/**
* ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
*
* ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version.
*
* https://www.gnu.org/licenses/gpl-3.0.html
* ----
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
**/
/* Data flow in SCSI acceleration:
*
* 1. Application provides a buffer of bytes to send.
* 2. Code in this module adds parity bit to the bytes and packs two bytes into 32 bit words.
* 3. DMA controller copies the words to PIO peripheral FIFO.
* 4. PIO peripheral handles low-level SCSI handshake and writes bytes and parity to GPIO.
*/
#include "ZuluSCSI_platform.h"
#include "ZuluSCSI_log.h"
#include "scsi_accel_rp2040.h"
#include "scsi_accel.pio.h"
#include
#include
#include
#include
#include
#include
// SCSI bus write acceleration uses up to 3 PIO state machines:
// SM0: Convert data bytes to lookup addresses to add parity
// SM1: Write data to SCSI bus
// SM2: For synchronous mode only, count ACK pulses
#define SCSI_DMA_PIO pio0
#define SCSI_PARITY_SM 0
#define SCSI_DATA_SM 1
#define SCSI_SYNC_SM 2
// SCSI bus write acceleration uses 3 or 4 DMA channels (data flow A->B->C->D):
// A: Bytes from RAM to scsi_parity PIO
// B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
// C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
// D: For sync transfers, scsi_sync_write to scsi_sync_write_pacer PIO
//
// SCSI bus read acceleration uses 4 DMA channels (data flow D->C->B->A):
// A: Bytes from scsi_read_parity PIO to memory buffer
// B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
// C: Addresses from scsi_accel_read PIO to lookup DMA READ_ADDR register
// D: From pacer to data state machine to trigger transfers
#define SCSI_DMA_CH_A 0
#define SCSI_DMA_CH_B 1
#define SCSI_DMA_CH_C 2
#define SCSI_DMA_CH_D 3
static struct {
uint8_t *app_buf; // Buffer provided by application
uint32_t app_bytes; // Bytes available in application buffer
uint32_t dma_bytes; // Bytes that have been scheduled for DMA so far
uint8_t *next_app_buf; // Next buffer from application after current one finishes
uint32_t next_app_bytes; // Bytes in next buffer
// Synchronous mode?
int syncOffset;
int syncPeriod;
int syncOffsetDivider; // Autopush/autopull threshold for the write pacer state machine
int syncOffsetPreload; // Number of items to preload in the RX fifo of scsi_sync_write
// PIO configurations
uint32_t pio_offset_parity;
uint32_t pio_offset_async_write;
uint32_t pio_offset_sync_write_pacer;
uint32_t pio_offset_sync_write;
uint32_t pio_offset_read;
uint32_t pio_offset_read_parity;
uint32_t pio_offset_sync_read_pacer;
pio_sm_config pio_cfg_parity;
pio_sm_config pio_cfg_async_write;
pio_sm_config pio_cfg_sync_write_pacer;
pio_sm_config pio_cfg_sync_write;
pio_sm_config pio_cfg_read;
pio_sm_config pio_cfg_read_parity;
pio_sm_config pio_cfg_sync_read_pacer;
// DMA configurations for write
dma_channel_config dmacfg_write_chA; // Data from RAM to scsi_parity PIO
dma_channel_config dmacfg_write_chB; // Addresses from scsi_parity PIO to lookup DMA
dma_channel_config dmacfg_write_chC; // Data from g_scsi_parity_lookup to scsi write PIO
dma_channel_config dmacfg_write_chD; // In synchronous mode only, transfer between state machines
// DMA configurations for read
dma_channel_config dmacfg_read_chA; // Data to destination memory buffer
dma_channel_config dmacfg_read_chB; // From lookup table to scsi_read_parity PIO
dma_channel_config dmacfg_read_chC; // From scsi_accel_read to channel B READ_ADDR
dma_channel_config dmacfg_read_chD; // From pacer to data state machine
} g_scsi_dma;
enum scsidma_state_t { SCSIDMA_IDLE = 0,
SCSIDMA_WRITE, SCSIDMA_WRITE_DONE,
SCSIDMA_READ, SCSIDMA_READ_DONE };
static volatile scsidma_state_t g_scsi_dma_state;
static bool g_channels_claimed = false;
static void scsidma_config_gpio();
/****************************************/
/* Accelerated writes to SCSI bus */
/****************************************/
// Load the SCSI parity state machine with the address of the parity lookup table.
