGN(4);
-        PROVIDE_HIDDEN (__fini_array_start = .);
-        *(SORT(.fini_array.*))
-        *(.fini_array)
-        PROVIDE_HIDDEN (__fini_array_end = .);
-        *(.jcr)
-        . = ALIGN(4);
-        __data_end__ = .;
-    } > RAM AT> FLASH
-    .uninitialized_data (COPY): {
-        . = ALIGN(4);
-        *(.uninitialized_data*)
-    } > RAM
-    .scratch_x : {
-        __scratch_x_start__ = .;
-        *(.scratch_x.*)
-        . = ALIGN(4);
-        __scratch_x_end__ = .;
-    } > SCRATCH_X AT > FLASH
-    __scratch_x_source__ = LOADADDR(.scratch_x);
-    .scratch_y : {
-        __scratch_y_start__ = .;
-        *(.scratch_y.*)
-        . = ALIGN(4);
-        __scratch_y_end__ = .;
-    } > SCRATCH_Y AT > FLASH
-    __scratch_y_source__ = LOADADDR(.scratch_y);
-    .bss : {
-        . = ALIGN(4);
-        __bss_start__ = .;
-        *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.bss*)))
-        *(COMMON)
-        . = ALIGN(4);
-        __bss_end__ = .;
-    } > RAM
-    .heap (COPY):
-    {
-        __end__ = .;
-        PROVIDE(end = .);
-        *(.heap*)
-        . = ORIGIN(RAM) + LENGTH(RAM) - 0x400;
-        __HeapLimit = .;
-    } > RAM
-    .stack1_dummy (COPY):
-    {
-        *(.stack1*)
-    } > SCRATCH_X
-    .stack_dummy (COPY):
-    {
-        *(.stack*)
-    } > RAM
-    .flash_end : {
-        __flash_binary_end = .;
-    } > FLASH
-    __StackTop = ORIGIN(RAM) + LENGTH(RAM);
-    __StackLimit = __StackTop - 0x400;
-    __StackOneTop = ORIGIN(SCRATCH_X) + LENGTH(SCRATCH_X);
-    __StackOneBottom = __StackOneTop - SIZEOF(.stack1_dummy);
-    __StackBottom = __StackTop - SIZEOF(.stack_dummy);
-    PROVIDE(__stack = __StackTop);
-    ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed")
-    ASSERT( __binary_info_header_end - __logical_binary_start <= 256, "Binary info must be in first 256 bytes of the binary")
-}

+ 0 - 189
lib/ZuluSCSI_platform_BS2/rp2040_btldr.ld

@@ -1,189 +0,0 @@
-/** 
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-/*
- *
- * Customized linker script for building bootloader
- *
- */
-
- MEMORY
-{
-    /* The bootloader is linked to begin at 0x12000100.
-     * First 256 bytes are reserved for RP2040 second stage bootloader,
-     * which comes as part of the main firmware.elf and is never overwritten.
-     */
-    FLASH(rx) : ORIGIN = 0x10000100, LENGTH = 128k-256
-    RAM(rwx) : ORIGIN = 0x20000000, LENGTH = 240k  /* Leave space for pico-debug */
-    SCRATCH_X(rwx) : ORIGIN = 0x20040000, LENGTH = 4k
-    SCRATCH_Y(rwx) : ORIGIN = 0x20041000, LENGTH = 4k
-}
-ENTRY(_entry_point)
-SECTIONS
-{
-    .flash_begin : {
-        __flash_binary_start = .;
-    } > FLASH
-
-    .text : {
-        __logical_binary_start = .;
-        KEEP (*(.btldr_vectors))
-        KEEP (*(.binary_info_header))
-        __binary_info_header_end = .;
-        . = ALIGN(256);
-        __real_vectors_start = .;
-        KEEP (*(.vectors))
-        KEEP (*(.reset))
-        KEEP (*(.init))
-        *(.fini)
-        *crtbegin.o(.ctors)
-        *crtbegin?.o(.ctors)
-        *(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors)
-        *(SORT(.ctors.*))
-        *(.ctors)
-        *crtbegin.o(.dtors)
-        *crtbegin?.o(.dtors)
-        *(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors)
-        *(SORT(.dtors.*))
-        *(.dtors)
-        *(.eh_frame*)
-        *(.text .text*)
-        . = ALIGN(4);
-    } > FLASH
-    .rodata : {
-        . = ALIGN(4);
-        *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.flashdata*)))
-        *(.rodata)
-        *(.rodata*)
-        . = ALIGN(4);
-    } > FLASH
-    .ARM.extab :
-    {
-        *(.ARM.extab* .gnu.linkonce.armextab.*)
-    } > FLASH
-    __exidx_start = .;
-    .ARM.exidx :
-    {
-        *(.ARM.exidx* .gnu.linkonce.armexidx.*)
-    } > FLASH
-    __exidx_end = .;
-    . = ALIGN(4);
-    __binary_info_start = .;
-    .binary_info :
-    {
-        KEEP(*(.binary_info.keep.*))
-        *(.binary_info.*)
-    } > FLASH
-    __binary_info_end = .;
-    . = ALIGN(4);
-    __etext = .;
-   .ram_vector_table (COPY): {
-        *(.ram_vector_table)
-    } > RAM
-    .data : {
-        __data_start__ = .;
-        *(vtable)
-
-        /* Time critical code will go here to avoid external flash latency */
-        *(.time_critical*)
-
-        . = ALIGN(4);
-        *(.data*)
-        . = ALIGN(4);
-        *(.after_data.*)
-        . = ALIGN(4);
-        PROVIDE_HIDDEN (__mutex_array_start = .);
-        KEEP(*(SORT(.mutex_array.*)))
-        KEEP(*(.mutex_array))
-        PROVIDE_HIDDEN (__mutex_array_end = .);
-        . = ALIGN(4);
-        PROVIDE_HIDDEN (__preinit_array_start = .);
-        KEEP(*(SORT(.preinit_array.*)))
-        KEEP(*(.preinit_array))
-        PROVIDE_HIDDEN (__preinit_array_end = .);
-        . = ALIGN(4);
-        PROVIDE_HIDDEN (__init_array_start = .);
-        KEEP(*(SORT(.init_array.*)))
-        KEEP(*(.init_array))
-        PROVIDE_HIDDEN (__init_array_end = .);
-        . = ALIGN(4);
-        PROVIDE_HIDDEN (__fini_array_start = .);
-        *(SORT(.fini_array.*))
-        *(.fini_array)
-        PROVIDE_HIDDEN (__fini_array_end = .);
-        *(.jcr)
-        . = ALIGN(4);
-        __data_end__ = .;
-    } > RAM AT> FLASH
-    .uninitialized_data (COPY): {
-        . = ALIGN(4);
-        *(.uninitialized_data*)
-    } > RAM
-    .scratch_x : {
-        __scratch_x_start__ = .;
-        *(.scratch_x.*)
-        . = ALIGN(4);
-        __scratch_x_end__ = .;
-    } > SCRATCH_X AT > FLASH
-    __scratch_x_source__ = LOADADDR(.scratch_x);
-    .scratch_y : {
-        __scratch_y_start__ = .;
-        *(.scratch_y.*)
-        . = ALIGN(4);
-        __scratch_y_end__ = .;
-    } > SCRATCH_Y AT > FLASH
-    __scratch_y_source__ = LOADADDR(.scratch_y);
-    .bss : {
-        . = ALIGN(4);
-        __bss_start__ = .;
-        *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.bss*)))
-        *(COMMON)
-        . = ALIGN(4);
-        __bss_end__ = .;
-    } > RAM
-    .heap (COPY):
-    {
-        __end__ = .;
-        PROVIDE(end = .);
-        *(.heap*)
-        . = ORIGIN(RAM) + LENGTH(RAM) - 0x400;
-        __HeapLimit = .;
-    } > RAM
-    .stack1_dummy (COPY):
-    {
-        *(.stack1*)
-    } > SCRATCH_X
-    .stack_dummy (COPY):
-    {
-        *(.stack*)
-    } > RAM
-    .flash_end : {
-        __flash_binary_end = .;
-    } > FLASH
-    __StackTop = ORIGIN(RAM) + LENGTH(RAM);
-    __StackLimit = __StackTop - 0x400;
-    __StackOneTop = ORIGIN(SCRATCH_X) + LENGTH(SCRATCH_X);
-    __StackOneBottom = __StackOneTop - SIZEOF(.stack1_dummy);
-    __StackBottom = __StackTop - SIZEOF(.stack_dummy);
-    PROVIDE(__stack = __StackTop);
-    ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed")
-    ASSERT( __binary_info_header_end - __logical_binary_start <= 256, "Binary info must be in first 256 bytes of the binary")
-}

