|
|
@@ -0,0 +1,1028 @@
|
|
|
+/* Data flow in SCSI acceleration:
|
|
|
+ *
|
|
|
+ * 1. Application provides a buffer of bytes to send.
|
|
|
+ * 2. Code in this module adds parity bit to the bytes and packs two bytes into 32 bit words.
|
|
|
+ * 3. DMA controller copies the words to PIO peripheral FIFO.
|
|
|
+ * 4. PIO peripheral handles low-level SCSI handshake and writes bytes and parity to GPIO.
|
|
|
+ */
|
|
|
+
|
|
|
+#include "ZuluSCSI_platform.h"
|
|
|
+#include "ZuluSCSI_log.h"
|
|
|
+#include "scsi_accel_rp2040.h"
|
|
|
+#include "scsi_accel.pio.h"
|
|
|
+#include <hardware/pio.h>
|
|
|
+#include <hardware/dma.h>
|
|
|
+#include <hardware/irq.h>
|
|
|
+#include <hardware/structs/iobank0.h>
|
|
|
+#include <hardware/sync.h>
|
|
|
+#include <multicore.h>
|
|
|
+
|
|
|
+// SCSI bus write acceleration uses up to 3 PIO state machines:
|
|
|
+// SM0: Convert data bytes to lookup addresses to add parity
|
|
|
+// SM1: Write data to SCSI bus
|
|
|
+// SM2: For synchronous mode only, count ACK pulses
|
|
|
+#define SCSI_DMA_PIO pio0
|
|
|
+#define SCSI_PARITY_SM 0
|
|
|
+#define SCSI_DATA_SM 1
|
|
|
+#define SCSI_SYNC_SM 2
|
|
|
+
|
|
|
+// SCSI bus write acceleration uses 3 or 4 DMA channels (data flow A->B->C->D):
|
|
|
+// A: Bytes from RAM to scsi_parity PIO
|
|
|
+// B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
|
|
|
+// C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
|
|
|
+// D: For sync transfers, scsi_sync_write to scsi_sync_write_pacer PIO
|
|
|
+//
|
|
|
+// SCSI bus read acceleration uses 4 DMA channels (data flow D->C->B->A):
|
|
|
+// A: Bytes from scsi_read_parity PIO to memory buffer
|
|
|
+// B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
|
|
|
+// C: Addresses from scsi_accel_read PIO to lookup DMA READ_ADDR register
|
|
|
+// D: From pacer to data state machine to trigger transfers
|
|
|
+#define SCSI_DMA_CH_A 0
|
|
|
+#define SCSI_DMA_CH_B 1
|
|
|
+#define SCSI_DMA_CH_C 2
|
|
|
+#define SCSI_DMA_CH_D 3
|
|
|
+
|
|
|
+static struct {
|
|
|
+ uint8_t *app_buf; // Buffer provided by application
|
|
|
+ uint32_t app_bytes; // Bytes available in application buffer
|
|
|
+ uint32_t dma_bytes; // Bytes that have been scheduled for DMA so far
|
|
|
+
|
|
|
+ uint8_t *next_app_buf; // Next buffer from application after current one finishes
|
|
|
+ uint32_t next_app_bytes; // Bytes in next buffer
|
|
|
+
|
|
|
+ // Synchronous mode?
|
|
|
+ int syncOffset;
|
|
|
+ int syncPeriod;
|
|
|
+ int syncOffsetDivider; // Autopush/autopull threshold for the write pacer state machine
|
|
|
+ int syncOffsetPreload; // Number of items to preload in the RX fifo of scsi_sync_write
|
|
|
+
|
|
|
+ // PIO configurations
|
|
|
+ uint32_t pio_offset_parity;
|
|
|
+ uint32_t pio_offset_async_write;
|
|
|
+ uint32_t pio_offset_sync_write_pacer;
|
|
|
+ uint32_t pio_offset_sync_write;
|
|
|
+ uint32_t pio_offset_read;
|
|
|
+ uint32_t pio_offset_read_parity;
|
|
|
+ uint32_t pio_offset_sync_read_pacer;
|
|
|
+ pio_sm_config pio_cfg_parity;
|
|
|
+ pio_sm_config pio_cfg_async_write;
|
|
|
+ pio_sm_config pio_cfg_sync_write_pacer;
|
|
|
+ pio_sm_config pio_cfg_sync_write;
|
|
|
+ pio_sm_config pio_cfg_read;
|
|
|
+ pio_sm_config pio_cfg_read_parity;
|
|
|
+ pio_sm_config pio_cfg_sync_read_pacer;
|
|
|
+
|
|
|
+ // DMA configurations for write
|
|
|
+ dma_channel_config dmacfg_write_chA; // Data from RAM to scsi_parity PIO
|
|
|
+ dma_channel_config dmacfg_write_chB; // Addresses from scsi_parity PIO to lookup DMA
|
|
|
+ dma_channel_config dmacfg_write_chC; // Data from g_scsi_parity_lookup to scsi write PIO
|
|
|
+ dma_channel_config dmacfg_write_chD; // In synchronous mode only, transfer between state machines
|
|
|
+
|
|
|
+ // DMA configurations for read
|
|
|
+ dma_channel_config dmacfg_read_chA; // Data to destination memory buffer
|
|
|
+ dma_channel_config dmacfg_read_chB; // From lookup table to scsi_read_parity PIO
|
|
|
+ dma_channel_config dmacfg_read_chC; // From scsi_accel_read to channel B READ_ADDR
|
|
|
+ dma_channel_config dmacfg_read_chD; // From pacer to data state machine
|
|
|
+} g_scsi_dma;
|
|
|
+
|
|
|
+enum scsidma_state_t { SCSIDMA_IDLE = 0,
|
|
|
+ SCSIDMA_WRITE, SCSIDMA_WRITE_DONE,
|
|
|
+ SCSIDMA_READ, SCSIDMA_READ_DONE };
|
|
|
+static volatile scsidma_state_t g_scsi_dma_state;
|
|
|
+static bool g_channels_claimed = false;
|
|
|
+static void scsidma_config_gpio();
|
|
|
+
|
|
|
+
|
|
|
+/****************************************/
|
|
|
+/* Accelerated writes to SCSI bus */
|
|
|
+/****************************************/
|
|
|
+
|
|
|
+// Load the SCSI parity state machine with the address of the parity lookup table.