// Also sets up DMA channels B and C
static void config_parity_sm_for_write()
{
// Load base address to state machine register X
uint32_t addrbase = (uint32_t)&g_scsi_parity_lookup[0];
assert((addrbase & 0x1FF) == 0);
pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_parity, &g_scsi_dma.pio_cfg_parity);
pio_sm_put(SCSI_DMA_PIO, SCSI_PARITY_SM, addrbase >> 9);
pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_pull(false, false));
pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_mov(pio_x, pio_osr));
// DMA channel B will copy addresses from parity PIO to DMA channel C read address register.
// It is triggered by the parity SM RX FIFO request
dma_channel_configure(SCSI_DMA_CH_B,
&g_scsi_dma.dmacfg_write_chB,
&dma_hw->ch[SCSI_DMA_CH_C].al3_read_addr_trig,
&SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
1, true);
// DMA channel C will read g_scsi_parity_lookup to copy data + parity to SCSI write state machine.
// It is triggered by SCSI write machine TX FIFO request and chains to re-enable channel B.
dma_channel_configure(SCSI_DMA_CH_C,
&g_scsi_dma.dmacfg_write_chC,
&SCSI_DMA_PIO->txf[SCSI_DATA_SM],
NULL,
1, false);
}
static void start_dma_write()
{
if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
{
// Buffer has been fully processed, swap it
g_scsi_dma.dma_bytes = 0;
g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
g_scsi_dma.next_app_buf = 0;
g_scsi_dma.next_app_bytes = 0;
}
// Check if we are all done.
// From SCSIDMA_WRITE_DONE state we can either go to IDLE in stopWrite()
// or back to WRITE in startWrite().
uint32_t bytes_to_send = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
if (bytes_to_send == 0)
{
g_scsi_dma_state = SCSIDMA_WRITE_DONE;
return;
}
uint8_t *src_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
g_scsi_dma.dma_bytes += bytes_to_send;
// Start DMA from current buffer to parity generator
dma_channel_configure(SCSI_DMA_CH_A,
&g_scsi_dma.dmacfg_write_chA,
&SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
src_buf,
bytes_to_send,
true
);
}
void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag)
{
// Any read requests should be matched with a stopRead()
assert(g_scsi_dma_state != SCSIDMA_READ && g_scsi_dma_state != SCSIDMA_READ_DONE);
__disable_irq();
if (g_scsi_dma_state == SCSIDMA_WRITE)
{
if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
{
// Combine with currently running request
g_scsi_dma.app_bytes += count;
count = 0;
}
else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
{
// Combine with queued request
g_scsi_dma.next_app_bytes += count;
count = 0;
}
else if (!g_scsi_dma.next_app_buf)
{
// Add as queued request
g_scsi_dma.next_app_buf = (uint8_t*)data;
g_scsi_dma.next_app_bytes = count;
count = 0;
}
}
__enable_irq();
// Check if the request was combined
if (count == 0) return;
if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_WRITE_DONE)
{
// Wait for previous request to finish
scsi_accel_rp2040_finishWrite(resetFlag);
if (*resetFlag)
{
return;
}
}
bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
g_scsi_dma_state = SCSIDMA_WRITE;
g_scsi_dma.app_buf = (uint8_t*)data;
g_scsi_dma.app_bytes = count;
g_scsi_dma.dma_bytes = 0;
g_scsi_dma.next_app_buf = 0;
g_scsi_dma.next_app_bytes = 0;
if (must_reconfig_gpio)
{
SCSI_ENABLE_DATA_OUT();
if (g_scsi_dma.syncOffset == 0)
{
// Asynchronous write
config_parity_sm_for_write();
pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_async_write, &g_scsi_dma.pio_cfg_async_write);
scsidma_config_gpio();
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
}
else
{
// Synchronous write
// Data state machine writes data to SCSI bus and dummy bits to its RX fifo.