+ 0 - 828
lib/ZuluSCSI_platform_BS2/rp2040_sdio.cpp

@@ -1,828 +0,0 @@
-/** 
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-// Implementation of SDIO communication for RP2040
-//
-// The RP2040 official work-in-progress code at
-// https://github.com/raspberrypi/pico-extras/tree/master/src/rp2_common/pico_sd_card
-// may be useful reference, but this is independent implementation.
-//
-// For official SDIO specifications, refer to:
-// https://www.sdcard.org/downloads/pls/
-// "SDIO Physical Layer Simplified Specification Version 8.00"
-
-#include "rp2040_sdio.h"
-#include "rp2040_sdio.pio.h"
-#include <hardware/pio.h>
-#include <hardware/dma.h>
-#include <hardware/gpio.h>
-#include <ZuluSCSI_platform.h>
-#include <ZuluSCSI_log.h>
-
-#define SDIO_PIO pio1
-#define SDIO_CMD_SM 0
-#define SDIO_DATA_SM 1
-#define SDIO_DMA_CH 4
-#define SDIO_DMA_CHB 5
-
-// Maximum number of 512 byte blocks to transfer in one request
-#define SDIO_MAX_BLOCKS 256
-
-enum sdio_transfer_state_t { SDIO_IDLE, SDIO_RX, SDIO_TX, SDIO_TX_WAIT_IDLE};
-
-static struct {
-    uint32_t pio_cmd_clk_offset;
-    uint32_t pio_data_rx_offset;
-    pio_sm_config pio_cfg_data_rx;
-    uint32_t pio_data_tx_offset;
-    pio_sm_config pio_cfg_data_tx;
-
-    sdio_transfer_state_t transfer_state;
-    uint32_t transfer_start_time;
-    uint32_t *data_buf;
-    uint32_t blocks_done; // Number of blocks transferred so far
-    uint32_t total_blocks; // Total number of blocks to transfer
-    uint32_t blocks_checksumed; // Number of blocks that have had CRC calculated
-    uint32_t checksum_errors; // Number of checksum errors detected
-
-    // Variables for block writes
-    uint64_t next_wr_block_checksum;
-    uint32_t end_token_buf[3]; // CRC and end token for write block
-    sdio_status_t wr_status;
-    uint32_t card_response;
-    
-    // Variables for block reads
-    // This is used to perform DMA into data buffers and checksum buffers separately.
-    struct {
-        void * write_addr;
-        uint32_t transfer_count;
-    } dma_blocks[SDIO_MAX_BLOCKS * 2];
-    struct {
-        uint32_t top;
-        uint32_t bottom;
-    } received_checksums[SDIO_MAX_BLOCKS];
-} g_sdio;
-
-void rp2040_sdio_dma_irq();
-
-/*******************************************************
- * Checksum algorithms
- *******************************************************/
-
-// Table lookup for calculating CRC-7 checksum that is used in SDIO command packets.
-// Usage:
-//    uint8_t crc = 0;
-//    crc = crc7_table[crc ^ byte];
-//    .. repeat for every byte ..
-static const uint8_t crc7_table[256] = {
-	0x00, 0x12, 0x24, 0x36, 0x48, 0x5a, 0x6c, 0x7e,	0x90, 0x82, 0xb4, 0xa6, 0xd8, 0xca, 0xfc, 0xee,
-	0x32, 0x20, 0x16, 0x04, 0x7a, 0x68, 0x5e, 0x4c,	0xa2, 0xb0, 0x86, 0x94, 0xea, 0xf8, 0xce, 0xdc,
-	0x64, 0x76, 0x40, 0x52, 0x2c, 0x3e, 0x08, 0x1a,	0xf4, 0xe6, 0xd0, 0xc2, 0xbc, 0xae, 0x98, 0x8a,
-	0x56, 0x44, 0x72, 0x60, 0x1e, 0x0c, 0x3a, 0x28,	0xc6, 0xd4, 0xe2, 0xf0, 0x8e, 0x9c, 0xaa, 0xb8,
-	0xc8, 0xda, 0xec, 0xfe, 0x80, 0x92, 0xa4, 0xb6,	0x58, 0x4a, 0x7c, 0x6e, 0x10, 0x02, 0x34, 0x26,
-	0xfa, 0xe8, 0xde, 0xcc, 0xb2, 0xa0, 0x96, 0x84,	0x6a, 0x78, 0x4e, 0x5c, 0x22, 0x30, 0x06, 0x14,
-	0xac, 0xbe, 0x88, 0x9a, 0xe4, 0xf6, 0xc0, 0xd2,	0x3c, 0x2e, 0x18, 0x0a, 0x74, 0x66, 0x50, 0x42,
-	0x9e, 0x8c, 0xba, 0xa8, 0xd6, 0xc4, 0xf2, 0xe0,	0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 0x70,
-	0x82, 0x90, 0xa6, 0xb4, 0xca, 0xd8, 0xee, 0xfc,	0x12, 0x00, 0x36, 0x24, 0x5a, 0x48, 0x7e, 0x6c,
-	0xb0, 0xa2, 0x94, 0x86, 0xf8, 0xea, 0xdc, 0xce,	0x20, 0x32, 0x04, 0x16, 0x68, 0x7a, 0x4c, 0x5e,
-	0xe6, 0xf4, 0xc2, 0xd0, 0xae, 0xbc, 0x8a, 0x98,	0x76, 0x64, 0x52, 0x40, 0x3e, 0x2c, 0x1a, 0x08,
-	0xd4, 0xc6, 0xf0, 0xe2, 0x9c, 0x8e, 0xb8, 0xaa,	0x44, 0x56, 0x60, 0x72, 0x0c, 0x1e, 0x28, 0x3a,
-	0x4a, 0x58, 0x6e, 0x7c, 0x02, 0x10, 0x26, 0x34,	0xda, 0xc8, 0xfe, 0xec, 0x92, 0x80, 0xb6, 0xa4,
-	0x78, 0x6a, 0x5c, 0x4e, 0x30, 0x22, 0x14, 0x06,	0xe8, 0xfa, 0xcc, 0xde, 0xa0, 0xb2, 0x84, 0x96,
-	0x2e, 0x3c, 0x0a, 0x18, 0x66, 0x74, 0x42, 0x50,	0xbe, 0xac, 0x9a, 0x88, 0xf6, 0xe4, 0xd2, 0xc0,
-	0x1c, 0x0e, 0x38, 0x2a, 0x54, 0x46, 0x70, 0x62,	0x8c, 0x9e, 0xa8, 0xba, 0xc4, 0xd6, 0xe0, 0xf2
-};
-
-// Calculate the CRC16 checksum for parallel 4 bit lines separately.
-// When the SDIO bus operates in 4-bit mode, the CRC16 algorithm
-// is applied to each line separately and generates total of
-// 4 x 16 = 64 bits of checksum.
-__attribute__((optimize("O3")))
-uint64_t sdio_crc16_4bit_checksum(uint32_t *data, uint32_t num_words)
-{
-    uint64_t crc = 0;
-    uint32_t *end = data + num_words;
-    while (data < end)
-    {
-        for (int unroll = 0; unroll < 4; unroll++)
-        {
-            // Each 32-bit word contains 8 bits per line.
-            // Reverse the bytes because SDIO protocol is big-endian.
-            uint32_t data_in = __builtin_bswap32(*data++);
-
-            // Shift out 8 bits for each line
-            uint32_t data_out = crc >> 32;
-            crc <<= 32;
-
-            // XOR outgoing data to itself with 4 bit delay
-            data_out ^= (data_out >> 16);
-
-            // XOR incoming data to outgoing data with 4 bit delay
-            data_out ^= (data_in >> 16);
-
-            // XOR outgoing and incoming data to accumulator at each tap
-            uint64_t xorred = data_out ^ data_in;
-            crc ^= xorred;
-            crc ^= xorred << (5 * 4);
-            crc ^= xorred << (12 * 4);
-        }
-    }
-
-    return crc;
-}
-
-/*******************************************************
- * Basic SDIO command execution
- *******************************************************/
-
-static void sdio_send_command(uint8_t command, uint32_t arg, uint8_t response_bits)
-{
-    dbgmsg("SDIO Command: ", (int)command, " arg ", arg);
-
-    // Format the arguments in the way expected by the PIO code.
-    uint32_t word0 =
-        (47 << 24) | // Number of bits in command minus one
-        ( 1 << 22) | // Transfer direction from host to card
-        (command << 16) | // Command byte
-        (((arg >> 24) & 0xFF) << 8) | // MSB byte of argument
-        (((arg >> 16) & 0xFF) << 0);
-    
-    uint32_t word1 =
-        (((arg >> 8) & 0xFF) << 24) |
-        (((arg >> 0) & 0xFF) << 16) | // LSB byte of argument
-        ( 1 << 8); // End bit
-
-    // Set number of bits in response minus one, or leave at 0 if no response expected
-    if (response_bits)
-    {
-        word1 |= ((response_bits - 1) << 0);
-    }
-
-    // Calculate checksum in the order that the bytes will be transmitted (big-endian)
-    uint8_t crc = 0;
-    crc = crc7_table[crc ^ ((word0 >> 16) & 0xFF)];
-    crc = crc7_table[crc ^ ((word0 >>  8) & 0xFF)];
-    crc = crc7_table[crc ^ ((word0 >>  0) & 0xFF)];
-    crc = crc7_table[crc ^ ((word1 >> 24) & 0xFF)];
-    crc = crc7_table[crc ^ ((word1 >> 16) & 0xFF)];
-    word1 |= crc << 8;
-    
-    // Transmit command
-    pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
-    pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word0);
-    pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word1);
-}
-
-sdio_status_t rp2040_sdio_command_R1(uint8_t command, uint32_t arg, uint32_t *response)
-{
-    sdio_send_command(command, arg, response ? 48 : 0);
-
-    // Wait for response
-    uint32_t start = millis();
-    uint32_t wait_words = response ? 2 : 1;
-    while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < wait_words)
-    {
-        if ((uint32_t)(millis() - start) > 2)
-        {
-            if (command != 8) // Don't log for missing SD card
-            {
-                dbgmsg("Timeout waiting for response in rp2040_sdio_command_R1(", (int)command, "), ",
-                    "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
-                    " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
-                    " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
-            }
-
-            // Reset the state machine program
-            pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
-            pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
-            return SDIO_ERR_RESPONSE_TIMEOUT;
-        }
-    }
-
-    if (response)
-    {
-        // Read out response packet
-        uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
-        uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
-        dbgmsg("SDIO R1 response: ", resp0, " ", resp1);
-
-        // Calculate response checksum
-        uint8_t crc = 0;
-        crc = crc7_table[crc ^ ((resp0 >> 24) & 0xFF)];
-        crc = crc7_table[crc ^ ((resp0 >> 16) & 0xFF)];
-        crc = crc7_table[crc ^ ((resp0 >>  8) & 0xFF)];
-        crc = crc7_table[crc ^ ((resp0 >>  0) & 0xFF)];
-        crc = crc7_table[crc ^ ((resp1 >>  8) & 0xFF)];
-
-        uint8_t actual_crc = ((resp1 >> 0) & 0xFE);
-        if (crc != actual_crc)
-        {
-            dbgmsg("rp2040_sdio_command_R1(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
-            return SDIO_ERR_RESPONSE_CRC;
-        }
-
-        uint8_t response_cmd = ((resp0 >> 24) & 0xFF);
-        if (response_cmd != command && command != 41)
-        {
-            dbgmsg("rp2040_sdio_command_R1(", (int)command, "): received reply for ", (int)response_cmd);
-            return SDIO_ERR_RESPONSE_CODE;
-        }
-
-        *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
-    }
-    else
-    {
-        // Read out dummy marker
-        pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
-    }
-
-    return SDIO_OK;
-}
-
-sdio_status_t rp2040_sdio_command_R2(uint8_t command, uint32_t arg, uint8_t response[16])
-{
-    // The response is too long to fit in the PIO FIFO, so use DMA to receive it.
-    pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
-    uint32_t response_buf[5];
-    dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
-    channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
-    channel_config_set_read_increment(&dmacfg, false);
-    channel_config_set_write_increment(&dmacfg, true);
-    channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false));
-    dma_channel_configure(SDIO_DMA_CH, &dmacfg, &response_buf, &SDIO_PIO->rxf[SDIO_CMD_SM], 5, true);
-
-    sdio_send_command(command, arg, 136);
-
-    uint32_t start = millis();
-    while (dma_channel_is_busy(SDIO_DMA_CH))
-    {
-        if ((uint32_t)(millis() - start) > 2)
-        {
-            dbgmsg("Timeout waiting for response in rp2040_sdio_command_R2(", (int)command, "), ",
-                  "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
-                  " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
-                  " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
-
-            // Reset the state machine program
-            dma_channel_abort(SDIO_DMA_CH);
-            pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
-            pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
-            return SDIO_ERR_RESPONSE_TIMEOUT;
-        }
-    }
-
-    dma_channel_abort(SDIO_DMA_CH);
-
-    // Copy the response payload to output buffer
-    response[0]  = ((response_buf[0] >> 16) & 0xFF);
-    response[1]  = ((response_buf[0] >>  8) & 0xFF);
-    response[2]  = ((response_buf[0] >>  0) & 0xFF);
-    response[3]  = ((response_buf[1] >> 24) & 0xFF);
-    response[4]  = ((response_buf[1] >> 16) & 0xFF);
-    response[5]  = ((response_buf[1] >>  8) & 0xFF);
-    response[6]  = ((response_buf[1] >>  0) & 0xFF);
-    response[7]  = ((response_buf[2] >> 24) & 0xFF);
-    response[8]  = ((response_buf[2] >> 16) & 0xFF);
-    response[9]  = ((response_buf[2] >>  8) & 0xFF);
-    response[10] = ((response_buf[2] >>  0) & 0xFF);
-    response[11] = ((response_buf[3] >> 24) & 0xFF);
-    response[12] = ((response_buf[3] >> 16) & 0xFF);
-    response[13] = ((response_buf[3] >>  8) & 0xFF);
-    response[14] = ((response_buf[3] >>  0) & 0xFF);
-    response[15] = ((response_buf[4] >>  0) & 0xFF);
-
-    // Calculate checksum of the payload
-    uint8_t crc = 0;
-    for (int i = 0; i < 15; i++)
-    {
-        crc = crc7_table[crc ^ response[i]];
-    }
-
-    uint8_t actual_crc = response[15] & 0xFE;
-    if (crc != actual_crc)
-    {
-        dbgmsg("rp2040_sdio_command_R2(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
-        return SDIO_ERR_RESPONSE_CRC;
-    }
-
-    uint8_t response_cmd = ((response_buf[0] >> 24) & 0xFF);
-    if (response_cmd != 0x3F)
-    {
-        dbgmsg("rp2040_sdio_command_R2(", (int)command, "): Expected reply code 0x3F");
-        return SDIO_ERR_RESPONSE_CODE;
-    }
-
-    return SDIO_OK;
-}
-
-
-sdio_status_t rp2040_sdio_command_R3(uint8_t command, uint32_t arg, uint32_t *response)
-{
-    sdio_send_command(command, arg, 48);
-
-    // Wait for response
-    uint32_t start = millis();
-    while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < 2)
-    {
-        if ((uint32_t)(millis() - start) > 2)
-        {
-            dbgmsg("Timeout waiting for response in rp2040_sdio_command_R3(", (int)command, "), ",
-                  "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
-                  " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
-                  " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
-
-            // Reset the state machine program
-            pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
-            pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
-            return SDIO_ERR_RESPONSE_TIMEOUT;
-        }
-    }
-
-    // Read out response packet
-    uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
-    uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
-    *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
-    dbgmsg("SDIO R3 response: ", resp0, " ", resp1);
-
-    return SDIO_OK;
-}
-
-/*******************************************************
- * Data reception from SD card
- *******************************************************/
-
-sdio_status_t rp2040_sdio_rx_start(uint8_t *buffer, uint32_t num_blocks)
-{
-    // Buffer must be aligned
-    assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
-
-    g_sdio.transfer_state = SDIO_RX;
-    g_sdio.transfer_start_time = millis();
-    g_sdio.data_buf = (uint32_t*)buffer;
-    g_sdio.blocks_done = 0;
-    g_sdio.total_blocks = num_blocks;
-    g_sdio.blocks_checksumed = 0;
-    g_sdio.checksum_errors = 0;
-
-    // Create DMA block descriptors to store each block of 512 bytes of data to buffer
-    // and then 8 bytes to g_sdio.received_checksums.
-    for (int i = 0; i < num_blocks; i++)
-    {
-        g_sdio.dma_blocks[i * 2].write_addr = buffer + i * SDIO_BLOCK_SIZE;
-        g_sdio.dma_blocks[i * 2].transfer_count = SDIO_BLOCK_SIZE / sizeof(uint32_t);
-
-        g_sdio.dma_blocks[i * 2 + 1].write_addr = &g_sdio.received_checksums[i];
-        g_sdio.dma_blocks[i * 2 + 1].transfer_count = 2;
-    }
-    g_sdio.dma_blocks[num_blocks * 2].write_addr = 0;
-    g_sdio.dma_blocks[num_blocks * 2].transfer_count = 0;
-
-    // Configure first DMA channel for reading from the PIO RX fifo
-    dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
-    channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
-    channel_config_set_read_increment(&dmacfg, false);
-    channel_config_set_write_increment(&dmacfg, true);
-    channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
-    channel_config_set_bswap(&dmacfg, true);
-    channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
-    dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->rxf[SDIO_DATA_SM], 0, false);
-
-    // Configure second DMA channel for reconfiguring the first one
-    dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
-    channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
-    channel_config_set_read_increment(&dmacfg, true);
-    channel_config_set_write_increment(&dmacfg, true);
-    channel_config_set_ring(&dmacfg, true, 3);
-    dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &dma_hw->ch[SDIO_DMA_CH].al1_write_addr,
-        g_sdio.dma_blocks, 2, false);
-
-    // Initialize PIO state machine
-    pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_rx_offset, &g_sdio.pio_cfg_data_rx);
-    pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
-
-    // Write number of nibbles to receive to Y register
-    pio_sm_put(SDIO_PIO, SDIO_DATA_SM, SDIO_BLOCK_SIZE * 2 + 16 - 1);
-    pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
-
-    // Enable RX FIFO join because we don't need the TX FIFO during transfer.
-    // This gives more leeway for the DMA block switching
-    SDIO_PIO->sm[SDIO_DATA_SM].shiftctrl |= PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS;
-
-    // Start PIO and DMA
-    dma_channel_start(SDIO_DMA_CHB);
-    pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
-
-    return SDIO_OK;
-}
-
-// Check checksums for received blocks
-static void sdio_verify_rx_checksums(uint32_t maxcount)
-{
-    while (g_sdio.blocks_checksumed < g_sdio.blocks_done && maxcount-- > 0)
-    {
-        // Calculate checksum from received data
-        int blockidx = g_sdio.blocks_checksumed++;
-        uint64_t checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
-                                                     SDIO_WORDS_PER_BLOCK);
-
-        // Convert received checksum to little-endian format
-        uint32_t top = __builtin_bswap32(g_sdio.received_checksums[blockidx].top);
-        uint32_t bottom = __builtin_bswap32(g_sdio.received_checksums[blockidx].bottom);
-        uint64_t expected = ((uint64_t)top << 32) | bottom;
-
-        if (checksum != expected)
-        {
-            g_sdio.checksum_errors++;
-            if (g_sdio.checksum_errors == 1)
-            {
-                logmsg("SDIO checksum error in reception: block ", blockidx,
-                      " calculated ", checksum, " expected ", expected);
-            }
-        }
-    }
-}
-
-sdio_status_t rp2040_sdio_rx_poll(uint32_t *bytes_complete)
-{
-    // Was everything done when the previous rx_poll() finished?
-    if (g_sdio.blocks_done >= g_sdio.total_blocks)
-    {
-        g_sdio.transfer_state = SDIO_IDLE;
-    }
-    else
-    {
-        // Use the idle time to calculate checksums
-        sdio_verify_rx_checksums(4);
-
-        // Check how many DMA control blocks have been consumed
-        uint32_t dma_ctrl_block_count = (dma_hw->ch[SDIO_DMA_CHB].read_addr - (uint32_t)&g_sdio.dma_blocks);
-        dma_ctrl_block_count /= sizeof(g_sdio.dma_blocks[0]);
-
-        // Compute how many complete 512 byte SDIO blocks have been transferred
-        // When transfer ends, dma_ctrl_block_count == g_sdio.total_blocks * 2 + 1
-        g_sdio.blocks_done = (dma_ctrl_block_count - 1) / 2;
-
-        // NOTE: When all blocks are done, rx_poll() still returns SDIO_BUSY once.
-        // This provides a chance to start the SCSI transfer before the last checksums
-        // are computed. Any checksum failures can be indicated in SCSI status after
-        // the data transfer has finished.
-    }
-
-    if (bytes_complete)
-    {
-        *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
-    }
-
-    if (g_sdio.transfer_state == SDIO_IDLE)
-    {
-        // Verify all remaining checksums.
-        sdio_verify_rx_checksums(g_sdio.total_blocks);
-
-        if (g_sdio.checksum_errors == 0)
-            return SDIO_OK;
-        else
-            return SDIO_ERR_DATA_CRC;
-    }
-    else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
-    {
-        dbgmsg("rp2040_sdio_rx_poll() timeout, "
-            "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_rx_offset,
-            " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
-            " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
-            " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
-        rp2040_sdio_stop();
-        return SDIO_ERR_DATA_TIMEOUT;
-    }
-
-    return SDIO_BUSY;
-}
-
-
-/*******************************************************
- * Data transmission to SD card
- *******************************************************/
-
-static void sdio_start_next_block_tx()
-{
-    // Initialize PIO
-    pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_tx_offset, &g_sdio.pio_cfg_data_tx);
-    
-    // Configure DMA to send the data block payload (512 bytes)
-    dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
-    channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
-    channel_config_set_read_increment(&dmacfg, true);
-    channel_config_set_write_increment(&dmacfg, false);
-    channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, true));
-    channel_config_set_bswap(&dmacfg, true);
-    channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
-    dma_channel_configure(SDIO_DMA_CH, &dmacfg,
-        &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.data_buf + g_sdio.blocks_done * SDIO_WORDS_PER_BLOCK,
-        SDIO_WORDS_PER_BLOCK, false);
-
-    // Prepare second DMA channel to send the CRC and block end marker
-    uint64_t crc = g_sdio.next_wr_block_checksum;
-    g_sdio.end_token_buf[0] = (uint32_t)(crc >> 32);
-    g_sdio.end_token_buf[1] = (uint32_t)(crc >>  0);
-    g_sdio.end_token_buf[2] = 0xFFFFFFFF;
-    channel_config_set_bswap(&dmacfg, false);
-    dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
-        &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.end_token_buf, 3, false);
-    
-    // Enable IRQ to trigger when block is done
-    dma_hw->ints1 = 1 << SDIO_DMA_CHB;
-    dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 1);
-
-    // Initialize register X with nibble count and register Y with response bit count
-    pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 1048);
-    pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_x, 32));
-    pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 31);
-    pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
-    
-    // Initialize pins to output and high
-    pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pins, 15));
-    pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pindirs, 15));
-
-    // Write start token and start the DMA transfer.
-    pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 0xFFFFFFF0);
-    dma_channel_start(SDIO_DMA_CH);
-    
-    // Start state machine
-    pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
-}
-
-static void sdio_compute_next_tx_checksum()
-{
-    assert (g_sdio.blocks_done < g_sdio.total_blocks && g_sdio.blocks_checksumed < g_sdio.total_blocks);
-    int blockidx = g_sdio.blocks_checksumed++;
-    g_sdio.next_wr_block_checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
-                                                             SDIO_WORDS_PER_BLOCK);
-}
-
-// Start transferring data from memory to SD card
-sdio_status_t rp2040_sdio_tx_start(const uint8_t *buffer, uint32_t num_blocks)
-{
-    // Buffer must be aligned
-    assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
-
-    g_sdio.transfer_state = SDIO_TX;
-    g_sdio.transfer_start_time = millis();
-    g_sdio.data_buf = (uint32_t*)buffer;
-    g_sdio.blocks_done = 0;
-    g_sdio.total_blocks = num_blocks;
-    g_sdio.blocks_checksumed = 0;
-    g_sdio.checksum_errors = 0;
-
-    // Compute first block checksum
-    sdio_compute_next_tx_checksum();
-
-    // Start first DMA transfer and PIO
-    sdio_start_next_block_tx();
-
-    if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
-    {
-        // Precompute second block checksum
-        sdio_compute_next_tx_checksum();
-    }
-
-    return SDIO_OK;
-}
-
-sdio_status_t check_sdio_write_response(uint32_t card_response)
-{
-    // Shift card response until top bit is 0 (the start bit)
-    // The format of response is poorly documented in SDIO spec but refer to e.g.
-    // http://my-cool-projects.blogspot.com/2013/02/the-mysterious-sd-card-crc-status.html
-    uint32_t resp = card_response;
-    if (!(~resp & 0xFFFF0000)) resp <<= 16;
-    if (!(~resp & 0xFF000000)) resp <<= 8;
-    if (!(~resp & 0xF0000000)) resp <<= 4;
-    if (!(~resp & 0xC0000000)) resp <<= 2;
-    if (!(~resp & 0x80000000)) resp <<= 1;
-
-    uint32_t wr_status = (resp >> 28) & 7;
-
-    if (wr_status == 2)
-    {
-        return SDIO_OK;
-    }
-    else if (wr_status == 5)
-    {
-        logmsg("SDIO card reports write CRC error, status ", card_response);
-        return SDIO_ERR_WRITE_CRC;    
-    }
-    else if (wr_status == 6)
-    {
-        logmsg("SDIO card reports write failure, status ", card_response);
-        return SDIO_ERR_WRITE_FAIL;    
-    }
-    else
-    {
-        logmsg("SDIO card reports unknown write status ", card_response);
-        return SDIO_ERR_WRITE_FAIL;    
-    }
-}
-
-// When a block finishes, this IRQ handler starts the next one
-static void rp2040_sdio_tx_irq()
-{
-    dma_hw->ints1 = 1 << SDIO_DMA_CHB;
-
-    if (g_sdio.transfer_state == SDIO_TX)
-    {
-        if (!dma_channel_is_busy(SDIO_DMA_CH) && !dma_channel_is_busy(SDIO_DMA_CHB))
-        {
-            // Main data transfer is finished now.
-            // When card is ready, PIO will put card response on RX fifo
-            g_sdio.transfer_state = SDIO_TX_WAIT_IDLE;
-            if (!pio_sm_is_rx_fifo_empty(SDIO_PIO, SDIO_DATA_SM))
-            {
-                // Card is already idle
-                g_sdio.card_response = pio_sm_get(SDIO_PIO, SDIO_DATA_SM);
-            }
-            else
-            {
-                // Use DMA to wait for the response
-                dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
-                channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
-                channel_config_set_read_increment(&dmacfg, false);
-                channel_config_set_write_increment(&dmacfg, false);
-                channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
-                dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
-                    &g_sdio.card_response, &SDIO_PIO->rxf[SDIO_DATA_SM], 1, true);
-            }
-        }
-    }
-    
-    if (g_sdio.transfer_state == SDIO_TX_WAIT_IDLE)
-    {
-        if (!dma_channel_is_busy(SDIO_DMA_CHB))
-        {
-            g_sdio.wr_status = check_sdio_write_response(g_sdio.card_response);
-
-            if (g_sdio.wr_status != SDIO_OK)
-            {
-                rp2040_sdio_stop();
-                return;
-            }
-
-            g_sdio.blocks_done++;
-            if (g_sdio.blocks_done < g_sdio.total_blocks)
-            {
-                sdio_start_next_block_tx();
-                g_sdio.transfer_state = SDIO_TX;
-
-                if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
-                {
-                    // Precompute the CRC for next block so that it is ready when
-                    // we want to send it.
-                    sdio_compute_next_tx_checksum();
-                }
-            }
-            else
-            {
-                rp2040_sdio_stop();
-            }
-        }    
-    }
-}
-
-// Check if transmission is complete
-sdio_status_t rp2040_sdio_tx_poll(uint32_t *bytes_complete)
-{
-    if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk)
-    {
-        // Verify that IRQ handler gets called even if we are in hardfault handler
-        rp2040_sdio_tx_irq();
-    }
-
-    if (bytes_complete)
-    {
-        *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
-    }
-
-    if (g_sdio.transfer_state == SDIO_IDLE)
-    {
-        rp2040_sdio_stop();
-        return g_sdio.wr_status;
-    }
-    else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
-    {
-        dbgmsg("rp2040_sdio_tx_poll() timeout, "
-            "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_tx_offset,
-            " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
-            " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
-            " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
-        rp2040_sdio_stop();
-        return SDIO_ERR_DATA_TIMEOUT;
-    }
-
-    return SDIO_BUSY;
-}
-
-// Force everything to idle state
-sdio_status_t rp2040_sdio_stop()
-{
-    dma_channel_abort(SDIO_DMA_CH);
-    dma_channel_abort(SDIO_DMA_CHB);
-    dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 0);
-    pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
-    pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
-    g_sdio.transfer_state = SDIO_IDLE;
-    return SDIO_OK;
-}
-
-void rp2040_sdio_init(int clock_divider)
-{
-    // Mark resources as being in use, unless it has been done already.
-    static bool resources_claimed = false;
-    if (!resources_claimed)
-    {
-        pio_sm_claim(SDIO_PIO, SDIO_CMD_SM);
-        pio_sm_claim(SDIO_PIO, SDIO_DATA_SM);
-        dma_channel_claim(SDIO_DMA_CH);
-        dma_channel_claim(SDIO_DMA_CHB);
-        resources_claimed = true;
-    }
-
-    memset(&g_sdio, 0, sizeof(g_sdio));
-
-    dma_channel_abort(SDIO_DMA_CH);
-    dma_channel_abort(SDIO_DMA_CHB);
-    pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
-    pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
-
-    // Load PIO programs
-    pio_clear_instruction_memory(SDIO_PIO);
-
-    // Command & clock state machine
-    g_sdio.pio_cmd_clk_offset = pio_add_program(SDIO_PIO, &sdio_cmd_clk_program);
-    pio_sm_config cfg = sdio_cmd_clk_program_get_default_config(g_sdio.pio_cmd_clk_offset);
-    sm_config_set_out_pins(&cfg, SDIO_CMD, 1);
-    sm_config_set_in_pins(&cfg, SDIO_CMD);
-    sm_config_set_set_pins(&cfg, SDIO_CMD, 1);
-    sm_config_set_jmp_pin(&cfg, SDIO_CMD);
-    sm_config_set_sideset_pins(&cfg, SDIO_CLK);
-    sm_config_set_out_shift(&cfg, false, true, 32);
-    sm_config_set_in_shift(&cfg, false, true, 32);
-    sm_config_set_clkdiv_int_frac(&cfg, clock_divider, 0);
-    sm_config_set_mov_status(&cfg, STATUS_TX_LESSTHAN, 2);
-
-    pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_clk_offset, &cfg);
-    pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
-    pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, true);
-
-    // Data reception program
-    g_sdio.pio_data_rx_offset = pio_add_program(SDIO_PIO, &sdio_data_rx_program);
-    g_sdio.pio_cfg_data_rx = sdio_data_rx_program_get_default_config(g_sdio.pio_data_rx_offset);
-    sm_config_set_in_pins(&g_sdio.pio_cfg_data_rx, SDIO_D0);
-    sm_config_set_in_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
-    sm_config_set_out_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
-    sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_rx, clock_divider, 0);
-
-    // Data transmission program
-    g_sdio.pio_data_tx_offset = pio_add_program(SDIO_PIO, &sdio_data_tx_program);
-    g_sdio.pio_cfg_data_tx = sdio_data_tx_program_get_default_config(g_sdio.pio_data_tx_offset);
-    sm_config_set_in_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0);
-    sm_config_set_set_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
-    sm_config_set_out_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
-    sm_config_set_in_shift(&g_sdio.pio_cfg_data_tx, false, false, 32);
-    sm_config_set_out_shift(&g_sdio.pio_cfg_data_tx, false, true, 32);
-    sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_tx, clock_divider, 0);
-
-    // Disable SDIO pins input synchronizer.
-    // This reduces input delay.
-    // Because the CLK is driven synchronously to CPU clock,
-    // there should be no metastability problems.
-    SDIO_PIO->input_sync_bypass |= (1 << SDIO_CLK) | (1 << SDIO_CMD)
-                                 | (1 << SDIO_D0) | (1 << SDIO_D1) | (1 << SDIO_D2) | (1 << SDIO_D3);
-
-    // Redirect GPIOs to PIO
-    gpio_set_function(SDIO_CMD, GPIO_FUNC_PIO1);
-    gpio_set_function(SDIO_CLK, GPIO_FUNC_PIO1);
-    gpio_set_function(SDIO_D0, GPIO_FUNC_PIO1);
-    gpio_set_function(SDIO_D1, GPIO_FUNC_PIO1);
-    gpio_set_function(SDIO_D2, GPIO_FUNC_PIO1);
-    gpio_set_function(SDIO_D3, GPIO_FUNC_PIO1);
-
-    // Set up IRQ handler when DMA completes.
-    irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
-    irq_set_enabled(DMA_IRQ_1, true);
-}

