// Implements the low level interface to SCSI bus // Partially derived from scsiPhy.c from SCSI2SD-V6 #include "scsiPhy.h" #include "BlueSCSI_platform.h" #include "scsi_accel_asm.h" #include "scsi_accel_dma.h" #include "scsi_accel_greenpak.h" #include "scsi_accel_sync.h" #include "BlueSCSI_log.h" #include "BlueSCSI_log_trace.h" #include "BlueSCSI_config.h" #include #include extern "C" { #include #include } // Acceleration mode in use static enum { PHY_MODE_BEST_AVAILABLE = 0, PHY_MODE_PIO = 1, PHY_MODE_DMA_TIMER = 2, PHY_MODE_GREENPAK_PIO = 3, PHY_MODE_GREENPAK_DMA = 4 } g_scsi_phy_mode; static const char *g_scsi_phy_mode_names[] = { "Unknown", "PIO", "DMA_TIMER", "GREENPAK_PIO", "GREENPAK_DMA" }; // State of polling write request static struct { const uint8_t *data; uint32_t count; bool use_sync_mode; } g_scsi_writereq; static void init_irqs(); /***********************/ /* SCSI status signals */ /***********************/ extern "C" bool scsiStatusATN() { return SCSI_IN(ATN); } extern "C" bool scsiStatusBSY() { return SCSI_IN(BSY); } /************************/ /* SCSI selection logic */ /************************/ volatile uint8_t g_scsi_sts_selection; volatile uint8_t g_scsi_ctrl_bsy; static void scsi_bsy_deassert_interrupt() { if (SCSI_IN(SEL) && !SCSI_IN(BSY)) { uint8_t sel_bits = SCSI_IN_DATA(); int sel_id = -1; for (int i = 0; i < S2S_MAX_TARGETS; i++) { if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg) { if (sel_bits & (1 << scsiDev.targets[i].targetId)) { sel_id = scsiDev.targets[i].targetId; break; } } } if (sel_id >= 0) { uint8_t atn_flag = SCSI_IN(ATN) ? SCSI_STS_SELECTION_ATN : 0; g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | atn_flag | sel_id; } // selFlag is required for Philips P2000C which releases it after 600ns // without waiting for BSY. // Also required for some early Mac Plus roms scsiDev.selFlag = *SCSI_STS_SELECTED; } } extern "C" bool scsiStatusSEL() { if (g_scsi_ctrl_bsy) { // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects. // Instead update the state here. // Releasing happens with bus release. g_scsi_ctrl_bsy = 0; SCSI_OUT(BSY, 1); } return SCSI_IN(SEL); } /************************/ /* SCSI bus reset logic */ /************************/ static void scsi_rst_assert_interrupt() { bool rst1 = SCSI_IN(RST); delay_ns(500); bool rst2 = SCSI_IN(RST); if (rst1 && rst2) { bluedbg("BUS RESET"); scsiDev.resetFlag = 1; } } static void selectPhyMode() { int oldmode = g_scsi_phy_mode; int default_mode = PHY_MODE_BEST_AVAILABLE; // Read overriding setting from configuration file int wanted_mode = ini_getl("SCSI", "PhyMode", default_mode, CONFIGFILE); // Default: software GPIO bitbang, available on all revisions g_scsi_phy_mode = PHY_MODE_PIO; // Timer based DMA bitbang, available on V1.1, 2.8 MB/s #ifdef SCSI_ACCEL_DMA_AVAILABLE if (wanted_mode == PHY_MODE_BEST_AVAILABLE || wanted_mode == PHY_MODE_DMA_TIMER) { g_scsi_phy_mode = PHY_MODE_DMA_TIMER; } #endif // GreenPAK with software write, available on V1.1 with extra chip, 3.5 MB/s if (wanted_mode == PHY_MODE_BEST_AVAILABLE || wanted_mode == PHY_MODE_GREENPAK_PIO) { if (greenpak_is_ready()) { g_scsi_phy_mode = PHY_MODE_GREENPAK_PIO; } } // GreenPAK with DMA write, available on V1.1 with extra chip #ifdef SCSI_ACCEL_DMA_AVAILABLE if (wanted_mode == PHY_MODE_BEST_AVAILABLE || wanted_mode == PHY_MODE_GREENPAK_DMA) { if (greenpak_is_ready()) { g_scsi_phy_mode = PHY_MODE_GREENPAK_DMA; } } #endif if (g_scsi_phy_mode != oldmode) { bluelog("SCSI PHY operating mode: ", g_scsi_phy_mode_names[g_scsi_phy_mode]); } } extern "C" void scsiPhyReset(void) { SCSI_RELEASE_OUTPUTS(); scsi_accel_dma_stopWrite(); g_scsi_sts_selection = 0; g_scsi_ctrl_bsy = 0; g_scsi_writereq.count = 0; init_irqs(); #ifdef SCSI_SYNC_MODE_AVAILABLE scsi_accel_sync_init(); #endif selectPhyMode(); if (g_scsi_phy_mode == PHY_MODE_DMA_TIMER) { scsi_accel_timer_dma_init(); } else if (g_scsi_phy_mode == PHY_MODE_GREENPAK_DMA) { scsi_accel_greenpak_dma_init(); } } /************************/ /* SCSI bus phase logic */ /************************/ static SCSI_PHASE g_scsi_phase; extern "C" void scsiEnterPhase(int phase) { int delay = scsiEnterPhaseImmediate(phase); if (delay > 0) { s2s_delay_ns(delay); } } // Change state and return nanosecond delay to wait extern "C" uint32_t scsiEnterPhaseImmediate(int phase) { if (phase != g_scsi_phase) { // ANSI INCITS 362-2002 SPI-3 10.7.1: // Phase changes are not allowed while REQ or ACK is asserted. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {} if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT)) { // Akai S1000/S3000 seems to need extra delay before changing to data phase // after a command. The code in BlueSCSI_disk.cpp tries to do this while waiting // for SD card, to avoid any extra latency. s2s_delay_ns(400000); } int oldphase = g_scsi_phase; g_scsi_phase = (SCSI_PHASE)phase; scsiLogPhaseChange(phase); if (phase < 0) { // Other communication on bus or reset state SCSI_RELEASE_OUTPUTS(); return 0; } else { SCSI_OUT(MSG, phase & __scsiphase_msg); SCSI_OUT(CD, phase & __scsiphase_cd); SCSI_OUT(IO, phase & __scsiphase_io); int delayNs = 400; // Bus settle delay if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io)) { delayNs += 400; // Data release delay } if (scsiDev.compatMode < COMPAT_SCSI2) { // EMU EMAX needs 100uS ! 10uS is not enough. delayNs += 100000; } return delayNs; } } else { return 0; } } // Release all signals void scsiEnterBusFree(void) { g_scsi_phase = BUS_FREE; g_scsi_sts_selection = 0; g_scsi_ctrl_bsy = 0; scsiDev.cdbLen = 0; SCSI_RELEASE_OUTPUTS(); } /********************/ /* Transmit to host */ /********************/ #define SCSI_WAIT_ACTIVE(pin) \ if (!SCSI_IN(pin)) { \ if (!SCSI_IN(pin)) { \ while(!SCSI_IN(pin) && !scsiDev.resetFlag); \ } \ } #define SCSI_WAIT_INACTIVE(pin) \ if (SCSI_IN(pin)) { \ if (SCSI_IN(pin)) { \ while(SCSI_IN(pin) && !scsiDev.resetFlag); \ } \ } static inline void scsiWriteOneByte(uint8_t value) { SCSI_OUT_DATA(value); delay_100ns(); // DB setup time before REQ SCSI_OUT(REQ, 1); SCSI_WAIT_ACTIVE(ACK); SCSI_RELEASE_DATA_REQ(); // Release data and REQ SCSI_WAIT_INACTIVE(ACK); } extern "C" void scsiWriteByte(uint8_t value) { scsiLogDataIn(&value, 1); scsiWriteOneByte(value); } extern "C" void scsiWrite(const uint8_t* data, uint32_t count) { scsiStartWrite(data, count); scsiFinishWrite(); } extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count) { scsiLogDataIn(data, count); g_scsi_writereq.use_sync_mode = (g_scsi_phase == DATA_IN && scsiDev.target->syncOffset > 0); if (g_scsi_phy_mode == PHY_MODE_PIO || g_scsi_phy_mode == PHY_MODE_GREENPAK_PIO || g_scsi_writereq.use_sync_mode) { // Software based bit-banging. // Write