// Sync state machine empties the dummy bits every time ACK is received, to control the transmit pace.
config_parity_sm_for_write();
pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_sync_write, &g_scsi_dma.pio_cfg_sync_write);
pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_write_pacer, &g_scsi_dma.pio_cfg_sync_write_pacer);
scsidma_config_gpio();
// Prefill RX fifo to set the syncOffset
for (int i = 0; i < g_scsi_dma.syncOffsetPreload; i++)
{
pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM,
pio_encode_push(false, false) | pio_encode_sideset(1, 1));
}
// Fill the pacer TX fifo
// DMA should start transferring only after ACK pulses are received
for (int i = 0; i < 4; i++)
{
pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, 0);
}
// Fill the pacer OSR
pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM,
pio_encode_mov(pio_osr, pio_null));
// Start DMA transfer to move dummy bits to write pacer
dma_channel_configure(SCSI_DMA_CH_D,
&g_scsi_dma.dmacfg_write_chD,
&SCSI_DMA_PIO->txf[SCSI_SYNC_SM],
&SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
0xFFFFFFFF,
true
);
// Enable state machines
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
}
dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
}
start_dma_write();
}
bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data)
{
// Check if everything has completed
if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_WRITE_DONE)
{
return true;
}
if (!data)
return false;
// Check if this data item is still in queue.
bool finished = true;
__disable_irq();
if (data >= g_scsi_dma.app_buf &&
data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
(uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].al1_read_addr)
{
finished = false; // In current transfer
}
else if (data >= g_scsi_dma.next_app_buf &&
data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
{
finished = false; // In queued transfer
}
__enable_irq();
return finished;
}
// Once DMA has finished, check if all PIO queues have been drained
static bool scsi_accel_rp2040_isWriteDone()
{
// Check if data is still waiting in PIO FIFO
if (!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
!pio_sm_is_rx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_DATA_SM))
{
return false;
}
if (g_scsi_dma.syncOffset > 0)
{
// Check if all bytes of synchronous write have been acknowledged
if (pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM) > g_scsi_dma.syncOffsetPreload)
return false;
}
else
{
// Check if state machine has written out its OSR
if (pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM) != g_scsi_dma.pio_offset_async_write)
return false;
}
// Check if ACK of the final byte has finished
if (SCSI_IN(ACK))
return false;
return true;
}
static void scsi_accel_rp2040_stopWrite(volatile int *resetFlag)
{
// Wait for TX fifo to be empty and ACK to go high
// For synchronous writes wait for all ACKs to be received also
uint32_t start = millis();
while (!scsi_accel_rp2040_isWriteDone() && !*resetFlag)
{
if ((uint32_t)(millis() - start) > 5000)
{
logmsg("scsi_accel_rp2040_stopWrite() timeout, FIFO levels ",
(int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ",
(int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " PC ",
(int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM));
*resetFlag = 1;
break;
}
}
dma_channel_abort(SCSI_DMA_CH_A);
dma_channel_abort(SCSI_DMA_CH_B);
dma_channel_abort(SCSI_DMA_CH_C);
dma_channel_abort(SCSI_DMA_CH_D);
dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
g_scsi_dma_state = SCSIDMA_IDLE;
SCSI_RELEASE_DATA_REQ();
scsidma_config_gpio();
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
}
void scsi_accel_rp2040_finishWrite(volatile int *resetFlag)
{
uint32_t start = millis();
while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag)
{
if ((uint32_t)(millis() - start) > 5000)
{
logmsg("scsi_accel_rp2040_finishWrite() timeout,"
" state: ", (int)g_scsi_dma_state, " ", (int)g_scsi_dma.dma_bytes, "/", (int)g_scsi_dma.app_bytes, ", ", (int)g_scsi_dma.next_app_bytes,
" PIO PC: ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),
" PIO FIFO: ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM),
" DMA counts: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count,
" ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);
*resetFlag = 1;
break;
}
if (g_scsi_dma_state == SCSIDMA_WRITE_DONE || *resetFlag)
{
// DMA done, wait for PIO to finish also and reconfig GPIO.
scsi_accel_rp2040_stopWrite(resetFlag);
}
}
}
/****************************************/
/* Accelerated reads from SCSI bus */
/****************************************/
// Load the SCSI read state machine with the address of the parity lookup table.