+ 0 - 73
lib/ZuluSCSI_platform_BS2/rp2040_sdio.h

@@ -1,73 +0,0 @@
-/** 
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-// SD card access using SDIO for RP2040 platform.
-// This module contains the low-level SDIO bus implementation using
-// the PIO peripheral. The high-level commands are in sd_card_sdio.cpp.
-
-#pragma once
-#include <stdint.h>
-
-enum sdio_status_t {
-    SDIO_OK = 0,
-    SDIO_BUSY = 1,
-    SDIO_ERR_RESPONSE_TIMEOUT = 2, // Timed out waiting for response from card
-    SDIO_ERR_RESPONSE_CRC = 3,     // Response CRC is wrong
-    SDIO_ERR_RESPONSE_CODE = 4,    // Response command code does not match what was sent
-    SDIO_ERR_DATA_TIMEOUT = 5,     // Timed out waiting for data block
-    SDIO_ERR_DATA_CRC = 6,         // CRC for data packet is wrong
-    SDIO_ERR_WRITE_CRC = 7,        // Card reports bad CRC for write
-    SDIO_ERR_WRITE_FAIL = 8,       // Card reports write failure
-};
-
-#define SDIO_BLOCK_SIZE 512
-#define SDIO_WORDS_PER_BLOCK 128
-
-// Execute a command that has 48-bit reply (response types R1, R6, R7)
-// If response is NULL, does not wait for reply.
-sdio_status_t rp2040_sdio_command_R1(uint8_t command, uint32_t arg, uint32_t *response);
-
-// Execute a command that has 136-bit reply (response type R2)
-// Response buffer should have space for 16 bytes (the 128 bit payload)
-sdio_status_t rp2040_sdio_command_R2(uint8_t command, uint32_t arg, uint8_t *response);
-
-// Execute a command that has 48-bit reply but without CRC (response R3)
-sdio_status_t rp2040_sdio_command_R3(uint8_t command, uint32_t arg, uint32_t *response);
-
-// Start transferring data from SD card to memory buffer
-// Transfer block size is always 512 bytes.
-sdio_status_t rp2040_sdio_rx_start(uint8_t *buffer, uint32_t num_blocks);
-
-// Check if reception is complete
-// Returns SDIO_BUSY while transferring, SDIO_OK when done and error on failure.
-sdio_status_t rp2040_sdio_rx_poll(uint32_t *bytes_complete = nullptr);
-
-// Start transferring data from memory to SD card
-sdio_status_t rp2040_sdio_tx_start(const uint8_t *buffer, uint32_t num_blocks);
-
-// Check if transmission is complete
-sdio_status_t rp2040_sdio_tx_poll(uint32_t *bytes_complete = nullptr);
-
-// Force everything to idle state
-sdio_status_t rp2040_sdio_stop();
-
-// (Re)initialize the SDIO interface
-void rp2040_sdio_init(int clock_divider = 1);

+ 0 - 36
lib/ZuluSCSI_platform_BS2/scsi2sd_time.h

@@ -1,36 +0,0 @@
-/** 
- * SCSI2SD V6 - Copyright (C) 2014 Michael McMaster <michael@codesrc.com>
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * This file is licensed under the GPL version 3 or any later version.  
- * It is derived from time.h in SCSI2SD V6.
- *  
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-// Timing functions for SCSI2SD.
-// This file is derived from time.h in SCSI2SD-V6.
-
-#pragma once
-
-#include <stdint.h>
-#include "ZuluSCSI_platform.h"
-
-#define s2s_getTime_ms() millis()
-#define s2s_elapsedTime_ms(since) ((uint32_t)(millis() - (since)))
-#define s2s_delay_ms(x) delay_ns(x * 1000000)
-#define s2s_delay_us(x) delay_ns(x * 1000)
-#define s2s_delay_ns(x) delay_ns(x)

+ 0 - 407
lib/ZuluSCSI_platform_BS2/scsiPhy.cpp

@@ -1,407 +0,0 @@
-/** 
- * SCSI2SD V6 - Copyright (C) 2013 Michael McMaster <michael@codesrc.com>
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * This file is licensed under the GPL version 3 or any later version.  
- * It is derived from scsiPhy.c in SCSI2SD V6.
- *  
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-// Implements the low level interface to SCSI bus
-// Partially derived from scsiPhy.c from SCSI2SD-V6
-
-#include "scsiPhy.h"
-#include "ZuluSCSI_platform.h"
-#include "ZuluSCSI_log.h"
-#include "ZuluSCSI_log_trace.h"
-#include "ZuluSCSI_config.h"
-#include "scsi_accel_rp2040.h"
-#include "hardware/structs/iobank0.h"
-
-#include <scsi2sd.h>
-extern "C" {
-#include <scsi.h>
-#include <scsi2sd_time.h>
-}
-
-/***********************/
-/* SCSI status signals */
-/***********************/
-
-extern "C" bool scsiStatusATN()
-{
-    return SCSI_IN(ATN);
-}
-
-extern "C" bool scsiStatusBSY()
-{
-    return SCSI_IN(BSY);
-}
-
-/************************/
-/* SCSI selection logic */
-/************************/
-
-volatile uint8_t g_scsi_sts_selection;
-volatile uint8_t g_scsi_ctrl_bsy;
-
-void scsi_bsy_deassert_interrupt()
-{
-    if (SCSI_IN(SEL) && !SCSI_IN(BSY))
-    {
-        // Check if any of the targets we simulate is selected
-        uint8_t sel_bits = SCSI_IN_DATA();
-        int sel_id = -1;
-        for (int i = 0; i < S2S_MAX_TARGETS; i++)
-        {
-            if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
-            {
-                if (sel_bits & (1 << scsiDev.targets[i].targetId))
-                {
-                    sel_id = scsiDev.targets[i].targetId;
-                    break;
-                }
-            }
-        }
-
-        if (sel_id >= 0)
-        {
-            // Set ATN flag here unconditionally, real value is only known after
-            // OUT_BSY is enabled in scsiStatusSEL() below.
-            g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | SCSI_STS_SELECTION_ATN | sel_id;
-        }
-
-        // selFlag is required for Philips P2000C which releases it after 600ns
-        // without waiting for BSY.
-        // Also required for some early Mac Plus roms
-        scsiDev.selFlag = *SCSI_STS_SELECTED;
-    }
-}
-
-extern "C" bool scsiStatusSEL()
-{
-    if (g_scsi_ctrl_bsy)
-    {
-        // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
-        // Instead update the state here.
-        // Releasing happens with bus release.
-        g_scsi_ctrl_bsy = 0;
-        // @TODO See if needed
-        SCSI_OUT(CD, 0);
-        SCSI_OUT(MSG, 0);
-        SCSI_ENABLE_CONTROL_OUT();
-        // @TODO end
-        SCSI_OUT(BSY, 1);
-
-        // On RP2040 hardware the ATN signal is only available after OUT_BSY enables
-        // the IO buffer U105, so check the signal status here.
-        delay_100ns();
-        if (!scsiStatusATN())
-        {
-            // This is a SCSI1 host that does send IDENTIFY message
-            scsiDev.atnFlag = 0;
-            scsiDev.target->unitAttention = 0;
-            scsiDev.compatMode = COMPAT_SCSI1;
-        }
-    }
-
-    return SCSI_IN(SEL);
-}
-
-/************************/
-/* SCSI bus reset logic */
-/************************/
-
-static void scsi_rst_assert_interrupt()
-{
-    // Glitch filtering
-    bool rst1 = SCSI_IN(RST);
-    delay_ns(500);
-    bool rst2 = SCSI_IN(RST);
-
-    if (rst1 && rst2)
-    {
-        //dbg("BUS RESET");
-        scsiDev.resetFlag = 1;
-    }
-}
-
-static void scsiPhyIRQ(uint gpio, uint32_t events)
-{
-    if (gpio == SCSI_IN_BSY || gpio == SCSI_IN_SEL)
-    {
-        // Note BSY / SEL interrupts only when we are not driving OUT_BSY low ourselves.
-        // The BSY input pin may be shared with other signals.
-        if (sio_hw->gpio_out & (1 << SCSI_OUT_BSY))
-        {
-            scsi_bsy_deassert_interrupt();
-        }
-    }
-    else if (gpio == SCSI_IN_RST)
-    {
-        scsi_rst_assert_interrupt();
-    }
-}
-
-// This function is called to initialize the phy code.
-// It is called after power-on and after SCSI bus reset.
-extern "C" void scsiPhyReset(void)
-{
-    SCSI_RELEASE_OUTPUTS();
-    g_scsi_sts_selection = 0;
-    g_scsi_ctrl_bsy = 0;
-
-    scsi_accel_rp2040_init();
-
-    // Enable BSY, RST and SEL interrupts
-    // Note: RP2040 library currently supports only one callback,
-    // so it has to be same for both pins.
-    gpio_set_irq_enabled_with_callback(SCSI_IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ);
-    gpio_set_irq_enabled(SCSI_IN_RST, GPIO_IRQ_EDGE_FALL, true);
-
-    // Check BSY line status when SEL goes active.
-    // This is needed to handle SCSI-1 hosts that use the single initiator mode.
-    // The host will just assert the SEL directly, without asserting BSY first.
-    gpio_set_irq_enabled(SCSI_IN_SEL, GPIO_IRQ_EDGE_FALL, true);
-}
-
-/************************/
-/* SCSI bus phase logic */
-/************************/
-
-static SCSI_PHASE g_scsi_phase;
-
-extern "C" void scsiEnterPhase(int phase)
-{
-    int delay = scsiEnterPhaseImmediate(phase);
-    if (delay > 0)
-    {
-        s2s_delay_ns(delay);
-    }
-}
-
-// Change state and return nanosecond delay to wait
-extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
-{
-    if (phase != g_scsi_phase)
-    {
-        // ANSI INCITS 362-2002 SPI-3 10.7.1:
-        // Phase changes are not allowed while REQ or ACK is asserted.
-        while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
-
-        if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT))
-        {
-            // Akai S1000/S3000 seems to need extra delay before changing to data phase
-            // after a command. The code in ZuluSCSI_disk.cpp tries to do this while waiting
-            // for SD card, to avoid any extra latency.
-            s2s_delay_ns(400000);
-        }
-
-        int oldphase = g_scsi_phase;
-        g_scsi_phase = (SCSI_PHASE)phase;
-        scsiLogPhaseChange(phase);
-
-        // Select between synchronous vs. asynchronous SCSI writes
-        if (scsiDev.target->syncOffset > 0 && (g_scsi_phase == DATA_IN || g_scsi_phase == DATA_OUT))
-        {
-            scsi_accel_rp2040_setSyncMode(scsiDev.target->syncOffset, scsiDev.target->syncPeriod);
-        }
-        else
-        {
-            scsi_accel_rp2040_setSyncMode(0, 0);
-        }
-
-        if (phase < 0)
-        {
-            // Other communication on bus or reset state
-            SCSI_RELEASE_OUTPUTS();
-            return 0;
-        }
-        else
-        {
-            // The phase control signals should be changed close to simultaneously.
-            // The SCSI spec allows 400 ns for this, but some hosts do not seem to be that
-            // tolerant. The Cortex-M0 is also quite slow in bit twiddling.
-            //
-            // To avoid unnecessary delays, precalculate an XOR mask and then apply it
-            // simultaneously to all three signals.
-            uint32_t gpio_new = 0;
-            if (!(phase & __scsiphase_msg)) { gpio_new |= (1 << SCSI_OUT_MSG); }
-            if (!(phase & __scsiphase_cd)) { gpio_new |= (1 << SCSI_OUT_CD); }
-            if (!(phase & __scsiphase_io)) { gpio_new |= (1 << SCSI_OUT_IO); }
-
-            uint32_t mask = (1 << SCSI_OUT_MSG) | (1 << SCSI_OUT_CD) | (1 << SCSI_OUT_IO);
-            uint32_t gpio_xor = (sio_hw->gpio_out ^ gpio_new) & mask;
-            sio_hw->gpio_togl = gpio_xor;
-            SCSI_ENABLE_CONTROL_OUT();
-
-            int delayNs = 400; // Bus settle delay
-            if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
-            {
-                delayNs += 400; // Data release delay
-            }
-
-            if (scsiDev.compatMode < COMPAT_SCSI2)
-            {
-                // EMU EMAX needs 100uS ! 10uS is not enough.
-                delayNs += 100000;
-            }
-
-            return delayNs;
-        }
-    }
-    else
-    {
-        return 0;
-    }
-}
-
-// Release all signals
-void scsiEnterBusFree(void)
-{
-    g_scsi_phase = BUS_FREE;
-    g_scsi_sts_selection = 0;
-    g_scsi_ctrl_bsy = 0;
-    scsiDev.cdbLen = 0;
-
-    SCSI_RELEASE_OUTPUTS();
-}
-
-/********************/
-/* Transmit to host */
-/********************/
-
-#define SCSI_WAIT_ACTIVE(pin) \
-  if (!SCSI_IN(pin)) { \
-    if (!SCSI_IN(pin)) { \
-      while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
-    } \
-  }
-
-// In synchronous mode the ACK pulse can be very short, so use edge IRQ to detect it.
-#define CHECK_EDGE(pin) \
-    ((iobank0_hw->intr[pin / 8] >> (4 * (pin % 8))) & GPIO_IRQ_EDGE_FALL)
-
-#define SCSI_WAIT_ACTIVE_EDGE(pin) \
-  if (!CHECK_EDGE(SCSI_IN_ ## pin)) { \
-    while(!SCSI_IN(pin) && !CHECK_EDGE(SCSI_IN_ ## pin) && !scsiDev.resetFlag); \
-  }
-
-#define SCSI_WAIT_INACTIVE(pin) \
-  if (SCSI_IN(pin)) { \
-    if (SCSI_IN(pin)) { \
-      while(SCSI_IN(pin) && !scsiDev.resetFlag); \
-    } \
-  }
-
-// Write one byte to SCSI host using the handshake mechanism
-// This is suitable for both asynchronous and synchronous communication.
-static inline void scsiWriteOneByte(uint8_t value)
-{
-    SCSI_OUT_DATA(value);
-    delay_100ns(); // DB setup time before REQ
-    gpio_acknowledge_irq(SCSI_IN_ACK, GPIO_IRQ_EDGE_FALL);
-    SCSI_OUT(REQ, 1);
-    SCSI_WAIT_ACTIVE_EDGE(ACK);
-    SCSI_RELEASE_DATA_REQ();
-    SCSI_WAIT_INACTIVE(ACK);
-}
-
-extern "C" void scsiWriteByte(uint8_t value)
-{
-    scsiLogDataIn(&value, 1);
-    scsiWriteOneByte(value);
-}
-
-extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
-{
-    scsiStartWrite(data, count);
-    scsiFinishWrite();
-}
-
-extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
-{
-    scsiLogDataIn(data, count);
-    scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag);
-}
-
-extern "C" bool scsiIsWriteFinished(const uint8_t *data)
-{
-    return scsi_accel_rp2040_isWriteFinished(data);
-}
-
-extern "C" void scsiFinishWrite()
-{
-    scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag);
-}
-
-/*********************/
-/* Receive from host */
-/*********************/
-
-// Read one byte from SCSI host using the handshake mechanism.
-static inline uint8_t scsiReadOneByte(int* parityError)
-{
-    SCSI_OUT(REQ, 1);
-    SCSI_WAIT_ACTIVE(ACK);
-    delay_100ns();
-    uint16_t r = SCSI_IN_DATA();
-    SCSI_OUT(REQ, 0);
-    SCSI_WAIT_INACTIVE(ACK);
-
-    if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ SCSI_IO_DATA_MASK))
-    {
-        logmsg("Parity error in scsiReadOneByte(): ", (uint32_t)r);
-        *parityError = 1;
-    }
-
-    return (uint8_t)r;
-}
-
-extern "C" uint8_t scsiReadByte(void)
-{
-    uint8_t r = scsiReadOneByte(NULL);
-    scsiLogDataOut(&r, 1);
-    return r;
-}
-
-extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
-{
-    *parityError = 0;
-    if (!(scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY)) { parityError = NULL; }
-
-    scsiStartRead(data, count, parityError);
-    scsiFinishRead(data, count, parityError);
-}
-
-extern "C" void scsiStartRead(uint8_t* data, uint32_t count, int *parityError)
-{
-    if (!(scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY)) { parityError = NULL; }
-    scsi_accel_rp2040_startRead(data, count, parityError, &scsiDev.resetFlag);
-}
-
-extern "C" void scsiFinishRead(uint8_t* data, uint32_t count, int *parityError)
-{
-    if (!(scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY)) { parityError = NULL; }
-    scsi_accel_rp2040_finishRead(data, count, parityError, &scsiDev.resetFlag);
-    scsiLogDataOut(data, count);
-}
-
-extern "C" bool scsiIsReadFinished(const uint8_t *data)
-{
-    return scsi_accel_rp2040_isReadFinished(data);
-}

