/* * ZuluSCSI * Copyright (c) 2022 Rabbit Hole Computing * * Main program for initiator mode. */ #include "ZuluSCSI_config.h" #include "ZuluSCSI_log.h" #include "ZuluSCSI_log_trace.h" #include "ZuluSCSI_initiator.h" #include #include "SdFat.h" #include extern "C" { #include } #ifndef PLATFORM_HAS_INITIATOR_MODE void scsiInitiatorInit() { } void scsiInitiatorMainLoop() { } int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen, uint8_t *bufIn, size_t bufInLen, const uint8_t *bufOut, size_t bufOutLen) { return -1; } bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize) { return false; } #else /************************************* * High level initiator mode logic * *************************************/ static struct { // Bitmap of all drives that have been imaged uint32_t drives_imaged; // Is imaging a drive in progress, or are we scanning? bool imaging; // Information about currently selected drive int target_id; uint32_t sectorsize; uint32_t sectorcount; uint32_t sectors_done; int retrycount; FsFile target_file; } g_initiator_state; extern SdFs SD; // Initialization of initiator mode void scsiInitiatorInit() { scsiHostPhyReset(); g_initiator_state.drives_imaged = 0; g_initiator_state.imaging = false; g_initiator_state.target_id = -1; g_initiator_state.sectorsize = 0; g_initiator_state.sectorcount = 0; g_initiator_state.sectors_done = 0; g_initiator_state.retrycount = 0; } // High level logic of the initiator mode void scsiInitiatorMainLoop() { if (!g_initiator_state.imaging) { // Scan for SCSI drives one at a time g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8; g_initiator_state.sectors_done = 0; g_initiator_state.retrycount = 0; if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id))) { delay(1000); LED_ON(); bool readcapok = scsiTestUnitReady(g_initiator_state.target_id) && scsiStartStopUnit(g_initiator_state.target_id, true) && scsiInitiatorReadCapacity(g_initiator_state.target_id, &g_initiator_state.sectorcount, &g_initiator_state.sectorsize); LED_OFF(); if (readcapok) { azlog("SCSI id ", g_initiator_state.target_id, " capacity ", (int)g_initiator_state.sectorcount, " sectors x ", (int)g_initiator_state.sectorsize, " bytes"); char filename[] = "HD00_imaged.hda"; filename[2] += g_initiator_state.target_id; SD.remove(filename); g_initiator_state.target_file = SD.open(filename, O_RDWR | O_CREAT | O_TRUNC); if (!g_initiator_state.target_file.isOpen()) { azlog("Failed to open file for writing: ", filename); return; } azlog("Starting to copy drive data to ", filename); g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize); g_initiator_state.imaging = true; } } } else { // Copy sectors from SCSI drive to file if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount) { scsiStartStopUnit(g_initiator_state.target_id, false); azlog("Finished imaging drive with id ", g_initiator_state.target_id); LED_OFF(); g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id); g_initiator_state.imaging = false; g_initiator_state.target_file.close(); return; } // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred uint32_t time_start = millis(); int phase = (time_start % 5000); int duty = g_initiator_state.sectors_done * 5000 / g_initiator_state.sectorcount; if (duty < 100) duty = 100; if (phase <= duty) { LED_ON(); } else { LED_OFF(); } // How many sectors to read in one batch? int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done; if (numtoread > 512) numtoread = 512; // Retry sector-by-sector if (g_initiator_state.retrycount > 1) numtoread = 1; bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id, g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize, g_initiator_state.target_file); if (!status) { azlog("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done); if (g_initiator_state.retrycount < 5) { azlog("Retrying.. ", g_initiator_state.retrycount, "/5"); delay(200); scsiHostPhyReset(); delay(200); g_initiator_state.retrycount++; g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize); } else { azlog("Retry limit exceeded, skipping one sector"); g_initiator_state.retrycount = 0; g_initiator_state.sectors_done++; g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize); } } else { g_initiator_state.retrycount = 0; g_initiator_state.sectors_done += numtoread; g_initiator_state.target_file.flush(); int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start); azlog("SCSI read succeeded, sectors done: ", (int)g_initiator_state.sectors_done, " / ", (int)g_initiator_state.sectorcount, " speed ", speed_kbps, " kB/s"); } } } /************************************* * Low level command implementations * *************************************/ int