// Also sets up DMA channels B, C and D
static void config_parity_sm_for_read()
{
// Configure parity check state machine
pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_read_parity, &g_scsi_dma.pio_cfg_read_parity);
// Load base address to state machine register X
uint32_t addrbase = (uint32_t)&g_scsi_parity_check_lookup[0];
assert((addrbase & 0x3FF) == 0);
pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_read, &g_scsi_dma.pio_cfg_read);
pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, addrbase >> 10);
pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_mov(pio_y, pio_osr) | pio_encode_sideset(1, 1));
// For synchronous mode, the REQ pin is driven by SCSI_SYNC_SM, so disable it in SCSI_DATA_SM
if (g_scsi_dma.syncOffset > 0)
{
pio_sm_set_sideset_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
}
// DMA channel B will read g_scsi_parity_check_lookup and write to scsi_read_parity PIO.
dma_channel_configure(SCSI_DMA_CH_B,
&g_scsi_dma.dmacfg_read_chB,
&SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
NULL,
1, false);
// DMA channel C will copy addresses from data PIO to DMA channel B read address register.
// It is triggered by the data SM RX FIFO request.
// This triggers channel B by writing to READ_ADDR_TRIG
// Channel B chaining re-enables this channel.
dma_channel_configure(SCSI_DMA_CH_C,
&g_scsi_dma.dmacfg_read_chC,
&dma_hw->ch[SCSI_DMA_CH_B].al3_read_addr_trig,
&SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
1, true);
if (g_scsi_dma.syncOffset == 0)
{
// DMA channel D will copy dummy words to scsi_accel_read PIO to set the number
// of bytes to transfer.
static const uint32_t dummy = 0;
dma_channel_configure(SCSI_DMA_CH_D,
&g_scsi_dma.dmacfg_read_chD,
&SCSI_DMA_PIO->txf[SCSI_DATA_SM],
&dummy,
0, false);
}
else
{
pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_read_pacer, &g_scsi_dma.pio_cfg_sync_read_pacer);
// DMA channel D will copy words from scsi_sync_read_pacer to scsi_accel_read PIO
// to control the offset between REQ pulses sent and ACK pulses received.
dma_channel_configure(SCSI_DMA_CH_D,
&g_scsi_dma.dmacfg_read_chD,
&SCSI_DMA_PIO->txf[SCSI_DATA_SM],
&SCSI_DMA_PIO->rxf[SCSI_SYNC_SM],
0, false);
}
// Clear PIO IRQ flag that is used to detect parity error
SCSI_DMA_PIO->irq = 1;
}
static void start_dma_read()
{
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_PARITY_SM);
pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_DATA_SM);
if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
{
// Buffer has been fully processed, swap it
g_scsi_dma.dma_bytes = 0;
g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
g_scsi_dma.next_app_buf = 0;
g_scsi_dma.next_app_bytes = 0;
}
// Check if we are all done.
// From SCSIDMA_READ_DONE state we can either go to IDLE in stopRead()
// or back to READ in startWrite().