+ 0 - 97
lib/ZuluSCSI_platform_BS2/scsiPhy.h

@@ -1,97 +0,0 @@
-/** 
- * SCSI2SD V6 - Copyright (C) 2013 Michael McMaster <michael@codesrc.com>
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * This file is licensed under the GPL version 3 or any later version.  
- * It is derived from scsiPhy.h in SCSI2SD V6.
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-// Interface to SCSI physical interface.
-// This file is derived from scsiPhy.h in SCSI2SD-V6.
-
-#pragma once
-
-#include <stdint.h>
-#include <stdbool.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-// Read SCSI status signals
-bool scsiStatusATN();
-bool scsiStatusBSY();
-bool scsiStatusSEL();
-
-// Parity not yet implemented
-#define scsiParityError() 0
-
-// Get SCSI selection status.
-// This is latched by interrupt when BSY is deasserted while SEL is asserted.
-// Lowest 3 bits are the selected target id.
-// Highest bits are status information.
-#define SCSI_STS_SELECTION_SUCCEEDED 0x40
-#define SCSI_STS_SELECTION_ATN 0x80
-extern volatile uint8_t g_scsi_sts_selection;
-#define SCSI_STS_SELECTED (&g_scsi_sts_selection)
-extern volatile uint8_t g_scsi_ctrl_bsy;
-#define SCSI_CTRL_BSY (&g_scsi_ctrl_bsy)
-
-// Called when SCSI RST signal has been asserted, should release bus.
-void scsiPhyReset(void);
-
-// Change MSG / CD / IO signal states and wait for necessary transition time.
-// Phase argument is one of SCSI_PHASE enum values.
-void scsiEnterPhase(int phase);
-
-// Change state and return nanosecond delay to wait
-uint32_t scsiEnterPhaseImmediate(int phase);
-
-// Release all signals
-void scsiEnterBusFree(void);
-
-// Blocking data transfer
-void scsiWrite(const uint8_t* data, uint32_t count);
-void scsiRead(uint8_t* data, uint32_t count, int* parityError);
-void scsiWriteByte(uint8_t value);
-uint8_t scsiReadByte(void);
-
-// Non-blocking data transfer.
-// Depending on platform support the start() function may block.
-// The start function can be called multiple times, it may internally
-// either combine transfers or block until previous transfer completes.
-void scsiStartWrite(const uint8_t* data, uint32_t count);
-void scsiFinishWrite();
-void scsiStartRead(uint8_t* data, uint32_t count, int *parityError);
-void scsiFinishRead(uint8_t* data, uint32_t count, int *parityError);
-
-// Query whether the data at pointer has already been read, i.e. buffer can be reused.
-// If data is NULL, checks if all writes have completed.
-bool scsiIsWriteFinished(const uint8_t *data);
-
-// Query whether the data at pointer has already been written, i.e. can be processed.
-// If data is NULL, checks if all reads have completed.
-bool scsiIsReadFinished(const uint8_t *data);
-
-#define PLATFORM_SCSIPHY_HAS_NONBLOCKING_READ 1
-
-#define s2s_getScsiRateKBs() 0
-
-#ifdef __cplusplus
-}
-#endif

