// Implements the low level interface to SCSI bus // Partially derived from scsiPhy.c from SCSI2SD-V6 #include "scsiPhy.h" #include "AzulSCSI_platform.h" #include "scsi_accel_asm.h" #include "AzulSCSI_log.h" #include "AzulSCSI_log_trace.h" #include extern "C" { #include #include } static void init_irqs(); /***********************/ /* SCSI status signals */ /***********************/ extern "C" bool scsiStatusATN() { return SCSI_IN(ATN); } extern "C" bool scsiStatusBSY() { return SCSI_IN(BSY); } /************************/ /* SCSI selection logic */ /************************/ volatile uint8_t g_scsi_sts_selection; volatile uint8_t g_scsi_ctrl_bsy; static void scsi_bsy_deassert_interrupt() { if (SCSI_IN(SEL) && !SCSI_IN(BSY)) { uint8_t sel_bits = SCSI_IN_DATA(); int sel_id = -1; for (int i = 0; i < S2S_MAX_TARGETS; i++) { if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg) { if (sel_bits & (1 << scsiDev.targets[i].targetId)) { sel_id = scsiDev.targets[i].targetId; break; } } } if (sel_id >= 0) { uint8_t atn_flag = SCSI_IN(ATN) ? SCSI_STS_SELECTION_ATN : 0; g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | atn_flag | sel_id; } } } extern "C" bool scsiStatusSEL() { if (g_scsi_ctrl_bsy) { // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects. // Instead update the state here. // Releasing happens with bus release. g_scsi_ctrl_bsy = 0; SCSI_OUT(BSY, 1); } return SCSI_IN(SEL); } /************************/ /* SCSI bus reset logic */ /************************/ static void scsi_rst_assert_interrupt() { bool rst1 = SCSI_IN(RST); delay_ns(500); bool rst2 = SCSI_IN(RST); if (rst1 && rst2) { scsiDev.resetFlag = 1; } } extern "C" void scsiPhyReset(void) { SCSI_RELEASE_OUTPUTS(); g_scsi_sts_selection = 0; g_scsi_ctrl_bsy = 0; init_irqs(); } /************************/ /* SCSI bus phase logic */ /************************/ static SCSI_PHASE g_scsi_phase; extern "C" void scsiEnterPhase(int phase) { int delay = scsiEnterPhaseImmediate(phase); if (delay > 0) { s2s_delay_ns(delay); } } // Change state and return nanosecond delay to wait extern "C" uint32_t scsiEnterPhaseImmediate(int phase) { // ANSI INCITS 362-2002 SPI-3 10.7.1: // Phase changes are not allowed while REQ or ACK is asserted. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {} if (phase != g_scsi_phase) { if (phase < 0) { // Other communication on bus or reset state SCSI_RELEASE_OUTPUTS(); } else { SCSI_OUT(MSG, phase & __scsiphase_msg); SCSI_OUT(CD, phase & __scsiphase_cd); SCSI_OUT(IO, phase & __scsiphase_io); } scsiLogPhaseChange(phase); g_scsi_phase = (SCSI_PHASE)phase; // Hardcoded 100 us delay for now. return 100000; } else { return 0; } } // Release all signals void scsiEnterBusFree(void) { g_scsi_phase = BUS_FREE; g_scsi_sts_selection = 0; g_scsi_ctrl_bsy = 0; scsiDev.cdbLen = 0; SCSI_RELEASE_OUTPUTS(); } /********************/ /* Transmit to host */ /********************/ #define SCSI_WAIT_ACTIVE(pin) \ if (!SCSI_IN(pin)) { \ if (!SCSI_IN(pin)) { \ while(!SCSI_IN(pin) && !scsiDev.resetFlag); \ } \ } #define SCSI_WAIT_INACTIVE(pin) \ if (SCSI_IN(pin)) { \ if (SCSI_IN(pin)) { \ while(SCSI_IN(pin) && !scsiDev.resetFlag); \ } \ } static inline void scsiWriteOneByte(uint8_t value) { SCSI_OUT_DATA(value); delay_100ns(); // DB setup time before REQ SCSI_OUT(REQ, 1); SCSI_WAIT_ACTIVE(ACK); SCSI_RELEASE_DATA_REQ(); // Release data and REQ SCSI_WAIT_INACTIVE(ACK); } extern "C" void scsiWriteByte(uint8_t value) { scsiLogDataIn(&value, 1); scsiWriteOneByte(value); } extern "C" void scsiWrite(const uint8_t* data, uint32_t count) { uint32_t count_words = count / 4; scsiLogDataIn(data, count); if (count_words * 4 == count) { // Use accelerated subroutine scsi_accel_asm_send((const uint32_t*)data, count_words, &scsiDev.resetFlag); } else { for (uint32_t i = 0; i < count; i++) { if (scsiDev.resetFlag) break; scsiWriteOneByte(data[i]); } } } /*********************/ /* Receive from host */ /*********************/ static inline uint8_t scsiReadOneByte(void) { SCSI_OUT(REQ, 1); SCSI_WAIT_ACTIVE(ACK); delay_100ns(); uint8_t r = SCSI_IN_DATA(); SCSI_OUT(REQ, 0); SCSI_WAIT_INACTIVE(ACK); return r; } extern "C" uint8_t scsiReadByte(void) { uint8_t r = scsiReadOneByte(); scsiLogDataOut(&r, 1); return r; } extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError) { *parityError = 0; for (uint32_t i = 0; i < count; i++) { if (scsiDev.resetFlag) break; data[i] = scsiReadOneByte(); } scsiLogDataOut(data, count); } /**********************/ /* Interrupt handlers */ /**********************/ extern "C" void SCSI_RST_IRQ (void) { if (exti_interrupt_flag_get(SCSI_RST_EXTI)) { exti_interrupt_flag_clear(SCSI_RST_EXTI); scsi_rst_assert_interrupt(); } if (exti_interrupt_flag_get(SCSI_BSY_EXTI)) { exti_interrupt_flag_clear(SCSI_BSY_EXTI); scsi_bsy_deassert_interrupt(); } } #if SCSI_RST_IRQn != SCSI_BSY_IRQn extern "C" void SCSI_BSY_IRQ (void) { SCSI_RST_IRQ(); } #endif static void init_irqs() { // Falling edge of RST pin gpio_exti_source_select(SCSI_RST_EXTI_SOURCE_PORT, SCSI_RST_EXTI_SOURCE_PIN); exti_init(SCSI_RST_EXTI, EXTI_INTERRUPT, EXTI_TRIG_FALLING); NVIC_SetPriority(SCSI_RST_IRQn, 1); NVIC_EnableIRQ(SCSI_RST_IRQn); // Rising edge of BSY pin gpio_exti_source_select(SCSI_BSY_EXTI_SOURCE_PORT, SCSI_BSY_EXTI_SOURCE_PIN); exti_init(SCSI_BSY_EXTI, EXTI_INTERRUPT, EXTI_TRIG_RISING); NVIC_SetPriority(SCSI_BSY_IRQn, 1); NVIC_EnableIRQ(SCSI_BSY_IRQn); }