/* Based on GCC ARM embedded samples. Defines the following symbols for use by code: __exidx_start __exidx_end __etext __data_start__ __preinit_array_start __preinit_array_end __init_array_start __init_array_end __fini_array_start __fini_array_end __data_end__ __bss_start__ __bss_end__ __end__ end __HeapLimit __StackLimit __StackTop __stack (== StackTop) */ MEMORY { FLASH(rx) : ORIGIN = 0x10000000, LENGTH = $program_size PSRAM(rwx) : ORIGIN = 0x11000000, LENGTH = 0 RAM(rwx) : ORIGIN = 0x20000000, LENGTH = 512k /* Leave space for pico-debug */ SCRATCH_X(rwx) : ORIGIN = 0x20080000, LENGTH = 4k SCRATCH_Y(rwx) : ORIGIN = 0x20081000, LENGTH = 4k } PROVIDE ( _EEPROM_start = __EEPROM_START__ ); PROVIDE ( _FS_start = __FS_START__ ); PROVIDE ( _FS_end = __FS_END__ ); ENTRY(_entry_point) SECTIONS { .flash_begin : { __flash_binary_start = .; } > FLASH /* The bootrom will enter the image at the point indicated in your IMAGE_DEF, which is usually the reset handler of your vector table. The debugger will use the ELF entry point, which is the _entry_point symbol, and in our case is *different from the bootrom's entry point.* This is used to go back through the bootrom on debugger launches only, to perform the same initial flash setup that would be performed on a cold boot. */ /* If BlueSCSI SD card bootloader is included, it goes in first 128 kB */ .text.bootloader : ALIGN(16) SUBALIGN(16) { KEEP(*(.text.btldr*)) . = ALIGN(131072); CHECK_BOOTLOADER_SIZE = 1 / (. <= 131072); } > FLASH .text : { __logical_binary_start = .; KEEP (*(.vectors)) KEEP (*(.binary_info_header)) __binary_info_header_end = .; KEEP (*(.embedded_block)) __embedded_block_end = .; KEEP (*(.reset)) /* TODO revisit this now memset/memcpy/float in ROM */ /* bit of a hack right now to exclude all floating point and time critical (e.g. memset, memcpy) code from * FLASH ... we will include any thing excluded here in .data below by default */ *(.init) *libgcc.a:cmse_nonsecure_call.o /* =============================================================== */ /* Exclude as much code from flash as possible as the RP2350 series has twice as much SRAM */ *(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a: *libBlueIDE_platform_RPMCU.a: *libSdFat.a: *libSCSI2SD.a: *CUEParser.a: *minIni.a: *.cpp.o) .text*) /* --------------------------------------------------------- Uncomment the EXCLUDE_FILE line below and comment the EXCLUDE_FILE line above for debug to work properly, the initial break point to main seems to get clobbered when everything is in SRAM. You may have to delete the "firmware.elf" file so the next build links with newly modified linker script Alternatively, use "hbreak" in gdb to force hardware breakpoints instead of RAM breakpoints. ------------------------------------------------------------*/ /* *(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a:) .text*) */ /* =============================================================== */ *(.fini) /* Pull all c'tors into .text */ *crtbegin.o(.ctors) *crtbegin?.o(.ctors) *(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors) *(SORT(.ctors.*)) *(.ctors) /* Followed by destructors */ *crtbegin.o(.dtors) *crtbegin?.o(.dtors) *(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors) *(SORT(.dtors.*)) *(.dtors) . = ALIGN(4); /* preinit data */ PROVIDE_HIDDEN (__preinit_array_start = .); KEEP(*(SORT(.preinit_array.*))) KEEP(*(.preinit_array)) PROVIDE_HIDDEN (__preinit_array_end = .); . = ALIGN(4); /* init data */ PROVIDE_HIDDEN (__init_array_start = .); KEEP(*(SORT(.init_array.*))) KEEP(*(.init_array)) PROVIDE_HIDDEN (__init_array_end = .); . = ALIGN(4); /* finit data */ PROVIDE_HIDDEN (__fini_array_start = .); *(SORT(.fini_array.*)) *(.fini_array) PROVIDE_HIDDEN (__fini_array_end = .); *(.eh_frame*) . = ALIGN(4); } > FLASH /* Note the boot2 section is optional, and should be discarded if there is no reference to it *inside* the binary, as it is not called by the bootrom. (The bootrom performs a simple best-effort XIP setup and leaves it to the binary to do anything more sophisticated.) However there is still a size limit of 256 bytes, to ensure the boot2 can be stored in boot RAM. Really this is a "XIP setup function" -- the name boot2 is historic and refers to its dual-purpose on RP2040, where it also handled vectoring from the bootrom into the user image. */ .boot2 : { __boot2_start__ = .; *(.boot2) __boot2_end__ = .; } > FLASH ASSERT(__boot2_end__ - __boot2_start__ <= 256, "ERROR: Pico second stage bootloader must be no more than 256 bytes in size") .rodata : { /* Exclude as many constants as possible from flash as corresponding to the code that has been removed from flash to keep the MCU from having to hit flash while it is executing in SRAM */ *(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a: *libBlueIDE_platform_RPMCU.a: *libSdFat.a: *libSCSI2SD.a: *CUEParser.a: *minIni.a: *.cpp.o) .rodata*) /* Uncomment below and comment above lines for debugging */ /* *(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a:) .rodata*) */ *(.srodata*) . = ALIGN(4); *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.flashdata*))) . = ALIGN(4); } > FLASH .ARM.extab : { *(.ARM.extab* .gnu.linkonce.armextab.