|
|
|
+// Also sets up DMA channels B and C
|
|
|
+static void config_parity_sm_for_write()
|
|
|
+{
|
|
|
+ // Load base address to state machine register X
|
|
|
+ uint32_t addrbase = (uint32_t)&g_scsi_parity_lookup[0];
|
|
|
+ assert((addrbase & 0x1FF) == 0);
|
|
|
+ pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_parity, &g_scsi_dma.pio_cfg_parity);
|
|
|
+ pio_sm_put(SCSI_DMA_PIO, SCSI_PARITY_SM, addrbase >> 9);
|
|
|
+ pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_pull(false, false));
|
|
|
+ pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_mov(pio_x, pio_osr));
|
|
|
+
|
|
|
+ // DMA channel B will copy addresses from parity PIO to DMA channel C read address register.
|
|
|
+ // It is triggered by the parity SM RX FIFO request
|
|
|
+ dma_channel_configure(SCSI_DMA_CH_B,
|
|
|
+ &g_scsi_dma.dmacfg_write_chB,
|
|
|
+ &dma_hw->ch[SCSI_DMA_CH_C].al3_read_addr_trig,
|
|
|
+ &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
|
|
|
+ 1, true);
|
|
|
+
|
|
|
+ // DMA channel C will read g_scsi_parity_lookup to copy data + parity to SCSI write state machine.
|
|
|
+ // It is triggered by SCSI write machine TX FIFO request and chains to re-enable channel B.
|
|
|
+ dma_channel_configure(SCSI_DMA_CH_C,
|
|
|
+ &g_scsi_dma.dmacfg_write_chC,
|
|
|
+ &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
|
|
|
+ NULL,
|
|
|
+ 1, false);
|
|
|
+}
|
|
|
+
|
|
|
+static void start_dma_write()
|
|
|
+{
|
|
|
+ if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
|
|
|
+ {
|
|
|
+ // Buffer has been fully processed, swap it
|
|
|
+ g_scsi_dma.dma_bytes = 0;
|
|
|
+ g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
|
|
|
+ g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
|
|
|
+ g_scsi_dma.next_app_buf = 0;
|
|
|
+ g_scsi_dma.next_app_bytes = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check if we are all done.
|
|
|
+ // From SCSIDMA_WRITE_DONE state we can either go to IDLE in stopWrite()
|
|
|
+ // or back to WRITE in startWrite().
|
|
|
+ uint32_t bytes_to_send = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
|
|
|
+ if (bytes_to_send == 0)
|
|
|
+ {
|
|
|
+ g_scsi_dma_state = SCSIDMA_WRITE_DONE;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ uint8_t *src_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
|
|
|
+ g_scsi_dma.dma_bytes += bytes_to_send;
|
|
|
+
|
|
|
+ // Start DMA from current buffer to parity generator
|
|
|
+ dma_channel_configure(SCSI_DMA_CH_A,
|
|
|
+ &g_scsi_dma.dmacfg_write_chA,
|
|
|
+ &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
|
|
|
+ src_buf,
|
|
|
+ bytes_to_send,
|
|
|
+ true
|
|
|
+ );
|
|
|
+}
|
|
|
+
|
|
|
+void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag)
|
|
|
+{
|
|
|
+ // Any read requests should be matched with a stopRead()
|
|
|
+ assert(g_scsi_dma_state != SCSIDMA_READ && g_scsi_dma_state != SCSIDMA_READ_DONE);
|
|
|
+
|
|
|
+ __disable_irq();
|
|
|
+ if (g_scsi_dma_state == SCSIDMA_WRITE)
|
|
|
+ {
|
|
|
+ if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
|
|
|
+ {
|
|
|
+ // Combine with currently running request
|
|
|
+ g_scsi_dma.app_bytes += count;
|
|
|
+ count = 0;
|
|
|
+ }
|
|
|
+ else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
|
|
|
+ {
|
|
|
+ // Combine with queued request
|
|
|
+ g_scsi_dma.next_app_bytes += count;
|
|
|
+ count = 0;
|
|
|
+ }
|
|
|
+ else if (!g_scsi_dma.next_app_buf)
|
|
|
+ {
|
|
|
+ // Add as queued request
|
|
|
+ g_scsi_dma.next_app_buf = (uint8_t*)data;
|
|
|
+ g_scsi_dma.next_app_bytes = count;
|
|
|
+ count = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ __enable_irq();
|
|
|
+
|
|
|
+ // Check if the request was combined
|
|
|
+ if (count == 0) return;
|
|
|
+
|
|
|
+ if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_WRITE_DONE)
|
|
|
+ {
|
|
|
+ // Wait for previous request to finish
|
|
|
+ scsi_accel_rp2040_finishWrite(resetFlag);
|
|
|
+ if (*resetFlag)
|
|
|
+ {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
|
|
|
+ g_scsi_dma_state = SCSIDMA_WRITE;
|
|
|
+ g_scsi_dma.app_buf = (uint8_t*)data;
|
|
|
+ g_scsi_dma.app_bytes = count;
|
|
|
+ g_scsi_dma.dma_bytes = 0;
|
|
|
+ g_scsi_dma.next_app_buf = 0;
|
|
|
+ g_scsi_dma.next_app_bytes = 0;
|
|
|
+
|
|
|
+ if (must_reconfig_gpio)
|
|
|
+ {
|
|
|
+ SCSI_ENABLE_DATA_OUT();
|
|
|
+
|
|
|
+ if (g_scsi_dma.syncOffset == 0)
|
|
|
+ {
|
|
|
+ // Asynchronous write
|
|
|
+ config_parity_sm_for_write();
|
|
|
+ pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_async_write, &g_scsi_dma.pio_cfg_async_write);
|
|
|
+ scsidma_config_gpio();
|
|
|
+
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Synchronous write
|
|
|
+ // Data state machine writes data to SCSI bus and dummy bits to its RX fifo.
