// Copyright (C) 2013 Michael McMaster // Copyright (C) 2014 Doug Brown // // This file is part of SCSI2SD. // // SCSI2SD is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // SCSI2SD is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with SCSI2SD. If not, see . #include "stm32f2xx.h" #include // For SD write direct routines #include "sdio.h" #include "bsp_driver_sd.h" #include "scsi.h" #include "scsiPhy.h" #include "config.h" #include "disk.h" #include "sd.h" #include "time.h" #include "bsp.h" #include // Global BlockDevice blockDev; Transfer transfer; static int doSdInit() { int result = 0; if (blockDev.state & DISK_PRESENT) { blockDev.state = blockDev.state | DISK_INITIALISED; } return result; } // Callback once all data has been read in the data out phase. static void doFormatUnitComplete(void) { // TODO start writing the initialisation pattern to the SD // card scsiDev.phase = STATUS; } static void doFormatUnitSkipData(int bytes) { // We may not have enough memory to store the initialisation pattern and // defect list data. Since we're not making use of it yet anyway, just // discard the bytes. scsiEnterPhase(DATA_OUT); int i; for (i = 0; i < bytes; ++i) { scsiReadByte(); } } // Callback from the data out phase. static void doFormatUnitPatternHeader(void) { int defectLength = ((((uint16_t)scsiDev.data[2])) << 8) + scsiDev.data[3]; int patternLength = ((((uint16_t)scsiDev.data[4 + 2])) << 8) + scsiDev.data[4 + 3]; doFormatUnitSkipData(defectLength + patternLength); doFormatUnitComplete(); } // Callback from the data out phase. static void doFormatUnitHeader(void) { int IP = (scsiDev.data[1] & 0x08) ? 1 : 0; int DSP = (scsiDev.data[1] & 0x04) ? 1 : 0; if (! DSP) // disable save parameters { // Save the "MODE SELECT savable parameters" s2s_configSave( scsiDev.target->targetId, scsiDev.target->liveCfg.bytesPerSector); } if (IP) { // We need to read the initialisation pattern header first. scsiDev.dataLen += 4; scsiDev.phase = DATA_OUT; scsiDev.postDataOutHook = doFormatUnitPatternHeader; } else { // Read the defect list data int defectLength = ((((uint16_t)scsiDev.data[2])) << 8) + scsiDev.data[3]; doFormatUnitSkipData(defectLength); doFormatUnitComplete(); } } static void doReadCapacity() { uint32_t lba = (((uint32_t) scsiDev.cdb[2]) << 24) + (((uint32_t) scsiDev.cdb[3]) << 16) + (((uint32_t) scsiDev.cdb[4]) << 8) + scsiDev.cdb[5]; int pmi = scsiDev.cdb[8] & 1; uint32_t capacity = getScsiCapacity( scsiDev.target->cfg->sdSectorStart, scsiDev.target->liveCfg.bytesPerSector, scsiDev.target->cfg->scsiSectors); if (!pmi && lba) { // error. // We don't do anything with the "partial medium indicator", and // assume that delays are constant across each block. But the spec // says we must return this error if pmi is specified incorrectly. scsiDev.status = CHECK_CONDITION; scsiDev.target->sense.code = ILLEGAL_REQUEST; scsiDev.target->sense.asc = INVALID_FIELD_IN_CDB; scsiDev.phase = STATUS; } else if (capacity > 0) { uint32_t highestBlock = capacity - 1; scsiDev.data[0] = highestBlock >> 24; scsiDev.data[1] = highestBlock >> 16; scsiDev.data[2] = highestBlock >> 8; scsiDev.data[3] = highestBlock; uint32_t bytesPerSector = scsiDev.target->liveCfg.bytesPerSector; scsiDev.data[4] = bytesPerSector >> 24; scsiDev.data[5] = bytesPerSector >> 16; scsiDev.data[6] = bytesPerSector >> 8; scsiDev.data[7] = bytesPerSector; scsiDev.dataLen = 8; scsiDev.phase = DATA_IN; } else { scsiDev.status = CHECK_CONDITION; scsiDev.target->sense.code = NOT_READY; scsiDev.target->sense.asc = MEDIUM_NOT_PRESENT; scsiDev.phase = STATUS; } } static void doWrite(uint32_t lba, uint32_t blocks) { if (unlikely(scsiDev.target->cfg->deviceType == S2S_CFG_FLOPPY_14MB)) { // Floppies are supposed to be slow. Some systems can't handle a floppy // without an access time s2s_delay_ms(10); } uint32_t bytesPerSector = scsiDev.target->liveCfg.bytesPerSector; if (unlikely(blockDev.state & DISK_WP) || unlikely(scsiDev.target->cfg->deviceType == S2S_CFG_OPTICAL)) { scsiDev.status = CHECK_CONDITION; scsiDev.target->sense.code = ILLEGAL_REQUEST; scsiDev.target->sense.asc = WRITE_PROTECTED; scsiDev.phase = STATUS; } else if (unlikely(((uint64_t) lba) + blocks > getScsiCapacity( scsiDev.target->cfg->sdSectorStart, bytesPerSector, scsiDev.target->cfg->scsiSectors ) )) { scsiDev.status = CHECK_CONDITION; scsiDev.target->sense.code = ILLEGAL_REQUEST; scsiDev.target->sense.asc = LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE; scsiDev.phase = STATUS; } else { transfer.lba = lba; transfer.blocks = blocks; transfer.currentBlock = 0; scsiDev.phase = DATA_OUT; scsiDev.dataLen = bytesPerSector; scsiDev.dataPtr = bytesPerSector; // No need for single-block writes atm. Overhead of the // multi-block write is minimal. transfer.multiBlock = 1; // TODO uint32_t sdLBA = // TODO SCSISector2SD( // TODO scsiDev.target->cfg->sdSectorStart, // TODO bytesPerSector, // TODO lba); // TODO uint32_t sdBlocks = blocks * SDSectorsPerSCSISector(bytesPerSector); // TODO sdWriteMultiSectorPrep(sdLBA, sdBlocks); } } static void doRead(uint32_t lba, uint32_t blocks) { if (unlikely(scsiDev.target->cfg->deviceType == S2S_CFG_FLOPPY_14MB)) { // Floppies are supposed to be slow. Some systems can't handle a floppy // without an access time s2s_delay_ms(10); } uint32_t capacity = getScsiCapacity( scsiDev.target->cfg->sdSectorStart, scsiDev.target->liveCfg.bytesPerSector, scsiDev.target->cfg->scsiSectors); if (unlikely(((uint64_t) lba) + blocks > capacity)) { scsiDev.status = CHECK_CONDITION; scsiDev.target->sense.code = ILLEGAL_REQUEST; scsiDev.target->sense.asc = LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE; scsiDev.phase = STATUS; } else { transfer.lba = lba; transfer.blocks = blocks; transfer.currentBlock = 0; scsiDev.phase = DATA_IN; scsiDev.dataLen = 0; // No data yet uint32_t bytesPerSector = scsiDev.target->liveCfg.bytesPerSector; uint32_t sdSectorPerSCSISector = SDSectorsPerSCSISector(bytesPerSector); uint32_t sdSectors = blocks * sdSectorPerSCSISector; if (( (sdSectors == 1) && !