uint32_t bytes_to_read = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
if (bytes_to_read == 0)
{
g_scsi_dma_state = SCSIDMA_READ_DONE;
return;
}
if (g_scsi_dma.syncOffset == 0)
{
// Start sending dummy words to scsi_accel_read state machine
dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
}
else
{
// Set number of bytes to receive to the scsi_sync_read_pacer state machine register X
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
hw_clear_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, bytes_to_read - 1);
pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_mov(pio_x, pio_osr) | pio_encode_sideset(1, 1));
hw_set_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
// Prefill FIFOs to get correct syncOffset
int prefill = 12 - g_scsi_dma.syncOffset;
// Always at least 1 word to avoid race condition between REQ and ACK pulses
if (prefill < 1) prefill = 1;
// Up to 4 words in SCSI_DATA_SM TX fifo
for (int i = 0; i < 4 && prefill > 0; i++)
{
pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
prefill--;
}
// Up to 8 words in SCSI_SYNC_SM RX fifo
for (int i = 0; i < 8 && prefill > 0; i++)
{
pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_push(false, false) | pio_encode_sideset(1, 1));
prefill--;
}
pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_jmp(g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_sideset(1, 1));
// Start transfers
dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
}
// Start DMA to fill the destination buffer
uint8_t *dest_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
g_scsi_dma.dma_bytes += bytes_to_read;
dma_channel_configure(SCSI_DMA_CH_A,
&g_scsi_dma.dmacfg_read_chA,
dest_buf,
&SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
bytes_to_read,
true
);
// Ready to start the data and parity check state machines
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
if (g_scsi_dma.syncOffset > 0)
{
// Start sending REQ pulses
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
}
}
void scsi_accel_rp2040_startRead(uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
{
// Any write requests should be matched with a stopWrite()
assert(g_scsi_dma_state != SCSIDMA_WRITE && g_scsi_dma_state != SCSIDMA_WRITE_DONE);
__disable_irq();
if (g_scsi_dma_state == SCSIDMA_READ)
{
if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
{
// Combine with currently running request
g_scsi_dma.app_bytes += count;
count = 0;
}
else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
{
// Combine with queued request
g_scsi_dma.next_app_bytes += count;
count = 0;
}
else if (!g_scsi_dma.next_app_buf)
{
// Add as queued request
g_scsi_dma.next_app_buf = (uint8_t*)data;
g_scsi_dma.next_app_bytes = count;
count = 0;
}
}
__enable_irq();
// Check if the request was combined
if (count == 0) return;
if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_READ_DONE)
{
// Wait for previous request to finish
scsi_accel_rp2040_finishRead(NULL, 0, parityError, resetFlag);
if (*resetFlag)
{
return;
}
}
bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
g_scsi_dma_state = SCSIDMA_READ;
g_scsi_dma.app_buf = (uint8_t*)data;
g_scsi_dma.app_bytes = count;
g_scsi_dma.dma_bytes = 0;
g_scsi_dma.next_app_buf = 0;
g_scsi_dma.next_app_bytes = 0;
if (must_reconfig_gpio)
{
config_parity_sm_for_read();
scsidma_config_gpio();
dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
}
start_dma_read();
}
bool scsi_accel_rp2040_isReadFinished(const uint8_t* data)
{
// Check if everything has completed
if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_READ_DONE)
{
return true;
}
if (!data)
return false;
// Check if this data item is still in queue.
bool finished = true;
__disable_irq();
if (data >= g_scsi_dma.app_buf &&
data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
(uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].write_addr)
{
finished = false; // In current transfer
}
else if (data >= g_scsi_dma.next_app_buf &&
data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
{
finished = false; // In queued transfer
}
__enable_irq();
return finished;
}
static void scsi_accel_rp2040_stopRead()
{
dma_channel_abort(SCSI_DMA_CH_A);
dma_channel_abort(SCSI_DMA_CH_B);
dma_channel_abort(SCSI_DMA_CH_C);
dma_channel_abort(SCSI_DMA_CH_D);
dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
g_scsi_dma_state = SCSIDMA_IDLE;
SCSI_RELEASE_DATA_REQ();
scsidma_config_gpio();
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
}
void scsi_accel_rp2040_finishRead(const uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
{
uint32_t start = millis();
const uint8_t *query_addr = (data ? (data + count - 1) : NULL);
while (!scsi_accel_rp2040_isReadFinished(query_addr) && !*resetFlag)
{
if ((uint32_t)(millis() - start) > 5000)
{
logmsg("scsi_accel_rp2040_finishRead timeout,"