scsiInitiatorRunCommand(int target_id, const uint8_t *command, size_t cmdLen, uint8_t *bufIn, size_t bufInLen, const uint8_t *bufOut, size_t bufOutLen, bool returnDataPhase) { if (!scsiHostPhySelect(target_id)) { azdbg("------ Target ", target_id, " did not respond"); scsiHostPhyRelease(); return -1; } SCSI_PHASE phase; int status = -1; while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE) { if (phase == MESSAGE_IN) { uint8_t dummy = 0; scsiHostRead(&dummy, 1); } else if (phase == MESSAGE_OUT) { uint8_t identify_msg = 0x80; scsiHostWrite(&identify_msg, 1); } else if (phase == COMMAND) { scsiHostWrite(command, cmdLen); } else if (phase == DATA_IN) { if (returnDataPhase) return 0; if (bufInLen == 0) { azlog("DATA_IN phase but no data to receive!"); status = -3; break; } if (!scsiHostRead(bufIn, bufInLen)) { azlog("scsiHostRead failed, was writing ", bytearray(bufOut, bufOutLen)); status = -2; break; } } else if (phase == DATA_OUT) { if (returnDataPhase) return 0; if (bufOutLen == 0) { azlog("DATA_OUT phase but no data to send!"); status = -3; break; } if (!scsiHostWrite(bufOut, bufOutLen)) { azlog("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen)); status = -2; break; } } else if (phase == STATUS) { uint8_t tmp = 0; scsiHostRead(&tmp, 1); status = tmp; azdbg("------ STATUS: ", tmp); } } scsiHostPhyRelease(); return status; } bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize) { uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t response[8] = {0}; int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), response, sizeof(response), NULL, 0); if (status == 0) { *sectorcount = ((uint32_t)response[0] << 24) | ((uint32_t)response[1] << 16) | ((uint32_t)response[2] << 8) | ((uint32_t)response[3] << 0); *sectorcount += 1; // SCSI reports last sector address *sectorsize = ((uint32_t)response[4] << 24) | ((uint32_t)response[5] << 16) | ((uint32_t)response[6] << 8) | ((uint32_t)response[7] << 0); return true; } else if (status == 2) { uint8_t sense_key; scsiRequestSense(target_id, &sense_key); azlog("READ CAPACITY on target ", target_id, " failed, sense key ", sense_key); return false; } else { *sectorcount = *sectorsize = 0; return false; } } // Execute REQUEST SENSE command to get more information about error status bool scsiRequestSense(int target_id, uint8_t *sense_key) { uint8_t command[6] = {0x03, 0, 0, 0, 4, 0}; uint8_t response[18] = {0}; int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), response, sizeof(response), NULL, 0); azdbg("RequestSense response: ", bytearray(response, 18)); *sense_key = response[2]; return status == 0; } // Execute UNIT START STOP command to load/unload media bool scsiStartStopUnit(int target_id, bool start) { uint8_t command[6] = {0x1B, 0, 0, 0, 0, 0}; uint8_t response[4] = {0}; if (start) command[4] |= 1; int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), response, sizeof(response), NULL, 0); if (status == 2) { uint8_t sense_key; scsiRequestSense(target_id, &sense_key); azlog("START STOP UNIT on target ", target_id, " failed, sense key ", sense_key); } return status == 0; } // Execute INQUIRY command bool scsiInquiry(int target_id, uint8_t inquiry_data[36]) { uint8_t command[6] = {0x12, 0, 0, 0, 36, 0}; int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), inquiry_data, 36, NULL, 0); return status == 0; } // Execute TEST UNIT READY command and handle unit attention state bool scsiTestUnitReady(int target_id) { for (int retries = 0; retries < 2; retries++) { uint8_t command[6] = {0x00, 0, 0, 0, 0, 0}; int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0); if (status == 0) { return true; } else if (status == 2) { uint8_t sense_key; scsiRequestSense(target_id, &sense_key); if (sense_key == 6) { uint8_t inquiry[36]; azlog("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY"); scsiInquiry(target_id, inquiry); } else if (sense_key == 2) { azlog("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT"); scsiStartStopUnit(target_id, true); } } else { azlog("Target ", target_id, " TEST UNIT READY response: ", status); } } return false; } // This uses callbacks to run SD and SCSI transfers in parallel static struct { uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side uint32_t bytes_per_sector; bool all_ok; } g_initiator_transfer; static void initiatorReadSDCallback(uint32_t bytes_complete) { if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi) { // How many bytes remaining in the transfer? uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done; uint32_t len = remain; // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver. // Select the limit based on total bytes in the transfer. // Transfer size is reduced