(scsiDev.boardCfg.flags & S2S_CFG_ENABLE_CACHE) ) || unlikely(((uint64_t) lba) + blocks == capacity) ) { // We get errors on reading the last sector using a multi-sector // read :-( transfer.multiBlock = 0; } else { transfer.multiBlock = 1; // uint32_t sdLBA = // SCSISector2SD( // scsiDev.target->cfg->sdSectorStart, // bytesPerSector, // lba); // TODO sdReadMultiSectorPrep(sdLBA, sdSectors); } } } static void doSeek(uint32_t lba) { if (lba >= getScsiCapacity( scsiDev.target->cfg->sdSectorStart, scsiDev.target->liveCfg.bytesPerSector, scsiDev.target->cfg->scsiSectors) ) { scsiDev.status = CHECK_CONDITION; scsiDev.target->sense.code = ILLEGAL_REQUEST; scsiDev.target->sense.asc = LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE; scsiDev.phase = STATUS; } else { s2s_delay_ms(10); } } static int doTestUnitReady() { int ready = 1; if (likely(blockDev.state == (DISK_STARTED | DISK_PRESENT | DISK_INITIALISED))) { // nothing to do. } else if (unlikely(!(blockDev.state & DISK_STARTED))) { ready = 0; scsiDev.status = CHECK_CONDITION; scsiDev.target->sense.code = NOT_READY; scsiDev.target->sense.asc = LOGICAL_UNIT_NOT_READY_INITIALIZING_COMMAND_REQUIRED; scsiDev.phase = STATUS; } else if (unlikely(!(blockDev.state & DISK_PRESENT))) { ready = 0; scsiDev.status = CHECK_CONDITION; scsiDev.target->sense.code = NOT_READY; scsiDev.target->sense.asc = MEDIUM_NOT_PRESENT; scsiDev.phase = STATUS; } else if (unlikely(!(blockDev.state & DISK_INITIALISED))) { ready = 0; scsiDev.status = CHECK_CONDITION; scsiDev.target->sense.code = NOT_READY; scsiDev.target->sense.asc = LOGICAL_UNIT_NOT_READY_CAUSE_NOT_REPORTABLE; scsiDev.phase = STATUS; } return ready; } // Handle direct-access scsi device commands int scsiDiskCommand() { int commandHandled = 1; uint8_t command = scsiDev.cdb[0]; if (unlikely(command == 0x1B)) { // START STOP UNIT // Enable or disable media access operations. // Ignore load/eject requests. We can't do that. //int immed = scsiDev.cdb[1] & 1; int start = scsiDev.cdb[4] & 1; if (start) { blockDev.state = blockDev.state | DISK_STARTED; if (!(blockDev.state & DISK_INITIALISED)) { doSdInit(); } } else { blockDev.state &= ~DISK_STARTED; } } else if (unlikely(command == 0x00)) { // TEST UNIT READY doTestUnitReady(); } else if (unlikely(!doTestUnitReady())) { // Status and sense codes already set by doTestUnitReady } else if (likely(command == 0x08)) { // READ(6) uint32_t lba = (((uint32_t) scsiDev.cdb[1] & 0x1F) << 16) + (((uint32_t) scsiDev.cdb[2]) << 8) + scsiDev.cdb[3]; uint32_t blocks = scsiDev.cdb[4]; if (unlikely(blocks == 0)) blocks = 256; doRead(lba, blocks); } else if (likely(command == 0x28)) { // READ(10) // Ignore all cache control bits - we don't support a memory cache. uint32_t lba = (((uint32_t) scsiDev.cdb[2]) << 24) + (((uint32_t) scsiDev.cdb[3]) << 16) + (((uint32_t) scsiDev.cdb[4]) << 8) + scsiDev.cdb[5]; uint32_t blocks = (((uint32_t) scsiDev.cdb[7]) << 8) + scsiDev.cdb[8]; doRead(lba, blocks); } else if (likely(command == 0x0A)) { // WRITE(6) uint32_t lba = (((uint32_t) scsiDev.cdb[1] & 0x1F) << 16) + (((uint32_t) scsiDev.cdb[2]) << 8) + scsiDev.cdb[3]; uint32_t blocks = scsiDev.cdb[4]; if (unlikely(blocks == 0)) blocks = 256; doWrite(lba, blocks); } else if (likely(command == 0x2A) || // WRITE(10) unlikely(command == 0x2E)) // WRITE AND VERIFY { // Ignore all cache control bits - we don't support a memory cache. // Don't bother verifying either. The SD card likely stores ECC // along with each flash row. uint32_t lba = (((uint32_t) scsiDev.cdb[2]) << 24) + (((uint32_t) scsiDev.cdb[3]) << 16) + (((uint32_t) scsiDev.cdb[4]) << 8) + scsiDev.cdb[5]; uint32_t blocks = (((uint32_t) scsiDev.cdb[7]) << 8) + scsiDev.cdb[8]; doWrite(lba, blocks); } else if (unlikely(command == 0x04)) { // FORMAT UNIT // We don't really do any formatting, but we need to read the correct // number of bytes in the DATA_OUT phase to make the SCSI host happy. int fmtData = (scsiDev.cdb[1] & 0x10) ? 