" state: ", (int)g_scsi_dma_state, " ", (int)g_scsi_dma.dma_bytes, "/", (int)g_scsi_dma.app_bytes, ", ", (int)g_scsi_dma.next_app_bytes,
" PIO PC: ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),
" PIO FIFO: ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM),
" DMA counts: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count,
" ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);
*resetFlag = 1;
break;
}
}
if (g_scsi_dma_state == SCSIDMA_READ_DONE || *resetFlag)
{
// This was last buffer, release bus
scsi_accel_rp2040_stopRead();
}
// Check if any parity errors have been detected during the transfer so far
if (parityError != NULL && (SCSI_DMA_PIO->irq & 1))
{
dbgmsg("scsi_accel_rp2040_finishRead(", bytearray(data, count), ") detected parity error");
*parityError = true;
}
}
/*******************************************************/
/* Initialization functions common to read/write */
/*******************************************************/
static void scsi_dma_irq()
{
dma_hw->ints0 = (1 << SCSI_DMA_CH_A);
scsidma_state_t state = g_scsi_dma_state;
if (state == SCSIDMA_WRITE)
{
// Start writing from next buffer, if any, or set state to SCSIDMA_WRITE_DONE
start_dma_write();
}
else if (state == SCSIDMA_READ)
{
// Start reading into next buffer, if any, or set state to SCSIDMA_READ_DONE
start_dma_read();
}
}
// Select GPIO from PIO peripheral or from software controlled SIO
static void scsidma_config_gpio()
{
if (g_scsi_dma_state == SCSIDMA_IDLE)
{
iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_SIO;
}
else if (g_scsi_dma_state == SCSIDMA_WRITE)
{
// Make sure the initial state of all pins is high and output
pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0x3FF);
pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 10, true);
iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_PIO0;
iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_PIO0;
iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_PIO0;
iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_PIO0;
iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_PIO0;
iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_PIO0;
iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_PIO0;
iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_PIO0;
iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_PIO0;
iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
}
else if (g_scsi_dma_state == SCSIDMA_READ)
{
if (g_scsi_dma.syncOffset == 0)
{
// Asynchronous read
// Data bus as input, REQ pin as output
pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0x3FF);
pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);
pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 9, 1, true);
}
else
{
// Synchronous read, REQ pin is written by SYNC_SM
pio_sm_set_pins(SCSI_DMA_PIO, SCSI_SYNC_SM, 0x3FF);
pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 10, false);
pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_SYNC_SM, 9, 1, true);
}
iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
}
}
void scsi_accel_rp2040_init()
{
g_scsi_dma_state = SCSIDMA_IDLE;
scsidma_config_gpio();
// Mark channels as being in use, unless it has been done already
if (!g_channels_claimed)
{
pio_sm_claim(SCSI_DMA_PIO, SCSI_PARITY_SM);
pio_sm_claim(SCSI_DMA_PIO, SCSI_DATA_SM);
pio_sm_claim(SCSI_DMA_PIO, SCSI_SYNC_SM);
dma_channel_claim(SCSI_DMA_CH_A);
dma_channel_claim(SCSI_DMA_CH_B);
dma_channel_claim(SCSI_DMA_CH_C);
dma_channel_claim(SCSI_DMA_CH_D);
g_channels_claimed = true;
}
// Load PIO programs
pio_clear_instruction_memory(SCSI_DMA_PIO);
// Parity lookup generator
g_scsi_dma.pio_offset_parity = pio_add_program(SCSI_DMA_PIO, &scsi_parity_program);
g_scsi_dma.pio_cfg_parity = scsi_parity_program_get_default_config(g_scsi_dma.pio_offset_parity);
sm_config_set_out_shift(&g_scsi_dma.pio_cfg_parity, true, false, 32);
sm_config_set_in_shift(&g_scsi_dma.pio_cfg_parity, true, true, 32);
// Asynchronous SCSI write
g_scsi_dma.pio_offset_async_write = pio_add_program(SCSI_DMA_PIO, &scsi_accel_async_write_program);
g_scsi_dma.pio_cfg_async_write = scsi_accel_async_write_program_get_default_config(g_scsi_dma.pio_offset_async_write);
sm_config_set_out_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_IO_DB0, 9);
sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_OUT_REQ);
sm_config_set_fifo_join(&g_scsi_dma.pio_cfg_async_write, PIO_FIFO_JOIN_TX);
sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32);
// Synchronous SCSI write pacer / ACK handler
g_scsi_dma.pio_offset_sync_write_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program);
g_scsi_dma.pio_cfg_sync_write_pacer = scsi_sync_write_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_write_pacer);
sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, 1);
