/* * ZuluSCSI * Copyright (c) 2022 Rabbit Hole Computing * * Main program for initiator mode. */ #include "BlueSCSI_config.h" #include "BlueSCSI_log.h" #include "BlueSCSI_log_trace.h" #include "BlueSCSI_initiator.h" #include #include "SdFat.h" #include extern "C" { #include } #ifndef PLATFORM_HAS_INITIATOR_MODE void scsiInitiatorInit() { } void scsiInitiatorMainLoop() { } int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen, uint8_t *bufIn, size_t bufInLen, const uint8_t *bufOut, size_t bufOutLen) { return -1; } bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize) { return false; } #else /************************************* * High level initiator mode logic * *************************************/ static struct { // Bitmap of all drives that have been imaged uint32_t drives_imaged; // Is imaging a drive in progress, or are we scanning? bool imaging; // Information about currently selected drive int target_id; uint32_t sectorsize; uint32_t sectorcount; uint32_t sectorcount_all; uint32_t sectors_done; uint32_t max_sector_per_transfer; // Retry information for sector reads. // If a large read fails, retry is done sector-by-sector. int retrycount; uint32_t failposition; FsFile target_file; } g_initiator_state; extern SdFs SD; // Initialization of initiator mode void scsiInitiatorInit() { scsiHostPhyReset(); g_initiator_state.drives_imaged = 0; g_initiator_state.imaging = false; g_initiator_state.target_id = -1; g_initiator_state.sectorsize = 0; g_initiator_state.sectorcount = 0; g_initiator_state.sectors_done = 0; g_initiator_state.retrycount = 0; g_initiator_state.failposition = 0; g_initiator_state.max_sector_per_transfer = 512; } // Update progress bar LED during transfers static void scsiInitiatorUpdateLed() { // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred const int period = 256; int phase = (millis() % period); int duty = g_initiator_state.sectors_done * period / g_initiator_state.sectorcount; // Minimum and maximum time to verify that the blink is visible if (duty < 50) duty = 50; if (duty > period - 50) duty = period - 50; if (phase <= duty) { if (!platform_network_supported()) { STANDARD_LED_ON; } } else { if (!platform_network_supported()) { STANDARD_LED_OFF; } } } void delay_with_poll(uint32_t ms) { uint32_t start = millis(); while ((uint32_t)(millis() - start) < ms) { platform_poll(); delay(1); } } // High level logic of the initiator mode void scsiInitiatorMainLoop() { SCSI_RELEASE_OUTPUTS(); SCSI_ENABLE_INITIATOR(); if (g_scsiHostPhyReset) { log("Executing BUS RESET after aborted command"); scsiHostPhyReset(); } if (!g_initiator_state.imaging) { // Scan for SCSI drives one at a time g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8; g_initiator_state.sectors_done = 0; g_initiator_state.retrycount = 0; g_initiator_state.max_sector_per_transfer = 512; if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id))) { delay_with_poll(1000); uint8_t inquiry_data[36]; if (!platform_network_supported()) { STANDARD_LED_ON; } bool startstopok = scsiTestUnitReady(g_initiator_state.target_id) && scsiStartStopUnit(g_initiator_state.target_id, true); bool readcapok = startstopok && scsiInitiatorReadCapacity(g_initiator_state.target_id, &g_initiator_state.sectorcount, &g_initiator_state.sectorsize); bool inquiryok = startstopok && scsiInquiry(g_initiator_state.target_id, inquiry_data); if (!platform_network_supported()) { STANDARD_LED_OFF; } uint64_t total_bytes = 0; if (readcapok) { log("SCSI ID ", g_initiator_state.target_id, " capacity ", (int)g_initiator_state.sectorcount, " sectors x ", (int)g_initiator_state.sectorsize, " bytes"); g_initiator_state.sectorcount_all = g_initiator_state.sectorcount; total_bytes = (uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize; log("Drive total size is ", (int)(total_bytes / (1024 * 1024)), " MiB"); if (total_bytes >= 0xFFFFFFFF && SD.fatType() != FAT_TYPE_EXFAT) { // Note: the FAT32 limit is 4 GiB - 1 byte log("Image files equal or larger than 4 GiB are only possible on exFAT filesystem"); log("Please reformat the SD card with exFAT format to image this drive."); g_initiator_state.sectorsize = 0; g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0; } } else if (startstopok) { log("SCSI ID ", g_initiator_state.target_id, " responds but ReadCapacity command failed"); log("Possibly SCSI-1 drive? Attempting to read up to 1 GB."); g_initiator_state.sectorsize = 512; g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 2097152; g_initiator_state.max_sector_per_transfer = 128; } else { debuglog("No response from SCSI ID ", g_initiator_state.target_id); g_initiator_state.sectorsize = 0; g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0; } const char *filename_format = "HD00_imaged.hda"; if (inquiryok) { if ((inquiry_data[0] & 0x1F) == 5) { filename_format = "CD00_imaged.iso"; } } if (g_initiator_state.sectorcount > 0) { char filename[32] = {0}; int lun = 0; strncpy(filename, filename_format, sizeof(filename) - 1); filename[2] += g_initiator_state.target_id; uint64_t sd_card_free_bytes = (uint64_t)SD.vol()->freeClusterCount() * SD.vol()->bytesPerCluster(); if(sd_card_free_bytes < total_bytes) { log("SD Card only has ", (int)(sd_card_free_bytes / (1024 * 1024)), " MiB - not enough free space to image this drive!"); g_initiator_state.imaging = false; return; } while(SD.exists(filename)) { filename[3] = lun++ + '0'; } if(lun != 0) { log(filename_format, " already exists, using ", filename); } g_initiator_state.target_file = SD.open(filename, O_RDWR | O_CREAT | O_TRUNC); if (!g_initiator_state.target_file.isOpen()) { log("Failed to open file for writing: ", filename); return; } if (SD.fatType() == FAT_TYPE_EXFAT) { // Only preallocate on exFAT, on FAT32 preallocating can result in false garbage data in the // file if write is interrupted. log("Preallocating image file"); g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize); } log("Starting to copy drive data to ", filename); g_initiator_state.imaging = true; } } } else { // Copy sectors from SCSI drive to file if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount) { scsiStartStopUnit(g_initiator_state.target_id, false); log("Finished imaging drive with id ", g_initiator_state.target_id); if (!platform_network_supported()) { STANDARD_LED_OFF; } if (g_initiator_state.sectorcount != g_initiator_state.sectorcount_all) { log("NOTE: Image size was limited to first 4 GiB due to SD card filesystem limit"); log("Please reformat the SD card with exFAT format to image this drive fully"); } g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id); g_initiator_state.imaging = false; g_initiator_state.target_file.close(); return; } scsiInitiatorUpdateLed(); // How many sectors to read in one batch? int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done; if (numtoread > g_initiator_state.max_sector_per_transfer) numtoread = g_initiator_state.max_sector_per_transfer; // Retry sector-by-sector after failure if (g_initiator_state.sectors_done < g_initiator_state.failposition) numtoread = 1; uint32_t time_start = millis(); bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id, g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize, g_initiator_state.target_file); if (!status) { log("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done); if (g_initiator_state.retrycount < 5) { log("Retrying.. ", g_initiator_state.retrycount, "/5"); delay_with_poll(200); scsiHostPhyReset(); delay_with_poll(200); g_initiator_state.retrycount++; g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize); if (g_initiator_state.retrycount > 1 && numtoread > 1) { log("Multiple failures, retrying sector-by-sector"); g_initiator_state.failposition = g_initiator_state.sectors_done + numtoread; } } else { log("Retry limit exceeded, skipping one sector"); g_initiator_state.retrycount = 0; g_initiator_state.sectors_done++; g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize); } } else { g_initiator_state.retrycount = 0; g_initiator_state.sectors_done += numtoread; g_initiator_state.target_file.flush(); int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start); log("SCSI read succeeded, sectors done: ", (int)g_initiator_state.sectors_done, " / ", (int)g_initiator_state.sectorcount, " speed ", speed_kbps, " kB/s"); } } } /************************************* * Low level command implementations * *************************************/ int scsiInitiatorRunCommand(int target_id, const uint8_t *command, size_t cmdLen, uint8_t *bufIn, size_t bufInLen, const uint8_t *bufOut, size_t bufOutLen, bool returnDataPhase) { if (!scsiHostPhySelect(target_id)) { debuglog("------ Target ", target_id, " did not respond"); scsiHostPhyRelease(); return -1; } SCSI_PHASE phase; int status = -1; while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE) { platform_poll(); if (phase == MESSAGE_IN) { uint8_t dummy = 0; scsiHostRead(&dummy, 1); } else if (phase == MESSAGE_OUT) { uint8_t identify_msg = 0x80; scsiHostWrite(&identify_msg, 1); } else if (phase == COMMAND) { scsiHostWrite(command, cmdLen); } else if (phase == DATA_IN) { if (returnDataPhase) return 0; if (bufInLen == 0) { log("DATA_IN phase but no data to receive!"); status = -3; break; } if (scsiHostRead(bufIn, bufInLen) == 0) { log("scsiHostRead failed, tried to read ", (int)bufInLen, " bytes"); status = -2; break; } } else if (phase == DATA_OUT) { if (returnDataPhase) return 0; if (bufOutLen == 0) { log("DATA_OUT phase but no data to send!"); status = -3; break; } if (scsiHostWrite(bufOut, bufOutLen) < bufOutLen) { log("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen)); status = -2; break; } } else if (phase == STATUS) { uint8_t tmp = -1; scsiHostRead(&tmp, 1); status = tmp; debuglog("------ STATUS: ", tmp); } } scsiHostPhyRelease(); return status; } bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize) { uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t response[8] = {0}; int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), response, sizeof(response), NULL, 0); if (status == 0) { *sectorcount = ((uint32_t)response[0] << 24) | ((uint32_t)response[1] << 16) | ((uint32_t)response[2] << 8) | ((uint32_t)response[3] << 0); *sectorcount += 1; // SCSI reports last sector address *sectorsize = ((uint32_t)response[4] << 24) | ((uint32_t)response[5] << 16) | ((uint32_t)response[6] << 8) | ((uint32_t)response[7] << 0); return true; } else if (status == 2) { uint8_t sense_key; scsiRequestSense(target_id, &sense_key); log("READ CAPACITY on target ", target_id, " failed, sense key ", sense_key); return false; } else { *sectorcount = *sectorsize = 0; return false; } } // Execute REQUEST SENSE command to get more information about error status bool scsiRequestSense(int target_id, uint8_t *sense_key) { uint8_t command[6] = {0x03, 0, 0, 0, 18, 0}; uint8_t response[18] = {0}; int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), response, sizeof(response), NULL, 0); log("RequestSense response: ", bytearray(response, 18)); *sense_key = response[2]; return status == 0; } // Execute UNIT START STOP command to load/unload media bool scsiStartStopUnit(int target_id, bool start) { uint8_t command[6] = {0x1B, 0x1, 0, 0, 0, 0}; uint8_t response[4] = {0}; if (start) { command[4] |= 1; // Start command[1] = 0; // Immediate } int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), response, sizeof(response), NULL, 0); if (status == 2) { uint8_t sense_key; scsiRequestSense(target_id, &sense_key); log("START STOP UNIT on target ", target_id, " failed, sense key ", sense_key); } return status == 0; } // Execute INQUIRY command bool scsiInquiry(int target_id, uint8_t inquiry_data[36]) { uint8_t command[6] = {0x12, 0, 0, 0, 36, 0}; int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), inquiry_data, 36, NULL, 0); return status == 0; } // Execute TEST UNIT READY command and handle unit attention state bool scsiTestUnitReady(int target_id) { for (int retries = 0; retries < 2; retries++) { uint8_t command[6] = {0x00, 0, 0, 0, 0, 0}; int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0); if (status == 0) { return true; } else if (status == -1) { // No response to select return false; } else if (status == 2) { uint8_t sense_key; scsiRequestSense(target_id, &sense_key); if (sense_key == 6) { uint8_t inquiry[36]; log("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY"); scsiInquiry(target_id, inquiry); } else if (sense_key == 2) { log("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT"); scsiStartStopUnit(target_id, true); } } else { log("Target ", target_id, " TEST UNIT READY response: ", status); } } return false; } // This uses callbacks to run SD and SCSI transfers in parallel static struct { uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side uint32_t bytes_per_sector; bool all_ok; } g_initiator_transfer; static void initiatorReadSDCallback(uint32_t bytes_complete) { if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi) { // How many bytes remaining in the transfer? uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done; uint32_t len = remain; // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver. // Select the limit based on total bytes in the transfer. // Transfer size is reduced towards the end of transfer to reduce the dead time between // end of SCSI transfer and the SD write completing. uint32_t limit = g_initiator_transfer.bytes_scsi / 8; uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector; if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE; if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE; if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE; if (limit < bytesPerSector) limit = bytesPerSector; if (len > limit) { len = limit; } // Split read so that it doesn't wrap around buffer edge uint32_t bufsize = sizeof(scsiDev.data); uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize); if (start + len > bufsize) len = bufsize - start; // Don't overwrite data that has not yet been written to SD card uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete; if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize) len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done; if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled && g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done) { // Current SD transfer is complete, it is better we return now and offer a chance for the next // transfer to begin. return; } // Keep transfers a multiple of sector size. if (remain >= bytesPerSector && len % bytesPerSector != 0) { len -= len % bytesPerSector; } if (len == 0) return; // debuglog("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done); if (scsiHostRead(&scsiDev.data[start], len) != len) { log("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done); g_initiator_transfer.all_ok = false; } g_initiator_transfer.bytes_scsi_done += len; } } static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback) { // Figure out longest continuous block in buffer uint32_t bufsize = sizeof(scsiDev.data); uint32_t start = g_initiator_transfer.bytes_sd % bufsize; uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd; if (start + len > bufsize) len = bufsize - start; // Try to do writes in multiple of 512 bytes // This allows better performance for SD card access. if (len >= 512) len &= ~511; // Start writing to SD card and simultaneously reading more from SCSI bus uint8_t *buf = &scsiDev.data[start]; // debuglog("SD write ", (int)start, " + ", (int)len); if (use_callback) { platform_set_sd_callback(&initiatorReadSDCallback, buf); } g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len; if (file.write(buf, len) != len) { log("scsiInitiatorReadDataToFile: SD card write failed"); g_initiator_transfer.all_ok = false; } platform_set_sd_callback(NULL, NULL); g_initiator_transfer.bytes_sd += len; } bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize, FsFile &file) { int status = -1; if (start_sector < 0xFFFFFF && sectorcount <= 256) { // Use READ6 command for compatibility with old SCSI1 drives uint8_t command[6] = {0x08, (uint8_t)(start_sector >> 16), (uint8_t)(start_sector >> 8), (uint8_t)start_sector, (uint8_t)sectorcount, 0x00 }; // Start executing command, return in data phase status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true); } else { // Use READ10 command for larger number of blocks uint8_t command[10] = {0x28, 0x00, (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16), (uint8_t)(start_sector >> 8), (uint8_t)start_sector, 0x00, (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount), 0x00 }; // Start executing command, return in data phase status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true); } if (status != 0) { uint8_t sense_key; scsiRequestSense(target_id, &sense_key); log("scsiInitiatorReadDataToFile: READ failed: ", status, " sense key ", sense_key); scsiHostPhyRelease(); return false; } SCSI_PHASE phase; g_initiator_transfer.bytes_scsi = sectorcount * sectorsize; g_initiator_transfer.bytes_per_sector = sectorsize; g_initiator_transfer.bytes_sd = 0; g_initiator_transfer.bytes_sd_scheduled = 0; g_initiator_transfer.bytes_scsi_done = 0; g_initiator_transfer.all_ok = true; while (true) { platform_poll(); phase = (SCSI_PHASE)scsiHostPhyGetPhase(); if (phase != DATA_IN && phase != BUS_BUSY) { break; } // Read next block from SCSI bus if buffer empty if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done) { initiatorReadSDCallback(0); } else { // Write data to SD card and simultaneously read more from SCSI scsiInitiatorUpdateLed(); scsiInitiatorWriteDataToSd(file, true); } } // Write any remaining buffered data while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done) { platform_poll(); scsiInitiatorWriteDataToSd(file, false); } if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi) { log("SCSI read from sector ", (int)start_sector, " was incomplete: expected ", (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes"); g_initiator_transfer.all_ok = false; } while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE) { platform_poll(); if (phase == MESSAGE_IN) { uint8_t dummy = 0; scsiHostRead(&dummy, 1); } else if (phase == MESSAGE_OUT) { uint8_t identify_msg = 0x80; scsiHostWrite(&identify_msg, 1); } else if (phase == STATUS) { uint8_t tmp = 0; scsiHostRead(&tmp, 1); status = tmp; debuglog("------ STATUS: ", tmp); } } scsiHostPhyRelease(); return status == 0 && g_initiator_transfer.all_ok; } #endif