|
|
|
+ // Sync state machine empties the dummy bits every time ACK is received, to control the transmit pace.
|
|
|
+ config_parity_sm_for_write();
|
|
|
+ pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_sync_write, &g_scsi_dma.pio_cfg_sync_write);
|
|
|
+ pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_write_pacer, &g_scsi_dma.pio_cfg_sync_write_pacer);
|
|
|
+ scsidma_config_gpio();
|
|
|
+
|
|
|
+ // Prefill RX fifo to set the syncOffset
|
|
|
+ for (int i = 0; i < g_scsi_dma.syncOffsetPreload; i++)
|
|
|
+ {
|
|
|
+ pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM,
|
|
|
+ pio_encode_push(false, false) | pio_encode_sideset(1, 1));
|
|
|
+ }
|
|
|
+
|
|
|
+ // Fill the pacer TX fifo
|
|
|
+ // DMA should start transferring only after ACK pulses are received
|
|
|
+ for (int i = 0; i < 4; i++)
|
|
|
+ {
|
|
|
+ pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Fill the pacer OSR
|
|
|
+ pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM,
|
|
|
+ pio_encode_mov(pio_osr, pio_null));
|
|
|
+
|
|
|
+ // Start DMA transfer to move dummy bits to write pacer
|
|
|
+ dma_channel_configure(SCSI_DMA_CH_D,
|
|
|
+ &g_scsi_dma.dmacfg_write_chD,
|
|
|
+ &SCSI_DMA_PIO->txf[SCSI_SYNC_SM],
|
|
|
+ &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
|
|
|
+ 0xFFFFFFFF,
|
|
|
+ true
|
|
|
+ );
|
|
|
+
|
|
|
+ // Enable state machines
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ start_dma_write();
|
|
|
+}
|
|
|
+
|
|
|
+bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data)
|
|
|
+{
|
|
|
+ // Check if everything has completed
|
|
|
+ if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_WRITE_DONE)
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!data)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // Check if this data item is still in queue.
|
|
|
+ bool finished = true;
|
|
|
+ __disable_irq();
|
|
|
+ if (data >= g_scsi_dma.app_buf &&
|
|
|
+ data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
|
|
|
+ (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].al1_read_addr)
|
|
|
+ {
|
|
|
+ finished = false; // In current transfer
|
|
|
+ }
|
|
|
+ else if (data >= g_scsi_dma.next_app_buf &&
|
|
|
+ data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
|
|
|
+ {
|
|
|
+ finished = false; // In queued transfer
|
|
|
+ }
|
|
|
+ __enable_irq();
|
|
|
+
|
|
|
+ return finished;
|
|
|
+}
|
|
|
+
|
|
|
+// Once DMA has finished, check if all PIO queues have been drained
|
|
|
+static bool scsi_accel_rp2040_isWriteDone()
|
|
|
+{
|
|
|
+ // Check if data is still waiting in PIO FIFO
|
|
|
+ if (!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
|
|
|
+ !pio_sm_is_rx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
|
|
|
+ !pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_DATA_SM))
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (g_scsi_dma.syncOffset > 0)
|
|
|
+ {
|
|
|
+ // Check if all bytes of synchronous write have been acknowledged
|
|
|
+ if (pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM) > g_scsi_dma.syncOffsetPreload)
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Check if state machine has written out its OSR
|
|
|
+ if (pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM) != g_scsi_dma.pio_offset_async_write)
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check if ACK of the final byte has finished
|
|
|
+ if (SCSI_IN(ACK))
|
|
|
+ return false;
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+static void scsi_accel_rp2040_stopWrite(volatile int *resetFlag)
|
|
|
+{
|
|
|
+ // Wait for TX fifo to be empty and ACK to go high
|
|
|
+ // For synchronous writes wait for all ACKs to be received also
|
|
|
+ uint32_t start = millis();
|
|
|
+ while (!scsi_accel_rp2040_isWriteDone() && !*resetFlag)
|
|
|
+ {
|
|
|
+ if ((uint32_t)(millis() - start) > 5000)
|
|
|
+ {
|
|
|
+ azlog("scsi_accel_rp2040_stopWrite() timeout, FIFO levels ",
|
|
|
+ (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ",
|
|
|
+ (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " PC ",
|
|
|
+ (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM));
|
|
|
+ *resetFlag = 1;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ dma_channel_abort(SCSI_DMA_CH_A);
|
|
|
+ dma_channel_abort(SCSI_DMA_CH_B);
|
|
|
+ dma_channel_abort(SCSI_DMA_CH_C);
|
|
|
+ dma_channel_abort(SCSI_DMA_CH_D);
|
|
|
+ dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
|
|
|
+ g_scsi_dma_state = SCSIDMA_IDLE;
|
|
|
+ SCSI_RELEASE_DATA_REQ();
|
|
|
+ scsidma_config_gpio();
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
|
|
|
+}
|
|
|
+
|
|
|
+void scsi_accel_rp2040_finishWrite(volatile int *resetFlag)
|
|
|
+{
|
|
|
+ uint32_t start = millis();
|
|
|
+ while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag)
|
|
|
+ {
|
|
|
+ if ((uint32_t)(millis() - start) > 5000)
|
|
|
+ {
|
|
|
+ azlog("scsi_accel_rp2040_finishWrite() timeout,"
|
|
|
+ " state: ", (int)g_scsi_dma_state, " ", (int)g_scsi_dma.dma_bytes, "/", (int)g_scsi_dma.app_bytes, ", ", (int)g_scsi_dma.next_app_bytes,
|
|
|
+ " PIO PC: ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),
|
|
|
+ " PIO FIFO: ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM),
|
|
|
+ " DMA counts: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count,
|
|
|
+ " ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);
|
|
|
+ *resetFlag = 1;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (g_scsi_dma_state == SCSIDMA_WRITE_DONE)
|
|
|
+ {
|
|
|
+ // DMA done, wait for PIO to finish also and reconfig GPIO.