+ 0 - 1049
lib/ZuluSCSI_platform_BS2/scsi_accel_rp2040.cpp

@@ -1,1049 +0,0 @@
-/** 
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-/* Data flow in SCSI acceleration:
- *
- * 1. Application provides a buffer of bytes to send.
- * 2. Code in this module adds parity bit to the bytes and packs two bytes into 32 bit words.
- * 3. DMA controller copies the words to PIO peripheral FIFO.
- * 4. PIO peripheral handles low-level SCSI handshake and writes bytes and parity to GPIO.
- */
-
-#include "ZuluSCSI_platform.h"
-#include "ZuluSCSI_log.h"
-#include "scsi_accel_rp2040.h"
-#include "scsi_accel.pio.h"
-#include <hardware/pio.h>
-#include <hardware/dma.h>
-#include <hardware/irq.h>
-#include <hardware/structs/iobank0.h>
-#include <hardware/sync.h>
-#include <multicore.h>
-
-// SCSI bus write acceleration uses up to 3 PIO state machines:
-// SM0: Convert data bytes to lookup addresses to add parity
-// SM1: Write data to SCSI bus
-// SM2: For synchronous mode only, count ACK pulses
-#define SCSI_DMA_PIO pio0
-#define SCSI_PARITY_SM 0
-#define SCSI_DATA_SM 1
-#define SCSI_SYNC_SM 2
-
-// SCSI bus write acceleration uses 3 or 4 DMA channels (data flow A->B->C->D):
-// A: Bytes from RAM to scsi_parity PIO
-// B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
-// C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
-// D: For sync transfers, scsi_sync_write to scsi_sync_write_pacer PIO
-//
-// SCSI bus read acceleration uses 4 DMA channels (data flow D->C->B->A):
-// A: Bytes from scsi_read_parity PIO to memory buffer
-// B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
-// C: Addresses from scsi_accel_read PIO to lookup DMA READ_ADDR register
-// D: From pacer to data state machine to trigger transfers
-#define SCSI_DMA_CH_A 0
-#define SCSI_DMA_CH_B 1
-#define SCSI_DMA_CH_C 2
-#define SCSI_DMA_CH_D 3
-
-static struct {
-    uint8_t *app_buf; // Buffer provided by application
-    uint32_t app_bytes; // Bytes available in application buffer
-    uint32_t dma_bytes; // Bytes that have been scheduled for DMA so far
-    
-    uint8_t *next_app_buf; // Next buffer from application after current one finishes
-    uint32_t next_app_bytes; // Bytes in next buffer
-
-    // Synchronous mode?
-    int syncOffset;
-    int syncPeriod;
-    int syncOffsetDivider; // Autopush/autopull threshold for the write pacer state machine
-    int syncOffsetPreload; // Number of items to preload in the RX fifo of scsi_sync_write
-
-    // PIO configurations
-    uint32_t pio_offset_parity;
-    uint32_t pio_offset_async_write;
-    uint32_t pio_offset_sync_write_pacer;
-    uint32_t pio_offset_sync_write;
-    uint32_t pio_offset_read;
-    uint32_t pio_offset_read_parity;
-    uint32_t pio_offset_sync_read_pacer;
-    pio_sm_config pio_cfg_parity;
-    pio_sm_config pio_cfg_async_write;
-    pio_sm_config pio_cfg_sync_write_pacer;
-    pio_sm_config pio_cfg_sync_write;
-    pio_sm_config pio_cfg_read;
-    pio_sm_config pio_cfg_read_parity;
-    pio_sm_config pio_cfg_sync_read_pacer;
-    
-    // DMA configurations for write
-    dma_channel_config dmacfg_write_chA; // Data from RAM to scsi_parity PIO
-    dma_channel_config dmacfg_write_chB; // Addresses from scsi_parity PIO to lookup DMA
-    dma_channel_config dmacfg_write_chC; // Data from g_scsi_parity_lookup to scsi write PIO
-    dma_channel_config dmacfg_write_chD; // In synchronous mode only, transfer between state machines
-
-    // DMA configurations for read
-    dma_channel_config dmacfg_read_chA; // Data to destination memory buffer
-    dma_channel_config dmacfg_read_chB; // From lookup table to scsi_read_parity PIO
-    dma_channel_config dmacfg_read_chC; // From scsi_accel_read to channel B READ_ADDR
-    dma_channel_config dmacfg_read_chD; // From pacer to data state machine
-} g_scsi_dma;
-
-enum scsidma_state_t { SCSIDMA_IDLE = 0,
-                       SCSIDMA_WRITE, SCSIDMA_WRITE_DONE,
-                       SCSIDMA_READ, SCSIDMA_READ_DONE };
-static volatile scsidma_state_t g_scsi_dma_state;
-static bool g_channels_claimed = false;
-static void scsidma_config_gpio();
-
-
-/****************************************/
-/* Accelerated writes to SCSI bus       */
-/****************************************/
-
-// Load the SCSI parity state machine with the address of the parity lookup table.
-// Also sets up DMA channels B and C
-static void config_parity_sm_for_write()
-{
-    // Load base address to state machine register X
-    uint32_t addrbase = (uint32_t)&g_scsi_parity_lookup[0];
-    assert((addrbase & 0x1FF) == 0);
-    pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_parity, &g_scsi_dma.pio_cfg_parity);
-    pio_sm_put(SCSI_DMA_PIO, SCSI_PARITY_SM, addrbase >> 9);
-    pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_pull(false, false));
-    pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_mov(pio_x, pio_osr));
-    
-    // DMA channel B will copy addresses from parity PIO to DMA channel C read address register.
-    // It is triggered by the parity SM RX FIFO request
-    dma_channel_configure(SCSI_DMA_CH_B,
-        &g_scsi_dma.dmacfg_write_chB,
-        &dma_hw->ch[SCSI_DMA_CH_C].al3_read_addr_trig,
-        &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
-        1, true);
-    
-    // DMA channel C will read g_scsi_parity_lookup to copy data + parity to SCSI write state machine.
-    // It is triggered by SCSI write machine TX FIFO request and chains to re-enable channel B.
-    dma_channel_configure(SCSI_DMA_CH_C,
-        &g_scsi_dma.dmacfg_write_chC,
-        &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
-        NULL,
-        1, false);
-}
-
-static void start_dma_write()
-{
-    if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
-    {
-        // Buffer has been fully processed, swap it
-        g_scsi_dma.dma_bytes = 0;
-        g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
-        g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
-        g_scsi_dma.next_app_buf = 0;
-        g_scsi_dma.next_app_bytes = 0;
-    }
-
-    // Check if we are all done.
-    // From SCSIDMA_WRITE_DONE state we can either go to IDLE in stopWrite()
-    // or back to WRITE in startWrite().
-    uint32_t bytes_to_send = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
-    if (bytes_to_send == 0)
-    {
-        g_scsi_dma_state = SCSIDMA_WRITE_DONE;
-        return;
-    }
-
-    uint8_t *src_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
-    g_scsi_dma.dma_bytes += bytes_to_send;
-    
-    // Start DMA from current buffer to parity generator
-    dma_channel_configure(SCSI_DMA_CH_A,
-        &g_scsi_dma.dmacfg_write_chA,
-        &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
-        src_buf,
-        bytes_to_send,
-        true
-    );
-}
-
-void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag)
-{
-    // Any read requests should be matched with a stopRead()
-    assert(g_scsi_dma_state != SCSIDMA_READ && g_scsi_dma_state != SCSIDMA_READ_DONE);
-
-    __disable_irq();
-    if (g_scsi_dma_state == SCSIDMA_WRITE)
-    {
-        if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
-        {
-            // Combine with currently running request
-            g_scsi_dma.app_bytes += count;
-            count = 0;
-        }
-        else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
-        {
-            // Combine with queued request
-            g_scsi_dma.next_app_bytes += count;
-            count = 0;
-        }
-        else if (!g_scsi_dma.next_app_buf)
-        {
-            // Add as queued request
-            g_scsi_dma.next_app_buf = (uint8_t*)data;
-            g_scsi_dma.next_app_bytes = count;
-            count = 0;
-        }
-    }
-    __enable_irq();
-
-    // Check if the request was combined
-    if (count == 0) return;
-
-    if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_WRITE_DONE)
-    {
-        // Wait for previous request to finish
-        scsi_accel_rp2040_finishWrite(resetFlag);
-        if (*resetFlag)
-        {
-            return;
-        }
-    }
-
-    bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
-    g_scsi_dma_state = SCSIDMA_WRITE;
-    g_scsi_dma.app_buf = (uint8_t*)data;
-    g_scsi_dma.app_bytes = count;
-    g_scsi_dma.dma_bytes = 0;
-    g_scsi_dma.next_app_buf = 0;
-    g_scsi_dma.next_app_bytes = 0;
-    
-    if (must_reconfig_gpio)
-    {
-        SCSI_ENABLE_DATA_OUT();
-
-        if (g_scsi_dma.syncOffset == 0)
-        {
-            // Asynchronous write
-            config_parity_sm_for_write();
-            pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_async_write, &g_scsi_dma.pio_cfg_async_write);
-            scsidma_config_gpio();
-
-            pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
-            pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
-        }
-        else
-        {
-            // Synchronous write
-            // Data state machine writes data to SCSI bus and dummy bits to its RX fifo.
-            // Sync state machine empties the dummy bits every time ACK is received, to control the transmit pace.
-            config_parity_sm_for_write();
-            pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_sync_write, &g_scsi_dma.pio_cfg_sync_write);
-            pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_write_pacer, &g_scsi_dma.pio_cfg_sync_write_pacer);
-            scsidma_config_gpio();
-
-            // Prefill RX fifo to set the syncOffset
-            for (int i = 0; i < g_scsi_dma.syncOffsetPreload; i++)
-            {
-                pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM,
-                    pio_encode_push(false, false) | pio_encode_sideset(1, 1));
-            }
-
-            // Fill the pacer TX fifo
-            // DMA should start transferring only after ACK pulses are received
-            for (int i = 0; i < 4; i++)
-            {
-                pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, 0);
-            }
-
-            // Fill the pacer OSR
-            pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM,
-                pio_encode_mov(pio_osr, pio_null));
-
-            // Start DMA transfer to move dummy bits to write pacer
-            dma_channel_configure(SCSI_DMA_CH_D,
-                &g_scsi_dma.dmacfg_write_chD,
-                &SCSI_DMA_PIO->txf[SCSI_SYNC_SM],
-                &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
-                0xFFFFFFFF,
-                true
-            );
-
-            // Enable state machines
-            pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
-            pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
-            pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
-        }
-        
-        dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
-    }
-
-    start_dma_write();
-}
-
-bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data)
-{
-    // Check if everything has completed
-    if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_WRITE_DONE)
-    {
-        return true;
-    }
-
-    if (!data)
-        return false;
-    
-    // Check if this data item is still in queue.
-    bool finished = true;
-    __disable_irq();
-    if (data >= g_scsi_dma.app_buf &&
-        data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
-        (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].al1_read_addr)
-    {
-        finished = false; // In current transfer
-    }
-    else if (data >= g_scsi_dma.next_app_buf &&
-             data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
-    {
-        finished = false; // In queued transfer
-    }
-    __enable_irq();
-
-    return finished;
-}
-
-// Once DMA has finished, check if all PIO queues have been drained
-static bool scsi_accel_rp2040_isWriteDone()
-{
-    // Check if data is still waiting in PIO FIFO
-    if (!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
-        !pio_sm_is_rx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
-        !pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_DATA_SM))
-    {
-        return false;
-    }
-
-    if (g_scsi_dma.syncOffset > 0)
-    {
-        // Check if all bytes of synchronous write have been acknowledged
-        if (pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM) > g_scsi_dma.syncOffsetPreload)
-            return false;
-    }
-    else
-    {
-        // Check if state machine has written out its OSR
-        if (pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM) != g_scsi_dma.pio_offset_async_write)
-            return false;
-    }
-
-    // Check if ACK of the final byte has finished
-    if (SCSI_IN(ACK))
-        return false;
-
-    return true;
-}
-
-static void scsi_accel_rp2040_stopWrite(volatile int *resetFlag)
-{
-    // Wait for TX fifo to be empty and ACK to go high
-    // For synchronous writes wait for all ACKs to be received also
-    uint32_t start = millis();
-    while (!scsi_accel_rp2040_isWriteDone() && !*resetFlag)
-    {
-        if ((uint32_t)(millis() - start) > 5000)
-        {
-            logmsg("scsi_accel_rp2040_stopWrite() timeout, FIFO levels ",
-                (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ",
-                (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " PC ",
-                (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM));
-            *resetFlag = 1;
-            break;
-        }
-    }
-
-    dma_channel_abort(SCSI_DMA_CH_A);
-    dma_channel_abort(SCSI_DMA_CH_B);
-    dma_channel_abort(SCSI_DMA_CH_C);
-    dma_channel_abort(SCSI_DMA_CH_D);
-    dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
-    g_scsi_dma_state = SCSIDMA_IDLE;
-    SCSI_RELEASE_DATA_REQ();
-    scsidma_config_gpio();
-    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
-    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
-    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
-}
-
-void scsi_accel_rp2040_finishWrite(volatile int *resetFlag)
-{
-    uint32_t start = millis();
-    while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag)
-    {
-        if ((uint32_t)(millis() - start) > 5000)
-        {
-            logmsg("scsi_accel_rp2040_finishWrite() timeout,"
-             " state: ", (int)g_scsi_dma_state, " ", (int)g_scsi_dma.dma_bytes, "/", (int)g_scsi_dma.app_bytes, ", ", (int)g_scsi_dma.next_app_bytes,
-             " PIO PC: ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),
-             " PIO FIFO: ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM),
-             " DMA counts: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count,
-                         " ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);
-            *resetFlag = 1;
-            break;
-        }
-
-        if (g_scsi_dma_state == SCSIDMA_WRITE_DONE)
-        {
-            // DMA done, wait for PIO to finish also and reconfig GPIO.
-            scsi_accel_rp2040_stopWrite(resetFlag);
-        }
-    }
-}
-
-/****************************************/
-/* Accelerated reads from SCSI bus      */
-/****************************************/
-
-// Load the SCSI read state machine with the address of the parity lookup table.
-// Also sets up DMA channels B, C and D
-static void config_parity_sm_for_read()
-{
-    // Configure parity check state machine
-    pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_read_parity, &g_scsi_dma.pio_cfg_read_parity);
-
-    // Load base address to state machine register X
-    uint32_t addrbase = (uint32_t)&g_scsi_parity_check_lookup[0];
-    assert((addrbase & 0x3FF) == 0);
-    pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_read, &g_scsi_dma.pio_cfg_read);
-    pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, addrbase >> 10);
-    pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
-    pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_mov(pio_y, pio_osr) | pio_encode_sideset(1, 1));
-    
-    // For synchronous mode, the REQ pin is driven by SCSI_SYNC_SM, so disable it in SCSI_DATA_SM
-    if (g_scsi_dma.syncOffset > 0)
-    {
-        pio_sm_set_sideset_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
-    }
-
-    // DMA channel B will read g_scsi_parity_check_lookup and write to scsi_read_parity PIO.
-    dma_channel_configure(SCSI_DMA_CH_B,
-        &g_scsi_dma.dmacfg_read_chB,
-        &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
-        NULL,
-        1, false);
-    
-    // DMA channel C will copy addresses from data PIO to DMA channel B read address register.
-    // It is triggered by the data SM RX FIFO request.
-    // This triggers channel B by writing to READ_ADDR_TRIG
-    // Channel B chaining re-enables this channel.
-    dma_channel_configure(SCSI_DMA_CH_C,
-        &g_scsi_dma.dmacfg_read_chC,
-        &dma_hw->ch[SCSI_DMA_CH_B].al3_read_addr_trig,
-        &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
-        1, true);
-
-    if (g_scsi_dma.syncOffset == 0)
-    {
-        // DMA channel D will copy dummy words to scsi_accel_read PIO to set the number
-        // of bytes to transfer.
-        static const uint32_t dummy = 0;
-        dma_channel_configure(SCSI_DMA_CH_D,
-            &g_scsi_dma.dmacfg_read_chD,
-            &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
-            &dummy,
-            0, false);
-    }
-    else
-    {
-        pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_read_pacer, &g_scsi_dma.pio_cfg_sync_read_pacer);
-
-        // DMA channel D will copy words from scsi_sync_read_pacer to scsi_accel_read PIO
-        // to control the offset between REQ pulses sent and ACK pulses received.
-        dma_channel_configure(SCSI_DMA_CH_D,
-            &g_scsi_dma.dmacfg_read_chD,
-            &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
-            &SCSI_DMA_PIO->rxf[SCSI_SYNC_SM],
-            0, false);
-    }
-
-    // Clear PIO IRQ flag that is used to detect parity error
-    SCSI_DMA_PIO->irq = 1;
-}
-
-static void start_dma_read()
-{
-    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
-    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
-    pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_PARITY_SM);
-    pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_DATA_SM);
-    
-    if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
-    {
-        // Buffer has been fully processed, swap it
-        g_scsi_dma.dma_bytes = 0;
-        g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
-        g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
-        g_scsi_dma.next_app_buf = 0;
-        g_scsi_dma.next_app_bytes = 0;
-    }
-    
-    // Check if we are all done.
-    // From SCSIDMA_READ_DONE state we can either go to IDLE in stopRead()
-    // or back to READ in startWrite().
-    uint32_t bytes_to_read = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
-    if (bytes_to_read == 0)
-    {
-        g_scsi_dma_state = SCSIDMA_READ_DONE;
-        return;
-    }
-
-    if (g_scsi_dma.syncOffset == 0)
-    {
-        // Start sending dummy words to scsi_accel_read state machine
-        dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
-    }
-    else
-    {
-        // Set number of bytes to receive to the scsi_sync_read_pacer state machine register X
-        pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
-        hw_clear_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
-        pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, bytes_to_read - 1);
-        pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
-        pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_mov(pio_x, pio_osr) | pio_encode_sideset(1, 1));
-        hw_set_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
-        
-        // Prefill FIFOs to get correct syncOffset
-        int prefill = 12 - g_scsi_dma.syncOffset;
-        
-        // Always at least 1 word to avoid race condition between REQ and ACK pulses
-        if (prefill < 1) prefill = 1;
-
-        // Up to 4 words in SCSI_DATA_SM TX fifo
-        for (int i = 0; i < 4 && prefill > 0; i++)
-        {
-            pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
-            prefill--;
-        }
-
-        // Up to 8 words in SCSI_SYNC_SM RX fifo
-        for (int i = 0; i < 8 && prefill > 0; i++)
-        {
-            pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_push(false, false) | pio_encode_sideset(1, 1));
-            prefill--;
-        }
-        
-        pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_jmp(g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_sideset(1, 1));
-
-        // Start transfers
-        dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
-    }
-
-    // Start DMA to fill the destination buffer
-    uint8_t *dest_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
-    g_scsi_dma.dma_bytes += bytes_to_read;
-    dma_channel_configure(SCSI_DMA_CH_A,
-        &g_scsi_dma.dmacfg_read_chA,
-        dest_buf,
-        &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
-        bytes_to_read,
-        true
-    );
-
-    // Ready to start the data and parity check state machines
-    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
-    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
-
-    if (g_scsi_dma.syncOffset > 0)
-    {
-        // Start sending REQ pulses
-        pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
-    }
-}
-
-void scsi_accel_rp2040_startRead(uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
-{
-    // Any write requests should be matched with a stopWrite()
-    assert(g_scsi_dma_state != SCSIDMA_WRITE && g_scsi_dma_state != SCSIDMA_WRITE_DONE);
-
-    __disable_irq();
-    if (g_scsi_dma_state == SCSIDMA_READ)
-    {
-        if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
-        {
-            // Combine with currently running request
-            g_scsi_dma.app_bytes += count;
-            count = 0;
-        }
-        else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
-        {
-            // Combine with queued request
-            g_scsi_dma.next_app_bytes += count;
-            count = 0;
-        }
-        else if (!g_scsi_dma.next_app_buf)
-        {
-            // Add as queued request
-            g_scsi_dma.next_app_buf = (uint8_t*)data;
-            g_scsi_dma.next_app_bytes = count;
-            count = 0;
-        }
-    }
-    __enable_irq();
-
-    // Check if the request was combined
-    if (count == 0) return;
-
-    if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_READ_DONE)
-    {
-        // Wait for previous request to finish
-        scsi_accel_rp2040_finishRead(NULL, 0, parityError, resetFlag);
-        if (*resetFlag)
-        {
-            return;
-        }
-    }
-
-    bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
-    g_scsi_dma_state = SCSIDMA_READ;
-    g_scsi_dma.app_buf = (uint8_t*)data;
-    g_scsi_dma.app_bytes = count;
-    g_scsi_dma.dma_bytes = 0;
-    g_scsi_dma.next_app_buf = 0;
-    g_scsi_dma.next_app_bytes = 0;
-
-    if (must_reconfig_gpio)
-    {
-        config_parity_sm_for_read();
-        scsidma_config_gpio();
-        dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
-    }
-
-    start_dma_read();
-}
-
-bool scsi_accel_rp2040_isReadFinished(const uint8_t* data)
-{
-    // Check if everything has completed
-    if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_READ_DONE)
-    {
-        return true;
-    }
-
-    if (!data)
-        return false;
-
-    // Check if this data item is still in queue.
-    bool finished = true;
-    __disable_irq();
-    if (data >= g_scsi_dma.app_buf &&
-        data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
-        (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].write_addr)
-    {
-        finished = false; // In current transfer
-    }
-    else if (data >= g_scsi_dma.next_app_buf &&
-             data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
-    {
-        finished = false; // In queued transfer
-    }
-    __enable_irq();
-
-    return finished;
-}
-
-static void scsi_accel_rp2040_stopRead()
-{
-    dma_channel_abort(SCSI_DMA_CH_A);
-    dma_channel_abort(SCSI_DMA_CH_B);
-    dma_channel_abort(SCSI_DMA_CH_C);
-    dma_channel_abort(SCSI_DMA_CH_D);
-    dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
-    g_scsi_dma_state = SCSIDMA_IDLE;
-    SCSI_RELEASE_DATA_REQ();
-    scsidma_config_gpio();
-    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
-    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
-    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
-}
-
-void scsi_accel_rp2040_finishRead(const uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
-{
-    uint32_t start = millis();
-    const uint8_t *query_addr = (data ? (data + count - 1) : NULL);
-    while (!scsi_accel_rp2040_isReadFinished(query_addr) && !*resetFlag)
-    {
-        if ((uint32_t)(millis() - start) > 5000)
-        {
-            logmsg("scsi_accel_rp2040_finishRead timeout,"
-             " state: ", (int)g_scsi_dma_state, " ", (int)g_scsi_dma.dma_bytes, "/", (int)g_scsi_dma.app_bytes, ", ", (int)g_scsi_dma.next_app_bytes,
-             " PIO PC: ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),
-             " PIO FIFO: ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM),
-             " DMA counts: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count,
-                         " ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);
-            *resetFlag = 1;
-            break;
-        }
-    }
-    
-    if (g_scsi_dma_state == SCSIDMA_READ_DONE || *resetFlag)
-    {
-        // This was last buffer, release bus
-        scsi_accel_rp2040_stopRead();
-    }
-    
-    // Check if any parity errors have been detected during the transfer so far
-    if (parityError != NULL && (SCSI_DMA_PIO->irq & 1))
-    {
-        dbgmsg("scsi_accel_rp2040_finishRead(", bytearray(data, count), ") detected parity error");
-        *parityError = true;
-    }
-}
-
-/*******************************************************/
-/* Initialization functions common to read/write       */
-/*******************************************************/
-
-static void scsi_dma_irq()
-{
-    dma_hw->ints0 = (1 << SCSI_DMA_CH_A);
-
-    scsidma_state_t state = g_scsi_dma_state;
-    if (state == SCSIDMA_WRITE)
-    {
-        // Start writing from next buffer, if any, or set state to SCSIDMA_WRITE_DONE
-        start_dma_write();
-    }
-    else if (state == SCSIDMA_READ)
-    {
-        // Start reading into next buffer, if any, or set state to SCSIDMA_READ_DONE
-        start_dma_read();
-    }
-}
-
-// Select GPIO from PIO peripheral or from software controlled SIO
-static void scsidma_config_gpio()
-{
-    if (g_scsi_dma_state == SCSIDMA_IDLE)
-    {
-        iobank0_hw->io[SCSI_IO_DB0].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB1].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB2].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB3].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB4].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB5].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB6].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB7].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DBP].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_SIO;
-    }
-    else if (g_scsi_dma_state == SCSIDMA_WRITE)
-    {
-        // Make sure the initial state of all pins is high and output
-        pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0x201FF);
-        pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, true);
-        pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 17, 1, true);
-
-        iobank0_hw->io[SCSI_IO_DB0].ctrl  = GPIO_FUNC_PIO0;
-        iobank0_hw->io[SCSI_IO_DB1].ctrl  = GPIO_FUNC_PIO0;
-        iobank0_hw->io[SCSI_IO_DB2].ctrl  = GPIO_FUNC_PIO0;
-        iobank0_hw->io[SCSI_IO_DB3].ctrl  = GPIO_FUNC_PIO0;
-        iobank0_hw->io[SCSI_IO_DB4].ctrl  = GPIO_FUNC_PIO0;
-        iobank0_hw->io[SCSI_IO_DB5].ctrl  = GPIO_FUNC_PIO0;
-        iobank0_hw->io[SCSI_IO_DB6].ctrl  = GPIO_FUNC_PIO0;
-        iobank0_hw->io[SCSI_IO_DB7].ctrl  = GPIO_FUNC_PIO0;
-        iobank0_hw->io[SCSI_IO_DBP].ctrl  = GPIO_FUNC_PIO0;
-        iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
-    }
-    else if (g_scsi_dma_state == SCSIDMA_READ)
-    {
-        if (g_scsi_dma.syncOffset == 0)
-        {
-            // Asynchronous read
-            // Data bus as input, REQ pin as output
-            pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0x201FF);
-            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);
-            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 17, 1, true);
-        }
-        else
-        {
-            // Synchronous read, REQ pin is written by SYNC_SM
-            pio_sm_set_pins(SCSI_DMA_PIO, SCSI_SYNC_SM, 0x201FF);
-            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);
-            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_SYNC_SM, 17, 1, true);
-        }
-
-        iobank0_hw->io[SCSI_IO_DB0].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB1].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB2].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB3].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB4].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB5].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB6].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DB7].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_IO_DBP].ctrl  = GPIO_FUNC_SIO;
-        iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
-    }
-}
-
-void scsi_accel_rp2040_init()
-{
-    g_scsi_dma_state = SCSIDMA_IDLE;
-    scsidma_config_gpio();
-
-    // Mark channels as being in use, unless it has been done already
-    if (!g_channels_claimed)
-    {
-        pio_sm_claim(SCSI_DMA_PIO, SCSI_PARITY_SM);
-        pio_sm_claim(SCSI_DMA_PIO, SCSI_DATA_SM);
-        pio_sm_claim(SCSI_DMA_PIO, SCSI_SYNC_SM);
-        dma_channel_claim(SCSI_DMA_CH_A);
-        dma_channel_claim(SCSI_DMA_CH_B);
-        dma_channel_claim(SCSI_DMA_CH_C);
-        dma_channel_claim(SCSI_DMA_CH_D);
-        g_channels_claimed = true;
-    }
-
-    // Load PIO programs
-    pio_clear_instruction_memory(SCSI_DMA_PIO);
-    
-    // Parity lookup generator
-    g_scsi_dma.pio_offset_parity = pio_add_program(SCSI_DMA_PIO, &scsi_parity_program);
-    g_scsi_dma.pio_cfg_parity = scsi_parity_program_get_default_config(g_scsi_dma.pio_offset_parity);
-    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_parity, true, false, 32);
-    sm_config_set_in_shift(&g_scsi_dma.pio_cfg_parity, true, true, 32);
-
-    // Asynchronous SCSI write
-    g_scsi_dma.pio_offset_async_write = pio_add_program(SCSI_DMA_PIO, &scsi_accel_async_write_program);
-    g_scsi_dma.pio_cfg_async_write = scsi_accel_async_write_program_get_default_config(g_scsi_dma.pio_offset_async_write);
-    sm_config_set_out_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_IO_DB0, 9);
-    sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_OUT_REQ);
-    sm_config_set_fifo_join(&g_scsi_dma.pio_cfg_async_write, PIO_FIFO_JOIN_TX);
-    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32);
-
-    // Synchronous SCSI write pacer / ACK handler
-    g_scsi_dma.pio_offset_sync_write_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program);
-    g_scsi_dma.pio_cfg_sync_write_pacer = scsi_sync_write_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_write_pacer);
-    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, 1);
-
-    // Synchronous SCSI data writer
-    g_scsi_dma.pio_offset_sync_write = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_program);
-    g_scsi_dma.pio_cfg_sync_write = scsi_sync_write_program_get_default_config(g_scsi_dma.pio_offset_sync_write);
-    sm_config_set_out_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_IO_DB0, 9);
-    sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_OUT_REQ);
-    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 32);
-    sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 1);
-
-    // Asynchronous / synchronous SCSI read
-    g_scsi_dma.pio_offset_read = pio_add_program(SCSI_DMA_PIO, &scsi_accel_read_program);
-    g_scsi_dma.pio_cfg_read = scsi_accel_read_program_get_default_config(g_scsi_dma.pio_offset_read);
-    sm_config_set_in_pins(&g_scsi_dma.pio_cfg_read, SCSI_IO_DB0);
-    sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_read, SCSI_OUT_REQ);
-    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read, true, false, 32);
-    sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read, true, true, 32);
-
-    // Synchronous SCSI read pacer
-    g_scsi_dma.pio_offset_sync_read_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program);
-    g_scsi_dma.pio_cfg_sync_read_pacer = scsi_sync_read_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_read_pacer);
-    sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_read_pacer, SCSI_OUT_REQ);
-
-    // Read parity check
-    g_scsi_dma.pio_offset_read_parity = pio_add_program(SCSI_DMA_PIO, &scsi_read_parity_program);
-    g_scsi_dma.pio_cfg_read_parity = scsi_read_parity_program_get_default_config(g_scsi_dma.pio_offset_read_parity);
-    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read_parity, true, true, 32);
-    sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read_parity, true, false, 32);
-
-    // Create DMA channel configurations so they can be applied quickly later
-    
-    // For write to SCSI BUS:
-    // Channel A: Bytes from RAM to scsi_parity PIO
-    dma_channel_config cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
-    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
-    channel_config_set_read_increment(&cfg, true);
-    channel_config_set_write_increment(&cfg, false);
-    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, true));
-    g_scsi_dma.dmacfg_write_chA = cfg;
-
-    // Channel B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
-    cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
-    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
-    channel_config_set_read_increment(&cfg, false);
-    channel_config_set_write_increment(&cfg, false);
-    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
-    g_scsi_dma.dmacfg_write_chB = cfg;
-
-    // Channel C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
-    // When done, chain to channel B
-    cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
-    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
-    channel_config_set_read_increment(&cfg, false);
-    channel_config_set_write_increment(&cfg, false);
-    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
-    channel_config_set_chain_to(&cfg, SCSI_DMA_CH_B);
-    g_scsi_dma.dmacfg_write_chC = cfg;
-
-    // Channel D: In synchronous mode a second DMA channel is used to transfer dummy bits
-    // from first state machine to second one.
-    cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
-    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
-    channel_config_set_read_increment(&cfg, false);
-    channel_config_set_write_increment(&cfg, false);
-    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_SYNC_SM, true));
-    g_scsi_dma.dmacfg_write_chD = cfg;
-
-    // For read from SCSI BUS:
-    // Channel A: Bytes from scsi_read_parity PIO to destination memory buffer
-    // This takes the bottom 8 bits which is the data without parity bit.
-    // Triggered by scsi_read_parity RX FIFO.
-    cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
-    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
-    channel_config_set_read_increment(&cfg, false);
-    channel_config_set_write_increment(&cfg, true);
-    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
-    g_scsi_dma.dmacfg_read_chA = cfg;
-
-    // Channel B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
-    // Triggered by channel C writing to READ_ADDR_TRIG
-    // Re-enables channel C by chaining after done.
-    cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
-    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
-    channel_config_set_read_increment(&cfg, false);
-    channel_config_set_write_increment(&cfg, false);
-    channel_config_set_dreq(&cfg, DREQ_FORCE);
-    channel_config_set_chain_to(&cfg, SCSI_DMA_CH_C);
-    cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
-    g_scsi_dma.dmacfg_read_chB = cfg;
-
-    // Channel C: Addresses from scsi_read PIO to channel B READ_ADDR register
-    // A single transfer starts when PIO RX FIFO has data.
-    // The DMA channel is re-enabled by channel B chaining.
-    cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
-    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
-    channel_config_set_read_increment(&cfg, false);
-    channel_config_set_write_increment(&cfg, false);
-    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, false));
-    g_scsi_dma.dmacfg_read_chC = cfg;
-
-    // Channel D: In synchronous mode a second DMA channel is used to transfer dummy words
-    // from first state machine to second one to control the pace of data transfer.
-    // In asynchronous mode this just transfers words to control the number of bytes.
-    cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
-    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
-    channel_config_set_read_increment(&cfg, false);
-    channel_config_set_write_increment(&cfg, false);
-    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
-    g_scsi_dma.dmacfg_read_chD = cfg;
-    
-    // Interrupts are used for data buffer swapping
-    irq_set_exclusive_handler(DMA_IRQ_0, scsi_dma_irq);
-    irq_set_enabled(DMA_IRQ_0, true);
-}
-
-void scsi_accel_rp2040_setSyncMode(int syncOffset, int syncPeriod)
-{
-    assert(g_scsi_dma_state == SCSIDMA_IDLE);
-
-    if (syncOffset != g_scsi_dma.syncOffset || syncPeriod != g_scsi_dma.syncPeriod)
-    {
-        g_scsi_dma.syncOffset = syncOffset;
-        g_scsi_dma.syncPeriod = syncPeriod;
-
-        if (syncOffset > 0)
-        {
-            // Set up offset amount to PIO state machine configs.
-            // The RX fifo of scsi_sync_write has 4 slots.
-            // We can preload it with 0-3 items and set the autopush threshold 1, 2, 4 ... 32
-            // to act as a divider. This allows offsets 1 to 128 bytes.
-            // SCSI2SD code currently only uses offsets up to 15.
-            if (syncOffset <= 4)
-            {
-                g_scsi_dma.syncOffsetDivider = 1;
-                g_scsi_dma.syncOffsetPreload = 5 - syncOffset;
-            }
-            else if (syncOffset <= 8)
-            {
-                g_scsi_dma.syncOffsetDivider = 2;
-                g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 2;
-            }
-            else if (syncOffset <= 16)
-            {
-                g_scsi_dma.syncOffsetDivider = 4;
-                g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 4;
-            }
-            else
-            {
-                g_scsi_dma.syncOffsetDivider = 4;
-                g_scsi_dma.syncOffsetPreload = 0;
-            }
-
-            // To properly detect when all bytes have been ACKed,
-            // we need at least one vacant slot in the FIFO.
-            if (g_scsi_dma.syncOffsetPreload > 3)
-                g_scsi_dma.syncOffsetPreload = 3;
-
-            sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, g_scsi_dma.syncOffsetDivider);
-            sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, g_scsi_dma.syncOffsetDivider);
-
-            // Set up the timing parameters to PIO program
-            // The scsi_sync_write PIO program consists of three instructions.
-            // The delays are in clock cycles, each taking 8 ns.
-            // delay0: Delay from data write to REQ assertion
-            // delay1: Delay from REQ assert to REQ deassert
-            // delay2: Delay from REQ deassert to data write
-            int delay0, delay1, delay2;
-            int totalDelay = syncPeriod * 4 / 8;
-
-            if (syncPeriod <= 25)
-            {
-                // Fast SCSI timing: 30 ns assertion period, 25 ns skew delay
-                // The hardware rise and fall time require some extra delay,
-                // the values below are tuned based on oscilloscope measurements.
-                delay0 = 3;
-                delay1 = 5;
-                delay2 = totalDelay - delay0 - delay1 - 3;
-                if (delay2 < 0) delay2 = 0;
-                if (delay2 > 15) delay2 = 15;
-            }
-            else
-            {
-                // Slow SCSI timing: 90 ns assertion period, 55 ns skew delay
-                delay0 = 6;
-                delay1 = 12;
-                delay2 = totalDelay - delay0 - delay1 - 3;
-                if (delay2 < 0) delay2 = 0;
-                if (delay2 > 15) delay2 = 15;
-            }
-
-            // Patch the delay values into the instructions in scsi_sync_write.
-            // The code in scsi_accel.pio must have delay set to 0 for this to work correctly.
-            uint16_t instr0 = scsi_sync_write_program_instructions[0] | pio_encode_delay(delay0);
-            uint16_t instr1 = scsi_sync_write_program_instructions[1] | pio_encode_delay(delay1);
-            uint16_t instr2 = scsi_sync_write_program_instructions[2] | pio_encode_delay(delay2);
-            SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 0] = instr0;
-            SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 1] = instr1;
-            SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 2] = instr2;
-
-            // And similar patching for scsi_sync_read_pacer
-            int rdelay2 = totalDelay - delay1 - 2;
-            if (rdelay2 > 15) rdelay2 = 15;
-            if (rdelay2 < 5) rdelay2 = 5;
-            uint16_t rinstr0 = scsi_sync_read_pacer_program_instructions[0] | pio_encode_delay(rdelay2);
-            uint16_t rinstr1 = (scsi_sync_read_pacer_program_instructions[1] + g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_delay(delay1);
-            SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 0] = rinstr0;
-            SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 1] = rinstr1;
-        }
-    }
-
-}