1 : 0; if (fmtData) { // We need to read the parameter list, but we don't know how // big it is yet. Start with the header. scsiDev.dataLen = 4; scsiDev.phase = DATA_OUT; scsiDev.postDataOutHook = doFormatUnitHeader; } else { // No data to read, we're already finished! } } else if (unlikely(command == 0x25)) { // READ CAPACITY doReadCapacity(); } else if (unlikely(command == 0x0B)) { // SEEK(6) uint32_t lba = (((uint32_t) scsiDev.cdb[1] & 0x1F) << 16) + (((uint32_t) scsiDev.cdb[2]) << 8) + scsiDev.cdb[3]; doSeek(lba); } else if (unlikely(command == 0x2B)) { // SEEK(10) uint32_t lba = (((uint32_t) scsiDev.cdb[2]) << 24) + (((uint32_t) scsiDev.cdb[3]) << 16) + (((uint32_t) scsiDev.cdb[4]) << 8) + scsiDev.cdb[5]; doSeek(lba); } else if (unlikely(command == 0x36)) { // LOCK UNLOCK CACHE // We don't have a cache to lock data into. do nothing. } else if (unlikely(command == 0x34)) { // PRE-FETCH. // We don't have a cache to pre-fetch into. do nothing. } else if (unlikely(command == 0x1E)) { // PREVENT ALLOW MEDIUM REMOVAL // Not much we can do to prevent the user removing the SD card. // do nothing. } else if (unlikely(command == 0x01)) { // REZERO UNIT // Set the lun to a vendor-specific state. Ignore. } else if (unlikely(command == 0x35)) { // SYNCHRONIZE CACHE // We don't have a cache. do nothing. } else if (unlikely(command == 0x2F)) { // VERIFY // TODO: When they supply data to verify, we should read the data and // verify it. If they don't supply any data, just say success. if ((scsiDev.cdb[1] & 0x02) == 0) { // They are asking us to do a medium verification with no data // comparison. Assume success, do nothing. } else { // TODO. This means they are supplying data to verify against. // Technically we should probably grab the data and compare it. scsiDev.status = CHECK_CONDITION; scsiDev.target->sense.code = ILLEGAL_REQUEST; scsiDev.target->sense.asc = INVALID_FIELD_IN_CDB; scsiDev.phase = STATUS; } } else if (unlikely(command == 0x37)) { // READ DEFECT DATA uint32_t allocLength = (((uint16_t)scsiDev.cdb[7]) << 8) | scsiDev.cdb[8]; scsiDev.data[0] = 0; scsiDev.data[1] = scsiDev.cdb[1]; scsiDev.data[2] = 0; scsiDev.data[3] = 0; scsiDev.dataLen = 4; if (scsiDev.dataLen > allocLength) { scsiDev.dataLen = allocLength; } scsiDev.phase = DATA_IN; } else { commandHandled = 0; } return commandHandled; } static uint32_t calcReadahead(uint32_t totalBytes, uint32_t sdSpeedKBs, uint32_t scsiSpeedKBs) { if (!(scsiDev.boardCfg.flags6 & S2S_CFG_ENABLE_BLIND_WRITES) || (scsiSpeedKBs == 0) || (scsiDev.hostSpeedMeasured == 0)) { return totalBytes; } // uint32_t readAheadBytes = totalBytes * (1 - scsiSpeedKBs / sdSpeedKBs); // Won't overflow with 65536 max bytes, 20000 max scsi speed. uint32_t readAheadBytes = totalBytes - totalBytes * scsiSpeedKBs / sdSpeedKBs; // Round up to nearest FIFO size (* 4 for safety) readAheadBytes = ((readAheadBytes / SCSI_FIFO_DEPTH) + 4) * SCSI_FIFO_DEPTH; if (readAheadBytes > totalBytes) { readAheadBytes = totalBytes; } return