towards the end of transfer to reduce the dead time between // end of SCSI transfer and the SD write completing. uint32_t limit = g_initiator_transfer.bytes_scsi / 8; uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector; if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE; if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE; if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE; if (limit < bytesPerSector) limit = bytesPerSector; if (len > limit) { len = limit; } // Split read so that it doesn't wrap around buffer edge uint32_t bufsize = sizeof(scsiDev.data); uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize); if (start + len > bufsize) len = bufsize - start; // Don't overwrite data that has not yet been written to SD card uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete; if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize) len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done; if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled && g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done) { // Current SD transfer is complete, it is better we return now and offer a chance for the next // transfer to begin. return; } // Keep transfers a multiple of sector size. if (remain >= bytesPerSector && len % bytesPerSector != 0) { len -= len % bytesPerSector; } if (len == 0) return; // azdbg("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done); if (!scsiHostRead(&scsiDev.data[start], len)) { azlog("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done); g_initiator_transfer.all_ok = false; } g_initiator_transfer.bytes_scsi_done += len; } } static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback) { // Figure out longest continuous block in buffer uint32_t bufsize = sizeof(scsiDev.data); uint32_t start = g_initiator_transfer.bytes_sd % bufsize; uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd; if (start + len > bufsize) len = bufsize - start; // Try to do writes in multiple of 512 bytes // This allows better performance for SD card access. if (len >= 512) len &= ~511; // Start writing to SD card and simultaneously reading more from SCSI bus uint8_t *buf = &scsiDev.data[start]; // azdbg("SD write ", (int)start, " + ", (int)len); if (use_callback) { azplatform_set_sd_callback(&initiatorReadSDCallback, buf); } g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len; if (file.write(buf, len) != len) { azlog("scsiInitiatorReadDataToFile: SD card write failed"); g_initiator_transfer.all_ok = false; } azplatform_set_sd_callback(NULL, NULL); g_initiator_transfer.bytes_sd += len; } bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize, FsFile &file) { uint8_t command[10] = {0x28, 0x00, (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16), (uint8_t)(start_sector >> 8), (uint8_t)start_sector, 0x00, (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount), 0x00 }; // Start executing command, return in data phase int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true); if (status != 0) { uint8_t sense_key; scsiRequestSense(target_id, &sense_key); azlog("scsiInitiatorReadDataToFile: READ10 failed: ", status, " sense key ", sense_key); scsiHostPhyRelease(); return false; } SCSI_PHASE phase; g_initiator_transfer.bytes_scsi = sectorcount * sectorsize; g_initiator_transfer.bytes_per_sector = sectorsize; g_initiator_transfer.bytes_sd = 0; g_initiator_transfer.bytes_sd_scheduled = 0; g_initiator_transfer.bytes_scsi_done = 0; g_initiator_transfer.all_ok = true; while (true) { phase = (SCSI_PHASE)scsiHostPhyGetPhase(); if (phase != DATA_IN && phase != BUS_BUSY) { break; } // Read next block from SCSI bus if buffer empty if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done) { initiatorReadSDCallback(0); } else { // Write data to SD card and simultaneously read more from SCSI scsiInitiatorWriteDataToSd(file, true); } } // Write any remaining buffered data while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done) { scsiInitiatorWriteDataToSd(file, false); } if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi) { azlog("SCSI read from sector ", (int)start_sector, " was incomplete: expected ", (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes"); g_initiator_transfer.all_ok = false; } while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE) { if (phase == MESSAGE_IN) { uint8_t dummy = 0; scsiHostRead(&dummy, 1); } else if (phase == MESSAGE_OUT) { uint8_t identify_msg = 0x80; scsiHostWrite(&identify_msg, 1); } else if (phase == STATUS) { uint8_t tmp = 0; scsiHostRead(&tmp, 1); status = tmp; azdbg("------ STATUS: ", tmp); } } scsiHostPhyRelease(); return status == 0 && g_initiator_transfer.all_ok; } #endif