+ 0 - 65
lib/ZuluSCSI_platform_BS2/scsi_accel_rp2040.h

@@ -1,65 +0,0 @@
-/** 
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-// Accelerated SCSI subroutines using RP2040 hardware PIO peripheral.
-
-#pragma once
-
-#include <stdint.h>
-
-void scsi_accel_rp2040_init();
-
-// Set SCSI access mode for synchronous transfers
-// Setting syncOffset = 0 enables asynchronous SCSI.
-// Setting syncOffset > 0 enables synchronous SCSI.
-void scsi_accel_rp2040_setSyncMode(int syncOffset, int syncPeriod);
-
-// Queue a request to write data from the buffer to SCSI bus.
-// This function typically returns immediately and the request will complete in background.
-// If there are too many queued requests, this function will block until previous request finishes.
-void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag);
-
-// Query whether the data at pointer has already been read, i.e. buffer can be reused.
-// If data is NULL, checks if all writes have completed.
-bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data);
-
-// Wait for all write requests to finish and release the bus.
-// If resetFlag is non-zero, aborts write immediately.
-void scsi_accel_rp2040_finishWrite(volatile int *resetFlag);
-
-// Queue a request to read data from SCSI bus to the buffer.
-// This function typically returns immediately and the request will complete in background.
-// If there are too many queued requests, this function will block until previous request finishes.
-void scsi_accel_rp2040_startRead(uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag);
-
-// Query whether data at address is part of a queued read request.
-// Returns true if there is no outstanding request.
-// If data is NULL, checks if all reads have completed.
-bool scsi_accel_rp2040_isReadFinished(const uint8_t* data);
-
-// Wait for a read request to complete.
-// If buf is not NULL, waits only until the data at data[0] .. data[count-1] is valid.
-// If buf is NULL, waits for all read requests to complete.
-// If there are no further read requests, releases the bus.
-// If resetFlag is non-zero, aborts read immediately.
-// If a parity error has been noticed in any buffer since starting the read, parityError is set to 1.
-void scsi_accel_rp2040_finishRead(const uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag);
-

+ 0 - 518
lib/ZuluSCSI_platform_BS2/sd_card_sdio.cpp

@@ -1,518 +0,0 @@
-/** 
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-// Driver for accessing SD card in SDIO mode on RP2040.
-
-#include "ZuluSCSI_platform.h"
-
-#ifdef SD_USE_SDIO
-
-#include "ZuluSCSI_log.h"
-#include "rp2040_sdio.h"
-#include <hardware/gpio.h>
-#include <SdFat.h>
-#include <SdCard/SdCardInfo.h>
-
-static uint32_t g_sdio_ocr; // Operating condition register from card
-static uint32_t g_sdio_rca; // Relative card address
-static cid_t g_sdio_cid;
-static csd_t g_sdio_csd;
-static int g_sdio_error_line;
-static sdio_status_t g_sdio_error;
-static uint32_t g_sdio_dma_buf[128];
-static uint32_t g_sdio_sector_count;
-
-#define checkReturnOk(call) ((g_sdio_error = (call)) == SDIO_OK ? true : logSDError(__LINE__))
-static bool logSDError(int line)
-{
-    g_sdio_error_line = line;
-    logmsg("SDIO SD card error on line ", line, ", error code ", (int)g_sdio_error);
-    return false;
-}
-
-// Callback used by SCSI code for simultaneous processing
-static sd_callback_t m_stream_callback;
-static const uint8_t *m_stream_buffer;
-static uint32_t m_stream_count;
-static uint32_t m_stream_count_start;
-
-void platform_set_sd_callback(sd_callback_t func, const uint8_t *buffer)
-{
-    m_stream_callback = func;
-    m_stream_buffer = buffer;
-    m_stream_count = 0;
-    m_stream_count_start = 0;
-}
-
-static sd_callback_t get_stream_callback(const uint8_t *buf, uint32_t count, const char *accesstype, uint32_t sector)
-{
-    m_stream_count_start = m_stream_count;
-
-    if (m_stream_callback)
-    {
-        if (buf == m_stream_buffer + m_stream_count)
-        {
-            m_stream_count += count;
-            return m_stream_callback;
-        }
-        else
-        {
-            dbgmsg("SD card ", accesstype, "(", (int)sector,
-                  ") slow transfer, buffer", (uint32_t)buf, " vs. ", (uint32_t)(m_stream_buffer + m_stream_count));
-            return NULL;
-        }
-    }
-    
-    return NULL;
-}
-
-bool SdioCard::begin(SdioConfig sdioConfig)
-{
-    uint32_t reply;
-    sdio_status_t status;
-    
-    // Initialize at 1 MHz clock speed
-    rp2040_sdio_init(25);
-
-    // Establish initial connection with the card
-    for (int retries = 0; retries < 5; retries++)
-    {
-        delayMicroseconds(1000);
-        reply = 0;
-        rp2040_sdio_command_R1(CMD0, 0, NULL); // GO_IDLE_STATE
-        status = rp2040_sdio_command_R1(CMD8, 0x1AA, &reply); // SEND_IF_COND
-
-        if (status == SDIO_OK && reply == 0x1AA)
-        {
-            break;
-        }
-    }
-
-    if (reply != 0x1AA || status != SDIO_OK)
-    {
-        dbgmsg("SDIO not responding to CMD8 SEND_IF_COND, status ", (int)status, " reply ", reply);
-        return false;
-    }
-
-    // Send ACMD41 to begin card initialization and wait for it to complete
-    uint32_t start = millis();
-    do {
-        if (!checkReturnOk(rp2040_sdio_command_R1(CMD55, 0, &reply)) || // APP_CMD
-            !checkReturnOk(rp2040_sdio_command_R3(ACMD41, 0xD0040000, &g_sdio_ocr))) // 3.0V voltage
-            // !checkReturnOk(rp2040_sdio_command_R1(ACMD41, 0xC0100000, &g_sdio_ocr)))
-        {
-            return false;
-        }
-
-        if ((uint32_t)(millis() - start) > 1000)
-        {
-            logmsg("SDIO card initialization timeout");
-            return false;
-        }
-    } while (!(g_sdio_ocr & (1 << 31)));
-
-    // Get CID
-    if (!checkReturnOk(rp2040_sdio_command_R2(CMD2, 0, (uint8_t*)&g_sdio_cid)))
-    {
-        dbgmsg("SDIO failed to read CID");
-        return false;
-    }
-
-    // Get relative card address
-    if (!checkReturnOk(rp2040_sdio_command_R1(CMD3, 0, &g_sdio_rca)))
-    {
-        dbgmsg("SDIO failed to get RCA");
-        return false;
-    }
-
-    // Get CSD
-    if (!checkReturnOk(rp2040_sdio_command_R2(CMD9, g_sdio_rca, (uint8_t*)&g_sdio_csd)))
-    {
-        dbgmsg("SDIO failed to read CSD");
-        return false;
-    }
-
-    g_sdio_sector_count = sectorCount();
-
-    // Select card
-    if (!checkReturnOk(rp2040_sdio_command_R1(CMD7, g_sdio_rca, &reply)))
-    {
-        dbgmsg("SDIO failed to select card");
-        return false;
-    }
-
-    // Set 4-bit bus mode
-    if (!checkReturnOk(rp2040_sdio_command_R1(CMD55, g_sdio_rca, &reply)) ||
-        !checkReturnOk(rp2040_sdio_command_R1(ACMD6, 2, &reply)))
-    {
-        dbgmsg("SDIO failed to set bus width");
-        return false;
-    }
-
-    // Increase to 25 MHz clock rate
-    rp2040_sdio_init(1);
-
-    return true;
-}
-
-uint8_t SdioCard::errorCode() const
-{
-    return g_sdio_error;
-}
-
-uint32_t SdioCard::errorData() const
-{
-    return 0;
-}
-
-uint32_t SdioCard::errorLine() const
-{
-    return g_sdio_error_line;
-}
-
-bool SdioCard::isBusy() 
-{
-    return (sio_hw->gpio_in & (1 << SDIO_D0)) == 0;
-}
-
-uint32_t SdioCard::kHzSdClk()
-{
-    return 0;
-}
-
-bool SdioCard::readCID(cid_t* cid)
-{
-    *cid = g_sdio_cid;
-    return true;
-}
-
-bool SdioCard::readCSD(csd_t* csd)
-{
-    *csd = g_sdio_csd;
-    return true;
-}
-
-bool SdioCard::readOCR(uint32_t* ocr)
-{
-    // SDIO mode does not have CMD58, but main program uses this to
-    // poll for card presence. Return status register instead.
-    return checkReturnOk(rp2040_sdio_command_R1(CMD13, g_sdio_rca, ocr));
-}
-
-bool SdioCard::readData(uint8_t* dst)
-{
-    logmsg("SdioCard::readData() called but not implemented!");
-    return false;
-}
-
-bool SdioCard::readStart(uint32_t sector)
-{
-    logmsg("SdioCard::readStart() called but not implemented!");
-    return false;
-}
-
-bool SdioCard::readStop()
-{
-    logmsg("SdioCard::readStop() called but not implemented!");
-    return false;
-}
-
-uint32_t SdioCard::sectorCount()
-{
-    return g_sdio_csd.capacity();
-}
-
-uint32_t SdioCard::status()
-{
-    uint32_t reply;
-    if (checkReturnOk(rp2040_sdio_command_R1(CMD13, g_sdio_rca, &reply)))
-        return reply;
-    else
-        return 0;
-}
-
-bool SdioCard::stopTransmission(bool blocking)
-{
-    uint32_t reply;
-    if (!checkReturnOk(rp2040_sdio_command_R1(CMD12, 0, &reply)))
-    {
-        return false;
-    }
-
-    if (!blocking)
-    {
-        return true;
-    }
-    else
-    {
-        uint32_t end = millis() + 100;
-        while (millis() < end && isBusy())
-        {
-            if (m_stream_callback)
-            {
-                m_stream_callback(m_stream_count);
-            }
-        }
-        if (isBusy())
-        {
-            logmsg("SdioCard::stopTransmission() timeout");
-            return false;
-        }
-        else
-        {
-            return true;
-        }
-    }
-}
-
-bool SdioCard::syncDevice()
-{
-    return true;
-}
-
-uint8_t SdioCard::type() const
-{
-    if (g_sdio_ocr & (1 << 30))
-        return SD_CARD_TYPE_SDHC;
-    else
-        return SD_CARD_TYPE_SD2;
-}
-
-bool SdioCard::writeData(const uint8_t* src)
-{
-    logmsg("SdioCard::writeData() called but not implemented!");
-    return false;
-}
-
-bool SdioCard::writeStart(uint32_t sector)
-{
-    logmsg("SdioCard::writeStart() called but not implemented!");
-    return false;
-}
-
-bool SdioCard::writeStop()
-{
-    logmsg("SdioCard::writeStop() called but not implemented!");
-    return false;
-}
-
-bool SdioCard::erase(uint32_t firstSector, uint32_t lastSector)
-{
-    logmsg("SdioCard::erase() not implemented");
-    return false;
-}
-
-bool SdioCard::cardCMD6(uint32_t arg, uint8_t* status) {
-    logmsg("SdioCard::cardCMD6() not implemented");
-    return false;
-}
-
-bool SdioCard::readSCR(scr_t* scr) {
-    logmsg("SdioCard::readSCR() not implemented");
-    return false;
-}
-
-/* Writing and reading, with progress callback */
-
-bool SdioCard::writeSector(uint32_t sector, const uint8_t* src)
-{
-    if (((uint32_t)src & 3) != 0)
-    {
-        // Buffer is not aligned, need to memcpy() the data to a temporary buffer.
-        memcpy(g_sdio_dma_buf, src, sizeof(g_sdio_dma_buf));
-        src = (uint8_t*)g_sdio_dma_buf;
-    }
-
-    // If possible, report transfer status to application through callback.
-    sd_callback_t callback = get_stream_callback(src, 512, "writeSector", sector);
-
-    uint32_t reply;
-    if (!checkReturnOk(rp2040_sdio_command_R1(16, 512, &reply)) || // SET_BLOCKLEN
-        !checkReturnOk(rp2040_sdio_command_R1(CMD24, sector, &reply)) || // WRITE_BLOCK
-        !checkReturnOk(rp2040_sdio_tx_start(src, 1))) // Start transmission
-    {
-        return false;
-    }
-
-    do {
-        uint32_t bytes_done;
-        g_sdio_error = rp2040_sdio_tx_poll(&bytes_done);
-
-        if (callback)
-        {
-            callback(m_stream_count_start + bytes_done);
-        }
-    } while (g_sdio_error == SDIO_BUSY);
-
-    if (g_sdio_error != SDIO_OK)
-    {
-        logmsg("SdioCard::writeSector(", sector, ") failed: ", (int)g_sdio_error);
-    }
-
-    return g_sdio_error == SDIO_OK;
-}
-
-bool SdioCard::writeSectors(uint32_t sector, const uint8_t* src, size_t n)
-{
-    if (((uint32_t)src & 3) != 0)
-    {
-        // Unaligned write, execute sector-by-sector
-        for (size_t i = 0; i < n; i++)
-        {
-            if (!writeSector(sector + i, src + 512 * i))
-            {
-                return false;
-            }
-        }
-        return true;
-    }
-
-    sd_callback_t callback = get_stream_callback(src, n * 512, "writeSectors", sector);
-
-    uint32_t reply;
-    if (!checkReturnOk(rp2040_sdio_command_R1(16, 512, &reply)) || // SET_BLOCKLEN
-        !checkReturnOk(rp2040_sdio_command_R1(CMD55, g_sdio_rca, &reply)) || // APP_CMD
-        !checkReturnOk(rp2040_sdio_command_R1(ACMD23, n, &reply)) || // SET_WR_CLK_ERASE_COUNT
-        !checkReturnOk(rp2040_sdio_command_R1(CMD25, sector, &reply)) || // WRITE_MULTIPLE_BLOCK
-        !checkReturnOk(rp2040_sdio_tx_start(src, n))) // Start transmission
-    {
-        return false;
-    }
-
-    do {
-        uint32_t bytes_done;
-        g_sdio_error = rp2040_sdio_tx_poll(&bytes_done);
-
-        if (callback)
-        {
-            callback(m_stream_count_start + bytes_done);
-        }
-    } while (g_sdio_error == SDIO_BUSY);
-
-    if (g_sdio_error != SDIO_OK)
-    {
-        logmsg("SdioCard::writeSectors(", sector, ",...,", (int)n, ") failed: ", (int)g_sdio_error);
-        stopTransmission(true);
-        return false;
-    }
-    else
-    {
-        return stopTransmission(true);
-    }
-}
-
-bool SdioCard::readSector(uint32_t sector, uint8_t* dst)
-{
-    uint8_t *real_dst = dst;
-    if (((uint32_t)dst & 3) != 0)
-    {
-        // Buffer is not aligned, need to memcpy() the data from a temporary buffer.
-        dst = (uint8_t*)g_sdio_dma_buf;
-    }
-
-    sd_callback_t callback = get_stream_callback(dst, 512, "readSector", sector);
-
-    uint32_t reply;
-    if (!checkReturnOk(rp2040_sdio_command_R1(16, 512, &reply)) || // SET_BLOCKLEN
-        !checkReturnOk(rp2040_sdio_rx_start(dst, 1)) || // Prepare for reception
-        !checkReturnOk(rp2040_sdio_command_R1(CMD17, sector, &reply))) // READ_SINGLE_BLOCK
-    {
-        return false;
-    }
-
-    do {
-        uint32_t bytes_done;
-        g_sdio_error = rp2040_sdio_rx_poll(&bytes_done);
-
-        if (callback)
-        {
-            callback(m_stream_count_start + bytes_done);
-        }
-    } while (g_sdio_error == SDIO_BUSY);
-
-    if (g_sdio_error != SDIO_OK)
-    {
-        logmsg("SdioCard::readSector(", sector, ") failed: ", (int)g_sdio_error);
-    }
-
-    if (dst != real_dst)
-    {
-        memcpy(real_dst, g_sdio_dma_buf, sizeof(g_sdio_dma_buf));
-    }
-
-    return g_sdio_error == SDIO_OK;
-}
-
-bool SdioCard::readSectors(uint32_t sector, uint8_t* dst, size_t n)
-{
-    if (((uint32_t)dst & 3) != 0 || sector + n >= g_sdio_sector_count)
-    {
-        // Unaligned read or end-of-drive read, execute sector-by-sector
-        for (size_t i = 0; i < n; i++)
-        {
-            if (!readSector(sector + i, dst + 512 * i))
-            {
-                return false;
-            }
-        }
-        return true;
-    }
-
-    sd_callback_t callback = get_stream_callback(dst, n * 512, "readSectors", sector);
-
-    uint32_t reply;
-    if (!checkReturnOk(rp2040_sdio_command_R1(16, 512, &reply)) || // SET_BLOCKLEN
-        !checkReturnOk(rp2040_sdio_rx_start(dst, n)) || // Prepare for reception
-        !checkReturnOk(rp2040_sdio_command_R1(CMD18, sector, &reply))) // READ_MULTIPLE_BLOCK
-    {
-        return false;
-    }
-
-    do {
-        uint32_t bytes_done;
-        g_sdio_error = rp2040_sdio_rx_poll(&bytes_done);
-
-        if (callback)
-        {
-            callback(m_stream_count_start + bytes_done);
-        }
-    } while (g_sdio_error == SDIO_BUSY);
-
-    if (g_sdio_error != SDIO_OK)
-    {
-        logmsg("SdioCard::readSectors(", sector, ",...,", (int)n, ") failed: ", (int)g_sdio_error);
-        stopTransmission(true);
-        return false;
-    }
-    else
-    {
-        return stopTransmission(true);
-    }
-}
-
-// These functions are not used for SDIO mode but are needed to avoid build error.
-void sdCsInit(SdCsPin_t pin) {}
-void sdCsWrite(SdCsPin_t pin, bool level) {}
-
-// SDIO configuration for main program
-SdioConfig g_sd_sdio_config(DMA_SDIO);
-
-#endif