readAheadBytes; } void scsiDiskPoll() { uint32_t bytesPerSector = scsiDev.target->liveCfg.bytesPerSector; if (scsiDev.phase == DATA_IN && transfer.currentBlock != transfer.blocks) { // Take responsibility for waiting for the phase delays uint32_t phaseChangeDelayUs = scsiEnterPhaseImmediate(DATA_IN); int totalSDSectors = transfer.blocks * SDSectorsPerSCSISector(bytesPerSector); uint32_t sdLBA = SCSISector2SD( scsiDev.target->cfg->sdSectorStart, bytesPerSector, transfer.lba); const int sdPerScsi = SDSectorsPerSCSISector(bytesPerSector); const int buffers = sizeof(scsiDev.data) / SD_SECTOR_SIZE; int prep = 0; int i = 0; int scsiActive __attribute__((unused)) = 0; // unused if DMA disabled int sdActive = 0; // It's highly unlikely that someone is going to use huge transfers // per scsi command, but if they do it'll be slower than usual. uint32_t totalScsiBytes = transfer.blocks * bytesPerSector; int useSlowDataCount = totalScsiBytes >= SCSI_XFER_MAX; if (!useSlowDataCount) { scsiSetDataCount(totalScsiBytes); } while ((i < totalSDSectors) && likely(scsiDev.phase == DATA_IN) && likely(!scsiDev.resetFlag)) { int completedDmaSectors; if (sdActive && (completedDmaSectors = sdReadDMAPoll(sdActive))) { prep += completedDmaSectors; sdActive -= completedDmaSectors; } else if (sdActive > 1) { if ((scsiDev.data[SD_SECTOR_SIZE * (prep % buffers) + 510] != 0xAA) || (scsiDev.data[SD_SECTOR_SIZE * (prep % buffers) + 511] != 0x33)) { prep += 1; sdActive -= 1; } } if (!sdActive && (prep - i < buffers) && (prep < totalSDSectors) && ((totalSDSectors - prep) >= sdPerScsi) && (likely(!useSlowDataCount) || scsiPhyComplete())) { // Start an SD transfer if we have space. uint32_t startBuffer = prep % buffers; uint32_t sectors = totalSDSectors - prep; uint32_t freeBuffers = buffers - (prep - i); uint32_t contiguousBuffers = buffers - startBuffer; freeBuffers = freeBuffers < contiguousBuffers ? freeBuffers : contiguousBuffers; sectors = sectors < freeBuffers ? sectors : freeBuffers; if (sectors > 128) sectors = 128; // 65536 DMA limit !! // Round-down when we have odd sector sizes. if (sdPerScsi != 1) { sectors = (sectors / sdPerScsi) * sdPerScsi; } for (int dodgy = 0; dodgy < sectors; dodgy++) { scsiDev.data[SD_SECTOR_SIZE * (startBuffer + dodgy) + 510] = 0xAA; scsiDev.data[SD_SECTOR_SIZE * (startBuffer + dodgy) + 511] = 0x33; } sdReadDMA(sdLBA + prep, sectors, &scsiDev.data[SD_SECTOR_SIZE * startBuffer]); sdActive = sectors; if (useSlowDataCount) { scsiSetDataCount((sectors / sdPerScsi) * bytesPerSector); } // Wait now that the SD card is busy // Chances are we've probably already waited sufficient time, // but it's hard to measure microseconds cheaply. So just wait // extra just-in-case. Hopefully it's in parallel with dma. if (phaseChangeDelayUs > 0) { s2s_delay_us(phaseChangeDelayUs); phaseChangeDelayUs = 0; } } if ((prep - i) > 0) { int dmaBytes = SD_SECTOR_SIZE; if ((i % sdPerScsi) == (sdPerScsi - 1)) { dmaBytes = bytesPerSector % SD_SECTOR_SIZE; if (dmaBytes == 0) dmaBytes = SD_SECTOR_SIZE; } uint8_t* scsiDmaData = &(scsiDev.data[SD_SECTOR_SIZE * (i % buffers)]); scsiWritePIO(scsiDmaData, dmaBytes); ++i; } } if (phaseChangeDelayUs > 0 && !scsiDev.resetFlag) // zero bytes ? { s2s_delay_us(phaseChangeDelayUs); phaseChangeDelayUs = 0; } // We've finished transferring the data to the FPGA, now wait until it's // written to he SCSI bus. __disable_irq(); while (!scsiPhyComplete() && likely(scsiDev.phase == DATA_IN) && likely(!scsiDev.resetFlag)) { __WFI(); } __enable_irq(); if (scsiDev.phase == DATA_IN) { scsiDev.phase = STATUS; } scsiDiskReset(); } else if (scsiDev.phase == DATA_OUT && transfer.currentBlock != transfer.blocks) { scsiEnterPhase(DATA_OUT); const int sdPerScsi = SDSectorsPerSCSISector(bytesPerSector); int totalSDSectors = transfer.blocks * sdPerScsi; uint32_t sdLBA = SCSISector2SD( scsiDev.target->cfg->sdSectorStart, bytesPerSector, transfer.lba); int i = 0; int clearBSY = 0; int parityError = 0; int enableParity = scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY; uint32_t maxSectors = sizeof(scsiDev.data) / SD_SECTOR_SIZE; static_assert(SCSI_XFER_MAX >= sizeof(scsiDev.data), "Assumes SCSI_XFER_MAX >= sizeof(scsiDev.data)"); // Start reading and filling fifos as soon as possible. // It's highly unlikely that someone is going to use huge transfers // per scsi command, but if they do it'll be slower than usual. // Note: Happens in Macintosh FWB HDD Toolkit benchmarks which default // to 768kb uint32_t totalTransferBytes = transfer.blocks * bytesPerSector; int useSlowDataCount = totalTransferBytes >= SCSI_XFER_MAX; if (!useSlowDataCount) { DWT->CYCCNT = 0; // Start counting cycles scsiSetDataCount(totalTransferBytes); } while ((i < totalSDSectors) && likely(scsiDev.phase == DATA_OUT) && likely(!scsiDev.resetFlag)) // KEEP GOING to ensure FIFOs are in a good state. // likely(!parityError || !enableParity)) { uint32_t rem = totalSDSectors - i; uint32_t sectors = rem < maxSectors ? rem : maxSectors; if (bytesPerSector == SD_SECTOR_SIZE) { // We assume the SD card is faster than the SCSI interface, but has // no flow control. This can be handled if a) the scsi interface // doesn't block and b) we read enough SCSI sectors first so that // the SD interface cannot catch up. uint32_t totalBytes = sectors * SD_SECTOR_SIZE; uint32_t sdSpeedKBs = s2s_getSdRateKBs() + (scsiDev.sdUnderrunCount * 256); uint32_t readAheadBytes = calcReadahead( totalBytes, sdSpeedKBs, scsiDev.hostSpeedKBs); if (useSlowDataCount) { DWT->CYCCNT = 0; // Start counting cycles scsiSetDataCount(totalBytes); } uint32_t scsiBytesRead = 0; if (readAheadBytes > 0) { scsiReadPIO( &scsiDev.data[scsiBytesRead], readAheadBytes, &parityError); scsiBytesRead += readAheadBytes; if (i == 0 && !useSlowDataCount) { uint32_t elapsedCycles = DWT->CYCCNT; // uint32_t rateKBs = (readAheadBytes / 1000) / (elapsedCycles / HAL_RCC_GetHCLKFreq()); // Scaled by 4 to avoid overflow w/ max 65536 at 108MHz. uint32_t rateKBs = ((readAheadBytes / 4) * (HAL_RCC_GetHCLKFreq() / 1000) / elapsedCycles) * 4; scsiDev.hostSpeedKBs = (scsiDev.hostSpeedKBs + rateKBs) / 2; scsiDev.hostSpeedMeasured = 1; if (rateKBs < scsiDev.hostSpeedKBs) { // Our readahead was too slow; assume remaining bytes // will be as well. if (readAheadBytes < totalBytes) { uint32_t properReadahead = calcReadahead( totalBytes, sdSpeedKBs, rateKBs); if (properReadahead > readAheadBytes) { uint32_t diff = properReadahead - readAheadBytes; readAheadBytes = properReadahead; scsiReadPIO( &scsiDev.data[scsiBytesRead], diff, &parityError); scsiBytesRead += diff; } } } } } HAL_SD_WriteBlocks_DMA(&hsd, (uint32_t*) (&scsiDev.data[0]), (i + sdLBA) * 512ll, SD_SECTOR_SIZE, sectors); int underrun = 0; if (scsiBytesRead < totalBytes && !scsiDev.resetFlag) { scsiReadPIO( &scsiDev.data[scsiBytesRead], totalBytes - readAheadBytes, &parityError); // Oh dear, SD finished first. underrun = hsd.DmaTransferCplt; scsiBytesRead += (totalBytes - readAheadBytes); } uint32_t dmaFinishTime = s2s_getTime_ms(); while ((!hsd.SdTransferCplt || __HAL_SD_SDIO_GET_FLAG(&hsd, SDIO_FLAG_TXACT)) && s2s_elapsedTime_ms(dmaFinishTime) < 180) { // Wait while keeping BSY. } if (i + sectors >= totalSDSectors && !underrun && (!parityError || !enableParity)) { // We're transferring over the SCSI bus faster than the SD card // can write. All data is buffered, and we're just waiting for // the SD card to complete. The host won't let us disconnect. // Some drivers set a 250ms timeout on transfers to complete. // SD card writes are supposed to complete // within 200ms, but sometimes they don't. // Just pretend we're finished. process_Status(); clearBSY = process_MessageIn(0); // Will go to BUS_FREE state but keep BSY asserted. } HAL_SD_CheckWriteOperation(&hsd, (uint32_t)SD_DATATIMEOUT); if (underrun && (!parityError || !enableParity)) { // Try again. Data is still in memory. sdTmpWrite(&scsiDev.data[0], i + sdLBA, sectors); scsiDev.sdUnderrunCount++; } i += sectors; } else { // Well, until we have some proper non-blocking SD code, we must // do this in a half-duplex fashion. We need to write as much as // possible in each SD card transaction. // use sg_dd from sg_utils3 tools to test. if (useSlowDataCount) { scsiSetDataCount(sectors * bytesPerSector); } for (int scsiSector = i; scsiSector < i + sectors; ++scsiSector) { int dmaBytes = SD_SECTOR_SIZE; if ((scsiSector % sdPerScsi) == (sdPerScsi - 1)) { dmaBytes = bytesPerSector % SD_SECTOR_SIZE; if (dmaBytes == 0) dmaBytes = SD_SECTOR_SIZE; } scsiReadPIO(&scsiDev.data[SD_SECTOR_SIZE * (scsiSector - i)], dmaBytes, &parityError); } if (!parityError || !enableParity) { sdTmpWrite(&scsiDev.data[0], i + sdLBA, sectors); } i += sectors; } } // Should already be complete here as we've ready the FIFOs // by now. Check anyway. __disable_irq(); while (!scsiPhyComplete() && likely(!scsiDev.resetFlag)) { __WFI(); } __enable_irq(); if (clearBSY) { enter_BusFree(); } if (scsiDev.phase == DATA_OUT) { if (parityError && (scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY)) { scsiDev.target->sense.code = ABORTED_COMMAND; scsiDev.target->sense.asc = SCSI_PARITY_ERROR; scsiDev.status = CHECK_CONDITION;; } scsiDev.phase = STATUS; } scsiDiskReset(); } } void scsiDiskReset() { scsiDev.dataPtr = 0; scsiDev.savedDataPtr = 0; scsiDev.dataLen = 0; // transfer.lba = 0; // Needed in Request Sense to determine failure transfer.blocks = 0; transfer.currentBlock = 0; // Cancel long running commands! #if 0 if ( ((scsiDev.boardCfg.flags & S2S_CFG_ENABLE_CACHE) == 0) || (transfer.multiBlock == 0) ) #endif { sdCompleteTransfer(); } transfer.multiBlock = 0; } void scsiDiskInit() { scsiDiskReset(); // Don't require the host to send us a START STOP UNIT command blockDev.state = DISK_STARTED; }