// Synchronous SCSI data writer
g_scsi_dma.pio_offset_sync_write = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_program);
g_scsi_dma.pio_cfg_sync_write = scsi_sync_write_program_get_default_config(g_scsi_dma.pio_offset_sync_write);
sm_config_set_out_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_IO_DB0, 9);
sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_OUT_REQ);
sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 32);
sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 1);
// Asynchronous / synchronous SCSI read
g_scsi_dma.pio_offset_read = pio_add_program(SCSI_DMA_PIO, &scsi_accel_read_program);
g_scsi_dma.pio_cfg_read = scsi_accel_read_program_get_default_config(g_scsi_dma.pio_offset_read);
sm_config_set_in_pins(&g_scsi_dma.pio_cfg_read, SCSI_IO_DB0);
sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_read, SCSI_OUT_REQ);
sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read, true, false, 32);
sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read, true, true, 32);
// Synchronous SCSI read pacer
g_scsi_dma.pio_offset_sync_read_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program);
g_scsi_dma.pio_cfg_sync_read_pacer = scsi_sync_read_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_read_pacer);
sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_read_pacer, SCSI_OUT_REQ);
// Read parity check
g_scsi_dma.pio_offset_read_parity = pio_add_program(SCSI_DMA_PIO, &scsi_read_parity_program);
g_scsi_dma.pio_cfg_read_parity = scsi_read_parity_program_get_default_config(g_scsi_dma.pio_offset_read_parity);
sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read_parity, true, true, 32);
sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read_parity, true, false, 32);
// Create DMA channel configurations so they can be applied quickly later
// For write to SCSI BUS:
// Channel A: Bytes from RAM to scsi_parity PIO
dma_channel_config cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
channel_config_set_read_increment(&cfg, true);
channel_config_set_write_increment(&cfg, false);
channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, true));
g_scsi_dma.dmacfg_write_chA = cfg;
// Channel B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
channel_config_set_read_increment(&cfg, false);
channel_config_set_write_increment(&cfg, false);
channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
g_scsi_dma.dmacfg_write_chB = cfg;
// Channel C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
// When done, chain to channel B
cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
channel_config_set_read_increment(&cfg, false);
channel_config_set_write_increment(&cfg, false);
channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
channel_config_set_chain_to(&cfg, SCSI_DMA_CH_B);
g_scsi_dma.dmacfg_write_chC = cfg;
// Channel D: In synchronous mode a second DMA channel is used to transfer dummy bits
// from first state machine to second one.
cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
channel_config_set_read_increment(&cfg, false);
channel_config_set_write_increment(&cfg, false);
channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_SYNC_SM, true));
g_scsi_dma.dmacfg_write_chD = cfg;
// For read from SCSI BUS:
// Channel A: Bytes from scsi_read_parity PIO to destination memory buffer
// This takes the bottom 8 bits which is the data without parity bit.
// Triggered by scsi_read_parity RX FIFO.
cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
channel_config_set_read_increment(&cfg, false);
channel_config_set_write_increment(&cfg, true);
channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
g_scsi_dma.dmacfg_read_chA = cfg;
// Channel B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
// Triggered by channel C writing to READ_ADDR_TRIG
// Re-enables channel C by chaining after done.
cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
channel_config_set_read_increment(&cfg, false);
channel_config_set_write_increment(&cfg, false);
channel_config_set_dreq(&cfg, DREQ_FORCE);
channel_config_set_chain_to(&cfg, SCSI_DMA_CH_C);
cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
g_scsi_dma.dmacfg_read_chB = cfg;
// Channel C: Addresses from scsi_read PIO to channel B READ_ADDR register
// A single transfer starts when PIO RX FIFO has data.
// The DMA channel is re-enabled by channel B chaining.
cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
channel_config_set_read_increment(&cfg, false);
channel_config_set_write_increment(&cfg, false);
channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, false));
g_scsi_dma.dmacfg_read_chC = cfg;
// Channel D: In synchronous mode a second DMA channel is used to transfer dummy words
// from first state machine to second one to control the pace of data transfer.