+ 0 - 103
lib/ZuluSCSI_platform_BS2/sd_card_spi.cpp

@@ -1,103 +0,0 @@
-/** 
- * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
- * 
- * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
- * 
- * https://www.gnu.org/licenses/gpl-3.0.html
- * ----
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version. 
- * 
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details. 
- * 
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <https://www.gnu.org/licenses/>.
-**/
-
-// Driver and interface for accessing SD card in SPI mode
-
-#include "ZuluSCSI_platform.h"
-#include "ZuluSCSI_log.h"
-#include <hardware/spi.h>
-#include <SdFat.h>
-
-#ifndef SD_USE_SDIO
-
-class RP2040SPIDriver : public SdSpiBaseClass
-{
-public:
-    void begin(SdSpiConfig config) {
-    }
-
-    void activate() {
-        _spi_init(SD_SPI, m_sckfreq);
-        spi_set_format(SD_SPI, 8, SPI_CPOL_0, SPI_CPHA_0, SPI_MSB_FIRST);
-    }
-
-    void deactivate() {
-    }
-
-    void wait_idle() {
-        while (!(spi_get_hw(SD_SPI)->sr & SPI_SSPSR_TFE_BITS));
-        while (spi_get_hw(SD_SPI)->sr & SPI_SSPSR_BSY_BITS);
-    }
-
-    // Single byte receive
-    uint8_t receive() {
-        uint8_t tx = 0xFF;
-        uint8_t rx;
-        spi_write_read_blocking(SD_SPI, &tx, &rx, 1);
-        return rx;
-    }
-
-    // Single byte send
-    void send(uint8_t data) {
-        spi_write_blocking(SD_SPI, &data, 1);
-        wait_idle();
-    }
-
-    // Multiple byte receive
-    uint8_t receive(uint8_t* buf, size_t count)
-    {
-        spi_read_blocking(SD_SPI, 0xFF, buf, count);
-        return 0;
-    }
-
-    // Multiple byte send
-    void send(const uint8_t* buf, size_t count) {
-        spi_write_blocking(SD_SPI, buf, count);
-    }
-
-    void setSckSpeed(uint32_t maxSck) {
-        m_sckfreq = maxSck;
-    }
-
-private:
-    uint32_t m_sckfreq;
-};
-
-void sdCsInit(SdCsPin_t pin)
-{
-}
-
-void sdCsWrite(SdCsPin_t pin, bool level)
-{
-    if (level)
-        sio_hw->gpio_set = (1 << SD_SPI_CS);
-    else
-        sio_hw->gpio_clr = (1 << SD_SPI_CS);
-}
-
-RP2040SPIDriver g_sd_spi_port;
-SdSpiConfig g_sd_spi_config(0, DEDICATED_SPI, SD_SCK_MHZ(25), &g_sd_spi_port);
-
-void platform_set_sd_callback(sd_callback_t func, const uint8_t *buffer)
-{
-}
-
-#endif

+ 24 - 2
lib/ZuluSCSI_platform_RP2040/ZuluSCSI_platform.cpp

@@ -77,6 +77,7 @@ void platform_init()
     gpio_conf(SCSI_OUT_SEL,   GPIO_FUNC_SIO, false,false, true,  true, true);
 
     /* Check dip switch settings */
+#ifdef HAS_DIP_SWITCHES
     gpio_conf(DIP_INITIATOR,  GPIO_FUNC_SIO, false, false, false, false, false);
     gpio_conf(DIP_DBGLOG,     GPIO_FUNC_SIO, false, false, false, false, false);
     gpio_conf(DIP_TERM,       GPIO_FUNC_SIO, false, false, false, false, false);
@@ -85,6 +86,9 @@ void platform_init()
 
     bool dbglog = !gpio_get(DIP_DBGLOG);
     bool termination = !gpio_get(DIP_TERM);
+#else
+    delay(10);
+#endif
 
     /* Initialize logging to SWO pin (UART0) */
     gpio_conf(SWO_PIN,        GPIO_FUNC_UART,false,false, true,  false, true);
@@ -95,10 +99,10 @@ void platform_init()
     logmsg("Platform: ", g_platform_name);
     logmsg("FW Version: ", g_log_firmwareversion);
 
+#ifdef HAS_DIP_SWITCHES
     logmsg("DIP switch settings: debug log ", (int)dbglog, ", termination ", (int)termination);
-
     g_log_debug = dbglog;
-    
+
     if (termination)
     {
         logmsg("SCSI termination is enabled");
@@ -107,6 +111,10 @@ void platform_init()
     {
         logmsg("NOTE: SCSI termination is disabled");
     }
+#else
+    g_log_debug = false;
+    logmsg ("SCSI termination is handled by a hardware jumper");
+#endif
 
     // Get flash chip size
     uint8_t cmd_read_jedec_id[4] = {0x9f, 0, 0, 0};
@@ -130,12 +138,15 @@ void platform_init()
     // LED pin
     gpio_conf(LED_PIN,        GPIO_FUNC_SIO, false,false, true,  false, false);
 
+#ifdef GPIO_I2C_SDA
     // I2C pins
     //        pin             function       pup   pdown  out    state fast
     gpio_conf(GPIO_I2C_SCL,   GPIO_FUNC_I2C, true,false, false,  true, true);
     gpio_conf(GPIO_I2C_SDA,   GPIO_FUNC_I2C, true,false, false,  true, true);
+#endif
 }
 
+#ifdef HAS_DIP_SWITCHES
 static bool read_initiator_dip_switch()
 {
     /* Revision 2022d hardware has problems reading initiator DIP switch setting.
@@ -171,10 +182,12 @@ static bool read_initiator_dip_switch()
 
     return !gpio_get(DIP_INITIATOR);
 }
+#endif
 
 // late_init() only runs in main application, SCSI not needed in bootloader
 void platform_late_init()
 {
+#if defined(HAS_DIP_SWITCHES) && defined(PLATFORM_HAS_INITIATOR_MODE)
     if (read_initiator_dip_switch())
     {
         g_scsi_initiator = true;
@@ -186,6 +199,11 @@ void platform_late_init()
         logmsg("SCSI target/disk mode selected by DIP switch, acting as a SCSI disk");
     }
 
+#else
+    g_scsi_initiator = false;
+    logmsg("SCSI target/disk mode, acting as a SCSI disk");
+#endif
+
     /* Initialize SCSI pins to required modes.
      * SCSI pins should be inactive / input at this point.
      */
@@ -236,6 +254,9 @@ void platform_late_init()
     }
     else
     {
+#ifndef PLATFORM_HAS_INITIATOR_MODE
+        assert(false);
+#else
         // Act as SCSI initiator
 
         //        pin             function       pup   pdown  out    state fast
@@ -248,6 +269,7 @@ void platform_late_init()
         gpio_conf(SCSI_OUT_SEL,   GPIO_FUNC_SIO, false,false, true,  true, true);
         gpio_conf(SCSI_OUT_ACK,   GPIO_FUNC_SIO, false,false, true,  true, true);
         gpio_conf(SCSI_OUT_ATN,   GPIO_FUNC_SIO, false,false, true,  true, true);
+#endif
     }
 }
 

+ 19 - 62
lib/ZuluSCSI_platform_RP2040/ZuluSCSI_platform.h

@@ -25,23 +25,39 @@
 
 #include <stdint.h>
 #include <Arduino.h>
+
+#ifdef ZULUSCSI_BS2
+// BS2 hardware variant, using Raspberry Pico board on a carrier PCB
+#include "ZuluSCSI_platform_gpio_BS2.h"
+#else
+// Normal RP2040 variant, using RP2040 chip directly
 #include "ZuluSCSI_platform_gpio.h"
+#endif
+
 #include "scsiHostPhy.h"
 
+
 #ifdef __cplusplus
 extern "C" {
 #endif
 
 /* These are used in debug output and default SCSI strings */
 extern const char *g_platform_name;
-#define PLATFORM_NAME "ZuluSCSI RP2040"
-#define PLATFORM_REVISION "2.0"
+
+#ifdef ZULUSCSI_BS2
+# define PLATFORM_NAME "ZuluSCSI BS2"
+# define PLATFORM_REVISION "1.0"
+#else
+# define PLATFORM_NAME "ZuluSCSI RP2040"
+# define PLATFORM_REVISION "2.0"
+# define PLATFORM_HAS_INITIATOR_MODE 1
+#endif
+
 #define PLATFORM_MAX_SCSI_SPEED S2S_CFG_SPEED_SYNC_10
 #define PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE 32768
 #define PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE 65536
 #define PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE 8192
 #define SD_USE_SDIO 1
-#define PLATFORM_HAS_INITIATOR_MODE 1
 #define PLATFORM_HAS_PARITY_CHECK 1
 
 // NOTE: The driver supports synchronous speeds higher than 10MB/s, but this
@@ -118,65 +134,6 @@ bool platform_write_romdrive(const uint8_t *data, uint32_t start, uint32_t count
 extern const uint16_t g_scsi_parity_lookup[256];
 extern const uint16_t g_scsi_parity_check_lookup[512];
 
-// Below are GPIO access definitions that are used from scsiPhy.cpp.
-
-// Write a single SCSI pin.
-// Example use: SCSI_OUT(ATN, 1) sets SCSI_ATN to low (active) state.
-#define SCSI_OUT(pin, state) \
-    *(state ? &sio_hw->gpio_clr : &sio_hw->gpio_set) = 1 << (SCSI_OUT_ ## pin)
-
-// Read a single SCSI pin.
-// Example use: SCSI_IN(ATN), returns 1 for active low state.
-#define SCSI_IN(pin) \
-    ((sio_hw->gpio_in & (1 << (SCSI_IN_ ## pin))) ? 0 : 1)
-
-// Set pin directions for initiator vs. target mode
-#define SCSI_ENABLE_INITIATOR() \
-    (sio_hw->gpio_oe_set = (1 << SCSI_OUT_ACK) | \
-                           (1 << SCSI_OUT_ATN)), \
-    (sio_hw->gpio_oe_clr = (1 << SCSI_IN_IO) | \
-                           (1 << SCSI_IN_CD) | \
-                           (1 << SCSI_IN_MSG) | \
-                           (1 << SCSI_IN_REQ))
-
-// Enable driving of shared control pins
-#define SCSI_ENABLE_CONTROL_OUT() \
-    (sio_hw->gpio_oe_set = (1 << SCSI_OUT_CD) | \
-                           (1 << SCSI_OUT_MSG))
-
-// Set SCSI data bus to output
-#define SCSI_ENABLE_DATA_OUT() \
-    (sio_hw->gpio_clr = (1 << SCSI_DATA_DIR), \
-     sio_hw->gpio_oe_set = SCSI_IO_DATA_MASK)
-
-// Write SCSI data bus, also sets REQ to inactive.
-#define SCSI_OUT_DATA(data) \
-    gpio_put_masked(SCSI_IO_DATA_MASK | (1 << SCSI_OUT_REQ), \
-                    g_scsi_parity_lookup[(uint8_t)(data)] | (1 << SCSI_OUT_REQ)), \
-    SCSI_ENABLE_DATA_OUT()
-
-// Release SCSI data bus and REQ signal
-#define SCSI_RELEASE_DATA_REQ() \
-    (sio_hw->gpio_oe_clr = SCSI_IO_DATA_MASK, \
-     sio_hw->gpio_set = (1 << SCSI_DATA_DIR) | (1 << SCSI_OUT_REQ))
-
-// Release all SCSI outputs
-#define SCSI_RELEASE_OUTPUTS() \
-    SCSI_RELEASE_DATA_REQ(), \
-    sio_hw->gpio_oe_clr = (1 << SCSI_OUT_CD) | \
-                          (1 << SCSI_OUT_MSG), \
-    sio_hw->gpio_set = (1 << SCSI_OUT_IO) | \
-                       (1 << SCSI_OUT_CD) | \
-                       (1 << SCSI_OUT_MSG) | \
-                       (1 << SCSI_OUT_RST) | \
-                       (1 << SCSI_OUT_BSY) | \
-                       (1 << SCSI_OUT_REQ) | \
-                       (1 << SCSI_OUT_SEL)
-
-// Read SCSI data bus
-#define SCSI_IN_DATA() \
-    (~sio_hw->gpio_in & SCSI_IO_DATA_MASK) >> SCSI_IO_SHIFT
-
 #ifdef __cplusplus
 }
 