*) } > FLASH __exidx_start = .; .ARM.exidx : { *(.ARM.exidx* .gnu.linkonce.armexidx.*) } > FLASH __exidx_end = .; /* Machine inspectable binary information */ . = ALIGN(4); __binary_info_start = .; .binary_info : { KEEP(*(.binary_info.keep.*)) *(.binary_info.*) } > FLASH __binary_info_end = .; . = ALIGN(4); .ram_vector_table (COPY): { *(.ram_vector_table) } > RAM .uninitialized_data (COPY): { . = ALIGN(4); *(.uninitialized_data*) } > RAM .data : { __data_start__ = .; *(vtable) *(.time_critical*) . = ALIGN(4); /* remaining .text and .rodata; i.e. stuff we exclude above because we want it in RAM */ *(.text) *(.text*) . = ALIGN(4); *(.rodata*) . = ALIGN(4); *(.data*) . = ALIGN(4); *(.sdata*) . = ALIGN(4); *(.after_data.*) . = ALIGN(4); /* preinit data */ PROVIDE_HIDDEN (__mutex_array_start = .); KEEP(*(SORT(.mutex_array.*))) KEEP(*(.mutex_array)) PROVIDE_HIDDEN (__mutex_array_end = .); *(.jcr) . = ALIGN(4); } > RAM AT> FLASH .tdata : { . = ALIGN(4); *(.tdata .tdata.* .gnu.linkonce.td.*) /* All data end */ __tdata_end = .; } > RAM AT> FLASH PROVIDE(__data_end__ = .); /* __etext is (for backwards compatibility) the name of the .data init source pointer (...) */ __etext = LOADADDR(.data); .tbss (NOLOAD) : { . = ALIGN(4); __bss_start__ = .; __tls_base = .; *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) __tls_end = .; } > RAM .bss (NOLOAD) : { . = ALIGN(4); __tbss_end = .; *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.bss*))) *(COMMON) /* Python template escaping dollar sign with two dollar signs */ PROVIDE(__global_pointer$$ = . + 2K); *(.sbss*) . = ALIGN(4); __bss_end__ = .; } > RAM .heap (NOLOAD): { __end__ = .; end = __end__; KEEP(*(.heap*)) /* historically on GCC sbrk was growing past __HeapLimit to __StackLimit, however to be more compatible, we now set __HeapLimit explicitly to where the end of the heap is */ . = ORIGIN(RAM) + LENGTH(RAM); __HeapLimit = .; } > RAM /* Start and end symbols must be word-aligned */ .scratch_x : { __scratch_x_start__ = .; *(.scratch_x.*) . = ALIGN(4); __scratch_x_end__ = .; } > SCRATCH_X AT > FLASH __scratch_x_source__ = LOADADDR(.scratch_x); .scratch_y : { __scratch_y_start__ = .; *(.scratch_y.*) . = ALIGN(4); __scratch_y_end__ = .; } > SCRATCH_Y AT > FLASH __scratch_y_source__ = LOADADDR(.scratch_y); /* .stack*_dummy section doesn't contains any symbols. It is only * used for linker to calculate size of stack sections, and assign * values to stack symbols later * * stack1 section may be empty/missing if platform_launch_core1 is not used */ /* by default we put core 0 stack at the end of scratch Y, so that if core 1 * stack is not used then all of SCRATCH_X is free. */ .stack1_dummy (NOLOAD): { *(.stack1*) } > SCRATCH_X .stack_dummy (NOLOAD): { KEEP(*(.stack*)) } > SCRATCH_Y .flash_end : { KEEP(*(.embedded_end_block*)) PROVIDE(__flash_binary_end = .); } > FLASH =0xaa .psram (NOLOAD) : { __psram_start__ = .; *(.psram*) . = ALIGN(4096); __psram_heap_start__ = .; } > PSRAM /* stack limit is poorly named, but historically is maximum heap ptr */ __StackLimit = ORIGIN(RAM) + LENGTH(RAM); __StackOneTop = ORIGIN(SCRATCH_X) + LENGTH(SCRATCH_X); __StackTop = ORIGIN(SCRATCH_Y) + LENGTH(SCRATCH_Y); __StackOneBottom = __StackOneTop - SIZEOF(.stack1_dummy); __StackBottom = __StackTop - SIZEOF(.stack_dummy); PROVIDE(__stack = __StackTop); /* picolibc and LLVM */ PROVIDE (__heap_start = __end__); PROVIDE (__heap_end = __HeapLimit); PROVIDE( __tls_align = MAX(ALIGNOF(.tdata), ALIGNOF(.tbss)) ); PROVIDE( __tls_size_align = (__tls_size + __tls_align - 1) & ~(__tls_align - 1)); PROVIDE( __arm32_tls_tcb_offset = MAX(8, __tls_align) ); /* TLSF */ PROVIDE (__psram_start = __psram_start__); PROVIDE (__psram_heap_start = __psram_heap_start__); /* llvm-libc */ PROVIDE (_end = __end__); PROVIDE (__llvm_libc_heap_limit = __HeapLimit); /* Check if data + heap + stack exceeds RAM limit */ ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed") ASSERT( __binary_info_header_end - __logical_binary_start <= 1024, "Binary info must be in first 1024 bytes of the binary") ASSERT( __embedded_block_end - __logical_binary_start <= 4096, "Embedded block must be in first 4096 bytes of the binary") /* todo assert on extra code */ }