|
|
|
+ scsi_accel_rp2040_stopWrite(resetFlag);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/****************************************/
|
|
|
+/* Accelerated reads from SCSI bus */
|
|
|
+/****************************************/
|
|
|
+
|
|
|
+// Load the SCSI read state machine with the address of the parity lookup table.
|
|
|
+// Also sets up DMA channels B, C and D
|
|
|
+static void config_parity_sm_for_read()
|
|
|
+{
|
|
|
+ // Configure parity check state machine
|
|
|
+ pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_read_parity, &g_scsi_dma.pio_cfg_read_parity);
|
|
|
+
|
|
|
+ // Load base address to state machine register X
|
|
|
+ uint32_t addrbase = (uint32_t)&g_scsi_parity_check_lookup[0];
|
|
|
+ assert((addrbase & 0x3FF) == 0);
|
|
|
+ pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_read, &g_scsi_dma.pio_cfg_read);
|
|
|
+ pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, addrbase >> 10);
|
|
|
+ pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
|
|
|
+ pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_mov(pio_y, pio_osr) | pio_encode_sideset(1, 1));
|
|
|
+
|
|
|
+ // For synchronous mode, the REQ pin is driven by SCSI_SYNC_SM, so disable it in SCSI_DATA_SM
|
|
|
+ if (g_scsi_dma.syncOffset > 0)
|
|
|
+ {
|
|
|
+ pio_sm_set_sideset_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ // DMA channel B will read g_scsi_parity_check_lookup and write to scsi_read_parity PIO.
|
|
|
+ dma_channel_configure(SCSI_DMA_CH_B,
|
|
|
+ &g_scsi_dma.dmacfg_read_chB,
|
|
|
+ &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
|
|
|
+ NULL,
|
|
|
+ 1, false);
|
|
|
+
|
|
|
+ // DMA channel C will copy addresses from data PIO to DMA channel B read address register.
|
|
|
+ // It is triggered by the data SM RX FIFO request.
|
|
|
+ // This triggers channel B by writing to READ_ADDR_TRIG
|
|
|
+ // Channel B chaining re-enables this channel.
|
|
|
+ dma_channel_configure(SCSI_DMA_CH_C,
|
|
|
+ &g_scsi_dma.dmacfg_read_chC,
|
|
|
+ &dma_hw->ch[SCSI_DMA_CH_B].al3_read_addr_trig,
|
|
|
+ &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
|
|
|
+ 1, true);
|
|
|
+
|
|
|
+ if (g_scsi_dma.syncOffset == 0)
|
|
|
+ {
|
|
|
+ // DMA channel D will copy dummy words to scsi_accel_read PIO to set the number
|
|
|
+ // of bytes to transfer.
|
|
|
+ static const uint32_t dummy = 0;
|
|
|
+ dma_channel_configure(SCSI_DMA_CH_D,
|
|
|
+ &g_scsi_dma.dmacfg_read_chD,
|
|
|
+ &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
|
|
|
+ &dummy,
|
|
|
+ 0, false);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_read_pacer, &g_scsi_dma.pio_cfg_sync_read_pacer);
|
|
|
+
|
|
|
+ // DMA channel D will copy words from scsi_sync_read_pacer to scsi_accel_read PIO
|
|
|
+ // to control the offset between REQ pulses sent and ACK pulses received.
|
|
|
+ dma_channel_configure(SCSI_DMA_CH_D,
|
|
|
+ &g_scsi_dma.dmacfg_read_chD,
|
|
|
+ &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
|
|
|
+ &SCSI_DMA_PIO->rxf[SCSI_SYNC_SM],
|
|
|
+ 0, false);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Clear PIO IRQ flag that is used to detect parity error
|
|
|
+ SCSI_DMA_PIO->irq = 1;
|
|
|
+}
|
|
|
+
|
|
|
+static void start_dma_read()
|
|
|
+{
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
|
|
|
+ pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_PARITY_SM);
|
|
|
+ pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_DATA_SM);
|
|
|
+
|
|
|
+ if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
|
|
|
+ {
|
|
|
+ // Buffer has been fully processed, swap it
|
|
|
+ g_scsi_dma.dma_bytes = 0;
|
|
|
+ g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
|
|
|
+ g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
|
|
|
+ g_scsi_dma.next_app_buf = 0;
|
|
|
+ g_scsi_dma.next_app_bytes = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check if we are all done.
|
|
|
+ // From SCSIDMA_READ_DONE state we can either go to IDLE in stopRead()
|
|
|
+ // or back to READ in startWrite().