+ 61 - 0
lib/ZuluSCSI_platform_RP2040/ZuluSCSI_platform_gpio.h

@@ -94,9 +94,70 @@
 #define GPIO_I2C_SCL 15
 
 // DIP switch pins
+#define HAS_DIP_SWITCHES
 #define DIP_INITIATOR 10
 #define DIP_DBGLOG 16
 #define DIP_TERM 9
 
 // Other pins
 #define SWO_PIN 16
+
+// Below are GPIO access definitions that are used from scsiPhy.cpp.
+
+// Write a single SCSI pin.
+// Example use: SCSI_OUT(ATN, 1) sets SCSI_ATN to low (active) state.
+#define SCSI_OUT(pin, state) \
+    *(state ? &sio_hw->gpio_clr : &sio_hw->gpio_set) = 1 << (SCSI_OUT_ ## pin)
+
+// Read a single SCSI pin.
+// Example use: SCSI_IN(ATN), returns 1 for active low state.
+#define SCSI_IN(pin) \
+    ((sio_hw->gpio_in & (1 << (SCSI_IN_ ## pin))) ? 0 : 1)
+
+// Set pin directions for initiator vs. target mode
+#define SCSI_ENABLE_INITIATOR() \
+    (sio_hw->gpio_oe_set = (1 << SCSI_OUT_ACK) | \
+                           (1 << SCSI_OUT_ATN)), \
+    (sio_hw->gpio_oe_clr = (1 << SCSI_IN_IO) | \
+                           (1 << SCSI_IN_CD) | \
+                           (1 << SCSI_IN_MSG) | \
+                           (1 << SCSI_IN_REQ))
+
+// Enable driving of shared control pins
+#define SCSI_ENABLE_CONTROL_OUT() \
+    (sio_hw->gpio_oe_set = (1 << SCSI_OUT_CD) | \
+                           (1 << SCSI_OUT_MSG))
+
+// Set SCSI data bus to output
+#define SCSI_ENABLE_DATA_OUT() \
+    (sio_hw->gpio_clr = (1 << SCSI_DATA_DIR), \
+     sio_hw->gpio_oe_set = SCSI_IO_DATA_MASK)
+
+// Write SCSI data bus, also sets REQ to inactive.
+#define SCSI_OUT_DATA(data) \
+    gpio_put_masked(SCSI_IO_DATA_MASK | (1 << SCSI_OUT_REQ), \
+                    g_scsi_parity_lookup[(uint8_t)(data)] | (1 << SCSI_OUT_REQ)), \
+    SCSI_ENABLE_DATA_OUT()
+
+// Release SCSI data bus and REQ signal
+#define SCSI_RELEASE_DATA_REQ() \
+    (sio_hw->gpio_oe_clr = SCSI_IO_DATA_MASK, \
+     sio_hw->gpio_set = (1 << SCSI_DATA_DIR) | (1 << SCSI_OUT_REQ))
+
+// Release all SCSI outputs
+#define SCSI_RELEASE_OUTPUTS() \
+    SCSI_RELEASE_DATA_REQ(), \
+    sio_hw->gpio_oe_clr = (1 << SCSI_OUT_CD) | \
+                          (1 << SCSI_OUT_MSG), \
+    sio_hw->gpio_set = (1 << SCSI_OUT_IO) | \
+                       (1 << SCSI_OUT_CD) | \
+                       (1 << SCSI_OUT_MSG) | \
+                       (1 << SCSI_OUT_RST) | \
+                       (1 << SCSI_OUT_BSY) | \
+                       (1 << SCSI_OUT_REQ) | \
+                       (1 << SCSI_OUT_SEL)
+
+// Read SCSI data bus
+#define SCSI_IN_DATA() \
+    (~sio_hw->gpio_in & SCSI_IO_DATA_MASK) >> SCSI_IO_SHIFT
+

+ 54 - 0
lib/ZuluSCSI_platform_BS2/ZuluSCSI_platform_gpio.h → lib/ZuluSCSI_platform_RP2040/ZuluSCSI_platform_gpio_BS2.h

@@ -82,3 +82,57 @@
 
 // Other pins
 #define SWO_PIN 16
+
+
+// Below are GPIO access definitions that are used from scsiPhy.cpp.
+
+// Write a single SCSI pin.
+// Example use: SCSI_OUT(ATN, 1) sets SCSI_ATN to low (active) state.
+#define SCSI_OUT(pin, state) \
+    *(state ? &sio_hw->gpio_clr : &sio_hw->gpio_set) = 1 << (SCSI_OUT_ ## pin)
+
+// Read a single SCSI pin.
+// Example use: SCSI_IN(ATN), returns 1 for active low state.
+#define SCSI_IN(pin) \
+    ((sio_hw->gpio_in & (1 << (SCSI_IN_ ## pin))) ? 0 : 1)
+
+// Enable driving of shared control pins
+#define SCSI_ENABLE_CONTROL_OUT() \
+    (sio_hw->gpio_oe_set = (1 << SCSI_OUT_CD) | \
+                           (1 << SCSI_OUT_MSG))
+
+// Set SCSI data bus to output
+#define SCSI_ENABLE_DATA_OUT() \
+    (sio_hw->gpio_set = (1 << SCSI_DATA_DIR), \
+     sio_hw->gpio_oe_set = SCSI_IO_DATA_MASK)
+
+// Write SCSI data bus, also sets REQ to inactive.
+#define SCSI_OUT_DATA(data) \
+    gpio_put_masked(SCSI_IO_DATA_MASK | (1 << SCSI_OUT_REQ), \
+                    g_scsi_parity_lookup[(uint8_t)(data)] | (1 << SCSI_OUT_REQ)), \
+    SCSI_ENABLE_DATA_OUT()
+
+// Release SCSI data bus and REQ signal
+#define SCSI_RELEASE_DATA_REQ() \
+    (sio_hw->gpio_oe_clr = SCSI_IO_DATA_MASK, \
+     sio_hw->gpio_clr = (1 << SCSI_DATA_DIR), \
+     sio_hw->gpio_set = (1 << SCSI_OUT_REQ))
+
+// Release all SCSI outputs
+#define SCSI_RELEASE_OUTPUTS() \
+    SCSI_RELEASE_DATA_REQ(), \
+    sio_hw->gpio_set = (1 << SCSI_OUT_IO) | \
+                       (1 << SCSI_OUT_CD) | \
+                       (1 << SCSI_OUT_MSG) | \
+                       (1 << SCSI_OUT_RST) | \
+                       (1 << SCSI_OUT_BSY) | \
+                       (1 << SCSI_OUT_REQ) | \
+                       (1 << SCSI_OUT_SEL), \
+                       delay(1), \
+    sio_hw->gpio_oe_clr = (1 << SCSI_OUT_CD) | \
+                          (1 << SCSI_OUT_MSG)
+
+// Read SCSI data bus
+#define SCSI_IN_DATA() \
+    (~sio_hw->gpio_in & SCSI_IO_DATA_MASK) >> SCSI_IO_SHIFT
+

+ 6 - 1
lib/ZuluSCSI_platform_RP2040/rp2040_sdio.cpp

@@ -30,13 +30,18 @@
 // "SDIO Physical Layer Simplified Specification Version 8.00"
 
 #include "rp2040_sdio.h"
-#include "rp2040_sdio.pio.h"
 #include <hardware/pio.h>
 #include <hardware/dma.h>
 #include <hardware/gpio.h>
 #include <ZuluSCSI_platform.h>
 #include <ZuluSCSI_log.h>
 
+#ifdef ZULUSCSI_BS2
+#include "rp2040_sdio_BS2.pio.h"
+#else
+#include "rp2040_sdio.pio.h"
+#endif
+
 #define SDIO_PIO pio1
 #define SDIO_CMD_SM 0
 #define SDIO_DATA_SM 1

+ 3 - 1
lib/ZuluSCSI_platform_BS2/rp2040_sdio.pio → lib/ZuluSCSI_platform_RP2040/rp2040_sdio_BS2.pio

@@ -15,7 +15,9 @@
 ; GNU General Public License for more details. 
 ; 
 ; You should have received a copy of the GNU General Public License
-; along with this program.  If not, see <https://www.gnu.org/licenses/>.; RP2040 PIO program for implementing SD card access in SDIO mode
+; along with this program.  If not, see <https://www.gnu.org/licenses/>.
+
+; RP2040 PIO program for implementing SD card access in SDIO mode
 ; Run "pioasm rp2040_sdio.pio rp2040_sdio.pio.h" to regenerate the C header from this.
 
 

+ 3 - 3
lib/ZuluSCSI_platform_BS2/rp2040_sdio.pio.h → lib/ZuluSCSI_platform_RP2040/rp2040_sdio_BS2.pio.h

@@ -64,7 +64,7 @@ static const uint16_t sdio_data_rx_program_instructions[] = {
             //     .wrap_target
     0xa022, //  0: mov    x, y                       
     0x2020, //  1: wait   0 pin, 0                   
-    0x248A, //  2: wait   1 gpio, 10             [4] 
+    0x248a, //  2: wait   1 gpio, 10             [4] 
     0x4304, //  3: in     pins, 4                [3] 
     0x0043, //  4: jmp    x--, 3                     
             //     .wrap
@@ -92,8 +92,8 @@ static inline pio_sm_config sdio_data_rx_program_get_default_config(uint offset)
 #define sdio_data_tx_wrap 8
 
 static const uint16_t sdio_data_tx_program_instructions[] = {
-    0x200A, //  0: wait   0 gpio, 10                 
-    0x258A, //  1: wait   1 gpio, 10             [5] 
+    0x200a, //  0: wait   0 gpio, 10                 
+    0x258a, //  1: wait   1 gpio, 10             [5] 
     0x6204, //  2: out    pins, 4                [2] 
     0x0142, //  3: jmp    x--, 2                 [1] 
     0xe280, //  4: set    pindirs, 0             [2] 

+ 9 - 0
lib/ZuluSCSI_platform_RP2040/run_pioasm.sh

@@ -0,0 +1,9 @@
+#!/bin/bash
+
+# This script regenerates the .pio.h files from .pio
+
+pioasm rp2040_sdio.pio rp2040_sdio.pio.h
+pioasm rp2040_sdio_BS2.pio rp2040_sdio_BS2.pio.h
+
+pioasm scsi_accel.pio scsi_accel.pio.h
+pioasm scsi_accel_BS2.pio scsi_accel_BS2.pio.h

+ 16 - 0
lib/ZuluSCSI_platform_RP2040/scsiHostPhy.cpp

@@ -33,6 +33,20 @@ extern "C" {
 
 volatile int g_scsiHostPhyReset;
 
+#ifndef PLATFORM_HAS_INITIATOR_MODE
+
+// Dummy functions for platforms without hardware support for
+// SCSI initiator mode.
+void scsiHostPhyReset(void) {}
+bool scsiHostPhySelect(int target_id) { return false; }
+int scsiHostPhyGetPhase() { return 0; }
+bool scsiHostRequestWaiting() { return false; }
+uint32_t scsiHostWrite(const uint8_t *data, uint32_t count) { return 0; }
+uint32_t scsiHostRead(uint8_t *data, uint32_t count) { return 0; }
+void scsiHostPhyRelease();
+
+#else
+
 // Release bus and pulse RST signal, initialize PHY to host mode.
 void scsiHostPhyReset(void)
 {
@@ -285,3 +299,5 @@ void scsiHostPhyRelease()
     scsiLogInitiatorPhaseChange(BUS_FREE);
     SCSI_RELEASE_OUTPUTS();
 }
+
+#endif

+ 9 - 0
lib/ZuluSCSI_platform_RP2040/scsiPhy.cpp

@@ -100,6 +100,15 @@ extern "C" bool scsiStatusSEL()
         // Instead update the state here.
         // Releasing happens with bus release.
         g_scsi_ctrl_bsy = 0;
+
+#ifdef ZULUSCSI_BS2
+        // @TODO See if needed
+        SCSI_OUT(CD, 0);
+        SCSI_OUT(MSG, 0);
+        SCSI_ENABLE_CONTROL_OUT();
+        // @TODO end
+#endif
+
         SCSI_OUT(BSY, 1);
 
         // On RP2040 hardware the ATN signal is only available after OUT_BSY enables

+ 0 - 0
lib/ZuluSCSI_platform_BS2/scsi_accel.pio → lib/ZuluSCSI_platform_RP2040/scsi_accel_BS2.pio


+ 0 - 0
lib/ZuluSCSI_platform_BS2/scsi_accel.pio.h → lib/ZuluSCSI_platform_RP2040/scsi_accel_BS2.pio.h


+ 4 - 0
lib/ZuluSCSI_platform_RP2040/scsi_accel_host.cpp

@@ -31,6 +31,8 @@
 #include <hardware/structs/iobank0.h>
 #include <hardware/sync.h>
 
+#ifdef PLATFORM_HAS_INITIATOR_MODE
+
 #define SCSI_PIO pio0
 #define SCSI_SM 0
 
@@ -160,3 +162,5 @@ void scsi_accel_host_init()
     sm_config_set_out_shift(&g_scsi_host.pio_cfg_async_read, true, false, 32);
     sm_config_set_in_shift(&g_scsi_host.pio_cfg_async_read, true, true, 32);
 }
+
+#endif

+ 15 - 9
lib/ZuluSCSI_platform_RP2040/scsi_accel_rp2040.cpp

@@ -30,7 +30,6 @@
 #include "ZuluSCSI_platform.h"
 #include "ZuluSCSI_log.h"
 #include "scsi_accel_rp2040.h"
-#include "scsi_accel.pio.h"
 #include <hardware/pio.h>
 #include <hardware/dma.h>
 #include <hardware/irq.h>
@@ -38,6 +37,12 @@
 #include <hardware/sync.h>
 #include <multicore.h>
 
+#ifdef ZULUSCSI_BS2
+#include "scsi_accel_BS2.pio.h"
+#else
+#include "scsi_accel.pio.h"
+#endif
+
 // SCSI bus write acceleration uses up to 3 PIO state machines:
 // SM0: Convert data bytes to lookup addresses to add parity
 // SM1: Write data to SCSI bus
@@ -752,8 +757,9 @@ static void scsidma_config_gpio()
     else if (g_scsi_dma_state == SCSIDMA_WRITE)
     {
         // Make sure the initial state of all pins is high and output
-        pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0x3FF);
-        pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 10, true);
+        pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_IO_DATA_MASK | (1 << SCSI_OUT_REQ));
+        pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_IO_DB0, 9, true);
+        pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_OUT_REQ, 1, true);
 
         iobank0_hw->io[SCSI_IO_DB0].ctrl  = GPIO_FUNC_PIO0;
         iobank0_hw->io[SCSI_IO_DB1].ctrl  = GPIO_FUNC_PIO0;
@@ -772,16 +778,16 @@ static void scsidma_config_gpio()
         {
             // Asynchronous read
             // Data bus as input, REQ pin as output
-            pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0x3FF);
-            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);
-            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 9, 1, true);
+            pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_IO_DATA_MASK | (1 << SCSI_OUT_REQ));
+            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_IO_DB0, 9, false);
+            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_OUT_REQ, 1, true);
         }
         else
         {
             // Synchronous read, REQ pin is written by SYNC_SM
-            pio_sm_set_pins(SCSI_DMA_PIO, SCSI_SYNC_SM, 0x3FF);
-            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 10, false);
-            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_SYNC_SM, 9, 1, true);
+            pio_sm_set_pins(SCSI_DMA_PIO, SCSI_SYNC_SM, SCSI_IO_DATA_MASK | (1 << SCSI_OUT_REQ));
+            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_IO_DB0, 9, false);
+            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_SYNC_SM, SCSI_OUT_REQ, 1, true);
         }
 
         iobank0_hw->io[SCSI_IO_DB0].ctrl  = GPIO_FUNC_SIO;

+ 4 - 3
platformio.ini

@@ -99,7 +99,8 @@ build_flags =
     -DZULUSCSI_V2_0
 
 
-; ZuluSCSI RP2040 hardware platform, based on the Raspberry Pi foundation RP2040 microcontroller
+; Variant of RP2040 platform, based on Raspberry Pico board and a carrier PCB
+; Differs in pinout from ZuluSCSI_RP2040 platform, but shares most of the code.
 [env:ZuluSCSI_BS2]
 platform = raspberrypi@1.8.0
 framework = arduino
@@ -110,7 +111,7 @@ ldscript_bootloader = lib/ZuluSCSI_platform_RP2040/rp2040_btldr.ld
 lib_deps =
     SdFat=https://github.com/rabbitholecomputing/SdFat#2.2.0-gpt
     minIni
-    ZuluSCSI_platform_BS2
+    ZuluSCSI_platform_RP2040
     SCSI2SD
 build_flags =
     -O2 -Isrc -ggdb -g3
@@ -120,4 +121,4 @@ build_flags =
     -DENABLE_DEDICATED_SPI=1
     -DHAS_SDIO_CLASS
     -DUSE_ARDUINO=1
-    -DZULUSCSI_V3_0
+    -DZULUSCSI_BS2