// In asynchronous mode this just transfers words to control the number of bytes.
cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
channel_config_set_read_increment(&cfg, false);
channel_config_set_write_increment(&cfg, false);
channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
g_scsi_dma.dmacfg_read_chD = cfg;
// Interrupts are used for data buffer swapping
irq_set_exclusive_handler(DMA_IRQ_0, scsi_dma_irq);
irq_set_enabled(DMA_IRQ_0, true);
}
void scsi_accel_rp2040_setSyncMode(int syncOffset, int syncPeriod)
{
assert(g_scsi_dma_state == SCSIDMA_IDLE);
if (syncOffset != g_scsi_dma.syncOffset || syncPeriod != g_scsi_dma.syncPeriod)
{
g_scsi_dma.syncOffset = syncOffset;
g_scsi_dma.syncPeriod = syncPeriod;
if (syncOffset > 0)
{
// Set up offset amount to PIO state machine configs.
// The RX fifo of scsi_sync_write has 4 slots.
// We can preload it with 0-3 items and set the autopush threshold 1, 2, 4 ... 32
// to act as a divider. This allows offsets 1 to 128 bytes.
// SCSI2SD code currently only uses offsets up to 15.
if (syncOffset <= 4)
{
g_scsi_dma.syncOffsetDivider = 1;
g_scsi_dma.syncOffsetPreload = 5 - syncOffset;
}
else if (syncOffset <= 8)
{
g_scsi_dma.syncOffsetDivider = 2;
g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 2;
}
else if (syncOffset <= 16)
{
g_scsi_dma.syncOffsetDivider = 4;
g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 4;
}
else
{
g_scsi_dma.syncOffsetDivider = 4;
g_scsi_dma.syncOffsetPreload = 0;
}
// To properly detect when all bytes have been ACKed,
// we need at least one vacant slot in the FIFO.
if (g_scsi_dma.syncOffsetPreload > 3)
g_scsi_dma.syncOffsetPreload = 3;
sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, g_scsi_dma.syncOffsetDivider);
sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, g_scsi_dma.syncOffsetDivider);
// Set up the timing parameters to PIO program
// The scsi_sync_write PIO program consists of three instructions.
// The delays are in clock cycles, each taking 8 ns.
// delay0: Delay from data write to REQ assertion
// delay1: Delay from REQ assert to REQ deassert
// delay2: Delay from REQ deassert to data write
int delay0, delay1, delay2;
int totalDelay = syncPeriod * 4 / 8;
if (syncPeriod <= 25)
{
// Fast SCSI timing: 30 ns assertion period, 25 ns skew delay
// The hardware rise and fall time require some extra delay,
// the values below are tuned based on oscilloscope measurements.
delay0 = 3;
delay1 = 5;
delay2 = totalDelay - delay0 - delay1 - 3;
if (delay2 < 0) delay2 = 0;
if (delay2 > 15) delay2 = 15;
}
else
{
// Slow SCSI timing: 90 ns assertion period, 55 ns skew delay
delay0 = 6;
delay1 = 12;
delay2 = totalDelay - delay0 - delay1 - 3;
if (delay2 < 0) delay2 = 0;
if (delay2 > 15) delay2 = 15;
}
// Patch the delay values into the instructions in scsi_sync_write.
// The code in scsi_accel.pio must have delay set to 0 for this to work correctly.
uint16_t instr0 = scsi_sync_write_program_instructions[0] | pio_encode_delay(delay0);
uint16_t instr1 = scsi_sync_write_program_instructions[1] | pio_encode_delay(delay1);
uint16_t instr2 = scsi_sync_write_program_instructions[2] | pio_encode_delay(delay2);
SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 0] = instr0;
SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 1] = instr1;
SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 2] = instr2;
// And similar patching for scsi_sync_read_pacer
int rdelay2 = totalDelay - delay1 - 2;
if (rdelay2 > 15) rdelay2 = 15;
if (rdelay2 < 5) rdelay2 = 5;
uint16_t rinstr0 = scsi_sync_read_pacer_program_instructions[0] | pio_encode_delay(rdelay2);
uint16_t rinstr1 = (scsi_sync_read_pacer_program_instructions[1] + g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_delay(delay1);
SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 0] = rinstr0;
SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 1] = rinstr1;
}
}
}