|
|
|
+ uint32_t bytes_to_read = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
|
|
|
+ if (bytes_to_read == 0)
|
|
|
+ {
|
|
|
+ g_scsi_dma_state = SCSIDMA_READ_DONE;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (g_scsi_dma.syncOffset == 0)
|
|
|
+ {
|
|
|
+ // Start sending dummy words to scsi_accel_read state machine
|
|
|
+ dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Set number of bytes to receive to the scsi_sync_read_pacer state machine register X
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
|
|
|
+ hw_clear_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
|
|
|
+ pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, bytes_to_read - 1);
|
|
|
+ pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
|
|
|
+ pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_mov(pio_x, pio_osr) | pio_encode_sideset(1, 1));
|
|
|
+ hw_set_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
|
|
|
+
|
|
|
+ // Prefill FIFOs to get correct syncOffset
|
|
|
+ int prefill = 12 - g_scsi_dma.syncOffset;
|
|
|
+
|
|
|
+ // Always at least 1 word to avoid race condition between REQ and ACK pulses
|
|
|
+ if (prefill < 1) prefill = 1;
|
|
|
+
|
|
|
+ // Up to 4 words in SCSI_DATA_SM TX fifo
|
|
|
+ for (int i = 0; i < 4 && prefill > 0; i++)
|
|
|
+ {
|
|
|
+ pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
|
|
|
+ prefill--;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Up to 8 words in SCSI_SYNC_SM RX fifo
|
|
|
+ for (int i = 0; i < 8 && prefill > 0; i++)
|
|
|
+ {
|
|
|
+ pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_push(false, false) | pio_encode_sideset(1, 1));
|
|
|
+ prefill--;
|
|
|
+ }
|
|
|
+
|
|
|
+ pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_jmp(g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_sideset(1, 1));
|
|
|
+
|
|
|
+ // Start transfers
|
|
|
+ dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Start DMA to fill the destination buffer
|
|
|
+ uint8_t *dest_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
|
|
|
+ g_scsi_dma.dma_bytes += bytes_to_read;
|
|
|
+ dma_channel_configure(SCSI_DMA_CH_A,
|
|
|
+ &g_scsi_dma.dmacfg_read_chA,
|
|
|
+ dest_buf,
|
|
|
+ &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
|
|
|
+ bytes_to_read,
|
|
|
+ true
|
|
|
+ );
|
|
|
+
|
|
|
+ // Ready to start the data and parity check state machines
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
|
|
|
+
|
|
|
+ if (g_scsi_dma.syncOffset > 0)
|
|
|
+ {
|
|
|
+ // Start sending REQ pulses
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void scsi_accel_rp2040_startRead(uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
|
|
|
+{
|
|
|
+ // Any write requests should be matched with a stopWrite()
|
|
|
+ assert(g_scsi_dma_state != SCSIDMA_WRITE && g_scsi_dma_state != SCSIDMA_WRITE_DONE);
|
|
|
+
|
|
|
+ __disable_irq();
|
|
|
+ if (g_scsi_dma_state == SCSIDMA_READ)
|
|
|
+ {
|
|
|
+ if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
|
|
|
+ {
|
|
|
+ // Combine with currently running request
|
|
|
+ g_scsi_dma.app_bytes += count;
|
|
|
+ count = 0;
|
|
|
+ }
|
|
|
+ else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
|
|
|
+ {
|
|
|
+ // Combine with queued request
|
|
|
+ g_scsi_dma.next_app_bytes += count;
|
|
|
+ count = 0;
|
|
|
+ }
|
|
|
+ else if (!g_scsi_dma.next_app_buf)
|
|
|
+ {
|
|
|
+ // Add as queued request
|
|
|
+ g_scsi_dma.next_app_buf = (uint8_t*)data;
|
|
|
+ g_scsi_dma.next_app_bytes = count;
|
|
|
+ count = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ __enable_irq();
|
|
|
+
|
|
|
+ // Check if the request was combined
|
|
|
+ if (count == 0) return;
|
|
|
+
|
|
|
+ if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_READ_DONE)
|
|
|
+ {
|
|
|
+ // Wait for previous request to finish
|
|
|
+ scsi_accel_rp2040_finishRead(NULL, 0, parityError, resetFlag);
|
|
|
+ if (*resetFlag)
|
|
|
+ {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
|
|
|
+ g_scsi_dma_state = SCSIDMA_READ;
|
|
|
+ g_scsi_dma.app_buf = (uint8_t*)data;
|
|
|
+ g_scsi_dma.app_bytes = count;
|
|
|
+ g_scsi_dma.dma_bytes = 0;
|
|
|
+ g_scsi_dma.next_app_buf = 0;
|
|
|
+ g_scsi_dma.next_app_bytes = 0;
|
|
|
+
|
|
|
+ if (must_reconfig_gpio)
|
|
|
+ {
|
|
|
+ config_parity_sm_for_read();
|
|
|
+ scsidma_config_gpio();
|
|
|
+ dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ start_dma_read();
|
|
|
+}
|
|
|
+
|
|
|
+bool scsi_accel_rp2040_isReadFinished(const uint8_t* data)
|
|
|
+{
|
|
|
+ // Check if everything has completed
|
|
|
+ if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_READ_DONE)
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!data)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // Check if this data item is still in queue.
|
|
|
+ bool finished = true;
|
|
|
+ __disable_irq();
|
|
|
+ if (data >= g_scsi_dma.app_buf &&
|
|
|
+ data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
|
|
|
+ (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].write_addr)
|
|
|
+ {
|
|
|
+ finished = false; // In current transfer
|
|
|
+ }
|
|
|
+ else if (data >= g_scsi_dma.next_app_buf &&
|
|
|
+ data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
|
|
|
+ {
|
|
|
+ finished = false; // In queued transfer
|
|
|
+ }
|
|
|
+ __enable_irq();
|
|
|
+
|
|
|
+ return finished;
|
|
|
+}
|
|
|
+
|
|
|
+static void scsi_accel_rp2040_stopRead()
|
|
|
+{
|
|
|
+ dma_channel_abort(SCSI_DMA_CH_A);
|
|
|
+ dma_channel_abort(SCSI_DMA_CH_B);
|
|
|
+ dma_channel_abort(SCSI_DMA_CH_C);
|
|
|
+ dma_channel_abort(SCSI_DMA_CH_D);
|
|
|
+ dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
|
|
|
+ g_scsi_dma_state = SCSIDMA_IDLE;
|
|
|
+ SCSI_RELEASE_DATA_REQ();
|
|
|
+ scsidma_config_gpio();
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
|
|
|
+ pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
|
|
|
+}
|
|
|
+
|
|
|
+void scsi_accel_rp2040_finishRead(const uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
|
|
|
+{
|
|
|
+ uint32_t start = millis();
|
|
|
+ const uint8_t *query_addr = (data ? (data + count - 1) : NULL);
|
|
|
+ while (!scsi_accel_rp2040_isReadFinished(query_addr) && !*resetFlag)
|
|
|
+ {
|
|
|
+ if ((uint32_t)(millis() - start) > 5000)
|
|
|
+ {
|
|
|
+ azlog("scsi_accel_rp2040_finishRead timeout,"
|
|
|
+ " state: ", (int)g_scsi_dma_state, " ", (int)g_scsi_dma.dma_bytes, "/", (int)g_scsi_dma.app_bytes, ", ", (int)g_scsi_dma.next_app_bytes,
|
|
|
+ " PIO PC: ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),
|
|
|
+ " PIO FIFO: ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM),
|
|
|
+ " DMA counts: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count,
|
|
|
+ " ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);
|
|
|
+ *resetFlag = 1;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (g_scsi_dma_state == SCSIDMA_READ_DONE || *resetFlag)
|
|
|
+ {
|
|
|
+ // This was last buffer, release bus
|
|
|
+ scsi_accel_rp2040_stopRead();
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check if any parity errors have been detected during the transfer so far
|
|
|
+ if (parityError != NULL && (SCSI_DMA_PIO->irq & 1))
|
|
|
+ {
|
|
|
+ azdbg("scsi_accel_rp2040_finishRead(", bytearray(data, count), ") detected parity error");
|
|
|
+ *parityError = true;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*******************************************************/
|
|
|
+/* Initialization functions common to read/write */
|
|
|
+/*******************************************************/
|
|
|
+
|
|
|
+static void scsi_dma_irq()
|
|
|
+{
|
|
|
+ dma_hw->ints0 = (1 << SCSI_DMA_CH_A);
|
|
|
+
|
|
|
+ scsidma_state_t state = g_scsi_dma_state;
|
|
|
+ if (state == SCSIDMA_WRITE)
|
|
|
+ {
|
|
|
+ // Start writing from next buffer, if any, or set state to SCSIDMA_WRITE_DONE
|
|
|
+ start_dma_write();
|
|
|
+ }
|
|
|
+ else if (state == SCSIDMA_READ)
|
|
|
+ {
|
|
|
+ // Start reading into next buffer, if any, or set state to SCSIDMA_READ_DONE
|
|
|
+ start_dma_read();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Select GPIO from PIO peripheral or from software controlled SIO
|
|
|
+static void scsidma_config_gpio()
|
|
|
+{
|
|
|
+ if (g_scsi_dma_state == SCSIDMA_IDLE)
|
|
|
+ {
|
|
|
+ iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_SIO;
|
|
|
+ }
|
|
|
+ else if (g_scsi_dma_state == SCSIDMA_WRITE)
|
|
|
+ {
|
|
|
+ // Make sure the initial state of all pins is high and output
|
|
|
+ pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0x201FF);
|
|
|
+ pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, true);
|
|
|
+ pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 17, 1, true);
|
|
|
+
|
|
|
+ iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ }
|
|
|
+ else if (g_scsi_dma_state == SCSIDMA_READ)
|
|
|
+ {
|
|
|
+ if (g_scsi_dma.syncOffset == 0)
|
|
|
+ {
|
|
|
+ // Asynchronous read
|
|
|
+ // Data bus as input, REQ pin as output
|
|
|
+ pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0x201FF);
|
|
|
+ pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);
|
|
|
+ pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 17, 1, true);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Synchronous read, REQ pin is written by SYNC_SM
|
|
|
+ pio_sm_set_pins(SCSI_DMA_PIO, SCSI_SYNC_SM, 0x201FF);
|
|
|
+ pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);
|
|
|
+ pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_SYNC_SM, 17, 1, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
|
|
|
+ iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void scsi_accel_rp2040_init()
|
|
|
+{
|
|
|
+ g_scsi_dma_state = SCSIDMA_IDLE;
|
|
|
+ scsidma_config_gpio();
|
|
|
+
|
|
|
+ // Mark channels as being in use, unless it has been done already
|
|
|
+ if (!g_channels_claimed)
|
|
|
+ {
|
|
|
+ pio_sm_claim(SCSI_DMA_PIO, SCSI_PARITY_SM);
|
|
|
+ pio_sm_claim(SCSI_DMA_PIO, SCSI_DATA_SM);
|
|
|
+ pio_sm_claim(SCSI_DMA_PIO, SCSI_SYNC_SM);
|
|
|
+ dma_channel_claim(SCSI_DMA_CH_A);
|
|
|
+ dma_channel_claim(SCSI_DMA_CH_B);
|
|
|
+ dma_channel_claim(SCSI_DMA_CH_C);
|
|
|
+ dma_channel_claim(SCSI_DMA_CH_D);
|
|
|
+ g_channels_claimed = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Load PIO programs
|
|
|
+ pio_clear_instruction_memory(SCSI_DMA_PIO);
|
|
|
+
|
|
|
+ // Parity lookup generator
|
|
|
+ g_scsi_dma.pio_offset_parity = pio_add_program(SCSI_DMA_PIO, &scsi_parity_program);
|
|
|
+ g_scsi_dma.pio_cfg_parity = scsi_parity_program_get_default_config(g_scsi_dma.pio_offset_parity);
|
|
|
+ sm_config_set_out_shift(&g_scsi_dma.pio_cfg_parity, true, false, 32);
|
|
|
+ sm_config_set_in_shift(&g_scsi_dma.pio_cfg_parity, true, true, 32);
|
|
|
+
|
|
|
+ // Asynchronous SCSI write
|
|
|
+ g_scsi_dma.pio_offset_async_write = pio_add_program(SCSI_DMA_PIO, &scsi_accel_async_write_program);
|
|
|
+ g_scsi_dma.pio_cfg_async_write = scsi_accel_async_write_program_get_default_config(g_scsi_dma.pio_offset_async_write);
|
|
|
+ sm_config_set_out_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_IO_DB0, 9);
|
|
|
+ sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_OUT_REQ);
|
|
|
+ sm_config_set_fifo_join(&g_scsi_dma.pio_cfg_async_write, PIO_FIFO_JOIN_TX);
|
|
|
+ sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32);
|
|
|
+
|
|
|
+ // Synchronous SCSI write pacer / ACK handler
|
|
|
+ g_scsi_dma.pio_offset_sync_write_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program);
|
|
|
+ g_scsi_dma.pio_cfg_sync_write_pacer = scsi_sync_write_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_write_pacer);
|
|
|
+ sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, 1);
|
|
|
+
|
|
|
+ // Synchronous SCSI data writer
|
|
|
+ g_scsi_dma.pio_offset_sync_write = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_program);
|
|
|
+ g_scsi_dma.pio_cfg_sync_write = scsi_sync_write_program_get_default_config(g_scsi_dma.pio_offset_sync_write);
|
|
|
+ sm_config_set_out_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_IO_DB0, 9);
|
|
|
+ sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_OUT_REQ);
|
|
|
+ sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 32);
|
|
|
+ sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 1);
|
|
|
+
|
|
|
+ // Asynchronous / synchronous SCSI read
|
|
|
+ g_scsi_dma.pio_offset_read = pio_add_program(SCSI_DMA_PIO, &scsi_accel_read_program);
|
|
|
+ g_scsi_dma.pio_cfg_read = scsi_accel_read_program_get_default_config(g_scsi_dma.pio_offset_read);
|
|
|
+ sm_config_set_in_pins(&g_scsi_dma.pio_cfg_read, SCSI_IO_DB0);
|
|
|
+ sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_read, SCSI_OUT_REQ);
|
|
|
+ sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read, true, false, 32);
|
|
|
+ sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read, true, true, 32);
|
|
|
+
|
|
|
+ // Synchronous SCSI read pacer
|
|
|
+ g_scsi_dma.pio_offset_sync_read_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program);
|
|
|
+ g_scsi_dma.pio_cfg_sync_read_pacer = scsi_sync_read_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_read_pacer);
|
|
|
+ sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_read_pacer, SCSI_OUT_REQ);
|
|
|
+
|
|
|
+ // Read parity check
|
|
|
+ g_scsi_dma.pio_offset_read_parity = pio_add_program(SCSI_DMA_PIO, &scsi_read_parity_program);
|
|
|
+ g_scsi_dma.pio_cfg_read_parity = scsi_read_parity_program_get_default_config(g_scsi_dma.pio_offset_read_parity);
|
|
|
+ sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read_parity, true, true, 32);
|
|
|
+ sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read_parity, true, false, 32);
|
|
|
+
|
|
|
+ // Create DMA channel configurations so they can be applied quickly later
|
|
|
+
|
|
|
+ // For write to SCSI BUS:
|
|
|
+ // Channel A: Bytes from RAM to scsi_parity PIO
|
|
|
+ dma_channel_config cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
|
|
|
+ channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
|
|
|
+ channel_config_set_read_increment(&cfg, true);
|
|
|
+ channel_config_set_write_increment(&cfg, false);
|
|
|
+ channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, true));
|
|
|
+ g_scsi_dma.dmacfg_write_chA = cfg;
|
|
|
+
|
|
|
+ // Channel B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
|
|
|
+ cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
|
|
|
+ channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
|
|
|
+ channel_config_set_read_increment(&cfg, false);
|
|
|
+ channel_config_set_write_increment(&cfg, false);
|
|
|
+ channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
|
|
|
+ g_scsi_dma.dmacfg_write_chB = cfg;
|
|
|
+
|
|
|
+ // Channel C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
|
|
|
+ // When done, chain to channel B
|
|
|
+ cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
|
|
|
+ channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
|
|
|
+ channel_config_set_read_increment(&cfg, false);
|
|
|
+ channel_config_set_write_increment(&cfg, false);
|
|
|
+ channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
|
|
|
+ channel_config_set_chain_to(&cfg, SCSI_DMA_CH_B);
|
|
|
+ g_scsi_dma.dmacfg_write_chC = cfg;
|
|
|
+
|
|
|
+ // Channel D: In synchronous mode a second DMA channel is used to transfer dummy bits
|
|
|
+ // from first state machine to second one.
|
|
|
+ cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
|
|
|
+ channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
|
|
|
+ channel_config_set_read_increment(&cfg, false);
|
|
|
+ channel_config_set_write_increment(&cfg, false);
|
|
|
+ channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_SYNC_SM, true));
|
|
|
+ g_scsi_dma.dmacfg_write_chD = cfg;
|
|
|
+
|
|
|
+ // For read from SCSI BUS:
|
|
|
+ // Channel A: Bytes from scsi_read_parity PIO to destination memory buffer
|
|
|
+ // This takes the bottom 8 bits which is the data without parity bit.
|
|
|
+ // Triggered by scsi_read_parity RX FIFO.
|
|
|
+ cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
|
|
|
+ channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
|
|
|
+ channel_config_set_read_increment(&cfg, false);
|
|
|
+ channel_config_set_write_increment(&cfg, true);
|
|
|
+ channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
|
|
|
+ g_scsi_dma.dmacfg_read_chA = cfg;
|
|
|
+
|
|
|
+ // Channel B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
|
|
|
+ // Triggered by channel C writing to READ_ADDR_TRIG
|
|
|
+ // Re-enables channel C by chaining after done.
|
|
|
+ cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
|
|
|
+ channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
|
|
|
+ channel_config_set_read_increment(&cfg, false);
|
|
|
+ channel_config_set_write_increment(&cfg, false);
|
|
|
+ channel_config_set_dreq(&cfg, DREQ_FORCE);
|
|
|
+ channel_config_set_chain_to(&cfg, SCSI_DMA_CH_C);
|
|
|
+ cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
|
|
|
+ g_scsi_dma.dmacfg_read_chB = cfg;
|
|
|
+
|
|
|
+ // Channel C: Addresses from scsi_read PIO to channel B READ_ADDR register
|
|
|
+ // A single transfer starts when PIO RX FIFO has data.
|
|
|
+ // The DMA channel is re-enabled by channel B chaining.
|
|
|
+ cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
|
|
|
+ channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
|
|
|
+ channel_config_set_read_increment(&cfg, false);
|
|
|
+ channel_config_set_write_increment(&cfg, false);
|
|
|
+ channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, false));
|
|
|
+ g_scsi_dma.dmacfg_read_chC = cfg;
|
|
|
+
|
|
|
+ // Channel D: In synchronous mode a second DMA channel is used to transfer dummy words
|
|
|
+ // from first state machine to second one to control the pace of data transfer.
|
|
|
+ // In asynchronous mode this just transfers words to control the number of bytes.
|
|
|
+ cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
|
|
|
+ channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
|
|
|
+ channel_config_set_read_increment(&cfg, false);
|
|
|
+ channel_config_set_write_increment(&cfg, false);
|
|
|
+ channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
|
|
|
+ g_scsi_dma.dmacfg_read_chD = cfg;
|
|
|
+
|
|
|
+ // Interrupts are used for data buffer swapping
|
|
|
+ irq_set_exclusive_handler(DMA_IRQ_0, scsi_dma_irq);
|
|
|
+ irq_set_enabled(DMA_IRQ_0, true);
|
|
|
+}
|
|
|
+
|
|
|
+void scsi_accel_rp2040_setSyncMode(int syncOffset, int syncPeriod)
|
|
|
+{
|
|
|
+ assert(g_scsi_dma_state == SCSIDMA_IDLE);
|
|
|
+
|
|
|
+ if (syncOffset != g_scsi_dma.syncOffset || syncPeriod != g_scsi_dma.syncPeriod)
|
|
|
+ {
|
|
|
+ g_scsi_dma.syncOffset = syncOffset;
|
|
|
+ g_scsi_dma.syncPeriod = syncPeriod;
|
|
|
+
|
|
|
+ if (syncOffset > 0)
|
|
|
+ {
|
|
|
+ // Set up offset amount to PIO state machine configs.
|
|
|
+ // The RX fifo of scsi_sync_write has 4 slots.
|
|
|
+ // We can preload it with 0-3 items and set the autopush threshold 1, 2, 4 ... 32
|
|
|
+ // to act as a divider. This allows offsets 1 to 128 bytes.
|
|
|
+ // SCSI2SD code currently only uses offsets up to 15.
|
|
|
+ if (syncOffset <= 4)
|
|
|
+ {
|
|
|
+ g_scsi_dma.syncOffsetDivider = 1;
|
|
|
+ g_scsi_dma.syncOffsetPreload = 5 - syncOffset;
|
|
|
+ }
|
|
|
+ else if (syncOffset <= 8)
|
|
|
+ {
|
|
|
+ g_scsi_dma.syncOffsetDivider = 2;
|
|
|
+ g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 2;
|
|
|
+ }
|
|
|
+ else if (syncOffset <= 16)
|
|
|
+ {
|
|
|
+ g_scsi_dma.syncOffsetDivider = 4;
|
|
|
+ g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 4;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ g_scsi_dma.syncOffsetDivider = 4;
|
|
|
+ g_scsi_dma.syncOffsetPreload = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // To properly detect when all bytes have been ACKed,
|
|
|
+ // we need at least one vacant slot in the FIFO.
|
|
|
+ if (g_scsi_dma.syncOffsetPreload > 3)
|
|
|
+ g_scsi_dma.syncOffsetPreload = 3;
|
|
|
+
|
|
|
+ sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, g_scsi_dma.syncOffsetDivider);
|
|
|
+ sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, g_scsi_dma.syncOffsetDivider);
|
|
|
+
|
|
|
+ // Set up the timing parameters to PIO program
|
|
|
+ // The scsi_sync_write PIO program consists of three instructions.
|
|
|
+ // The delays are in clock cycles, each taking 8 ns.
|
|
|
+ // delay0: Delay from data write to REQ assertion
|
|
|
+ // delay1: Delay from REQ assert to REQ deassert
|
|
|
+ // delay2: Delay from REQ deassert to data write
|
|
|
+ int delay0, delay1, delay2;
|
|
|
+ int totalDelay = syncPeriod * 4 / 8;
|
|
|
+
|
|
|
+ if (syncPeriod <= 25)
|
|
|
+ {
|
|
|
+ // Fast SCSI timing: 30 ns assertion period, 25 ns skew delay
|
|
|
+ // The hardware rise and fall time require some extra delay,
|
|
|
+ // the values below are tuned based on oscilloscope measurements.
|
|
|
+ delay0 = 3;
|
|
|
+ delay1 = 5;
|
|
|
+ delay2 = totalDelay - delay0 - delay1 - 3;
|
|
|
+ if (delay2 < 0) delay2 = 0;
|
|
|
+ if (delay2 > 15) delay2 = 15;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Slow SCSI timing: 90 ns assertion period, 55 ns skew delay
|
|
|
+ delay0 = 6;
|
|
|
+ delay1 = 12;
|
|
|
+ delay2 = totalDelay - delay0 - delay1 - 3;
|
|
|
+ if (delay2 < 0) delay2 = 0;
|
|
|
+ if (delay2 > 15) delay2 = 15;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Patch the delay values into the instructions in scsi_sync_write.
|
|
|
+ // The code in scsi_accel.pio must have delay set to 0 for this to work correctly.
|
|
|
+ uint16_t instr0 = scsi_sync_write_program_instructions[0] | pio_encode_delay(delay0);
|
|
|
+ uint16_t instr1 = scsi_sync_write_program_instructions[1] | pio_encode_delay(delay1);
|
|
|
+ uint16_t instr2 = scsi_sync_write_program_instructions[2] | pio_encode_delay(delay2);
|
|
|
+ SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 0] = instr0;
|
|
|
+ SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 1] = instr1;
|
|
|
+ SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 2] = instr2;
|
|
|
+
|
|
|
+ // And similar patching for scsi_sync_read_pacer
|
|
|
+ int rdelay2 = totalDelay - delay1 - 2;
|
|
|
+ if (rdelay2 > 15) rdelay2 = 15;
|
|
|
+ if (rdelay2 < 5) rdelay2 = 5;
|
|
|
+ uint16_t rinstr0 = scsi_sync_read_pacer_program_instructions[0] | pio_encode_delay(rdelay2);
|
|
|
+ uint16_t rinstr1 = (scsi_sync_read_pacer_program_instructions[1] + g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_delay(delay1);
|
|
|
+ SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 0] = rinstr0;
|
|
|
+ SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 1] = rinstr1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+}
|