requests are queued and then executed in isWriteFinished() callback. // This allows better parallelism with SD card transfers. if (g_scsi_writereq.count) { if (data == g_scsi_writereq.data + g_scsi_writereq.count) { // Combine with previous one g_scsi_writereq.count += count; return; } else { // Actually execute previous request scsiFinishWrite(); } } g_scsi_writereq.data = data; g_scsi_writereq.count = count; } else if (g_scsi_phy_mode == PHY_MODE_DMA_TIMER || g_scsi_phy_mode == PHY_MODE_GREENPAK_DMA) { // Accelerated writes using DMA and timers scsi_accel_dma_startWrite(data, count, &scsiDev.resetFlag); } else { bluelog("Unknown SCSI PHY mode: ", (int)g_scsi_phy_mode); } } static void processPollingWrite(uint32_t count) { if (count > g_scsi_writereq.count) count = g_scsi_writereq.count; const uint8_t *data = g_scsi_writereq.data; uint32_t count_words = count / 4; if (g_scsi_writereq.use_sync_mode) { // Synchronous mode transfer scsi_accel_sync_send(data, count, &scsiDev.resetFlag); } else if (count_words * 4 == count) { if (g_scsi_phy_mode == PHY_MODE_GREENPAK_PIO) { // GreenPAK PIO accelerated asynchronous transfer scsi_accel_greenpak_send((const uint32_t*)data, count_words, &scsiDev.resetFlag); } else { // Assembler optimized asynchronous transfer scsi_accel_asm_send((const uint32_t*)data, count_words, &scsiDev.resetFlag); } } else { // Use simple loop for unaligned transfers for (uint32_t i = 0; i < count; i++) { if (scsiDev.resetFlag) break; scsiWriteOneByte(data[i]); } } g_scsi_writereq.count -= count; if (g_scsi_writereq.count) { g_scsi_writereq.data += count; } else { g_scsi_writereq.data = NULL; } } static bool isPollingWriteFinished(const uint8_t *data) { if (g_scsi_writereq.count) { if (data == NULL) { return false; } else if (data >= g_scsi_writereq.data && data < g_scsi_writereq.data + g_scsi_writereq.count) { return false; } } return true; } extern "C" bool scsiIsWriteFinished(const uint8_t *data) { // Check if there is still a polling transfer in progress if (!isPollingWriteFinished(data) && !check_sd_read_done()) { // Process the transfer piece-by-piece while waiting // for SD card to react. int max_count = g_scsi_writereq.count / 8; // Always transfer whole sectors without pause to avoid problems with some SCSI hosts. int bytesPerSector = 512; if (scsiDev.target) { bytesPerSector = scsiDev.target->liveCfg.bytesPerSector; } if (max_count % bytesPerSector != 0) max_count -= (max_count % bytesPerSector); if (max_count < bytesPerSector) max_count = bytesPerSector; // Avoid SysTick interrupt pauses during the transfer SysTick_Handle_PreEmptively(); processPollingWrite(max_count); return isPollingWriteFinished(data); } if (g_scsi_phy_mode == PHY_MODE_DMA_TIMER || g_scsi_phy_mode == PHY_MODE_GREENPAK_DMA) { return scsi_accel_dma_isWriteFinished(data); } else { return true; } } extern "C" void scsiFinishWrite() { if (g_scsi_writereq.count) { // Finish previously started polling write request. processPollingWrite(g_scsi_writereq.count); } if (g_scsi_phy_mode == PHY_MODE_DMA_TIMER || g_scsi_phy_mode == PHY_MODE_GREENPAK_DMA) { scsi_accel_dma_finishWrite(&scsiDev.resetFlag); } } /*********************/ /* Receive from host */ /*********************/ static inline uint8_t scsiReadOneByte(void) { SCSI_OUT(REQ, 1); SCSI_WAIT_ACTIVE(ACK); delay_100ns(); uint8_t r = SCSI_IN_DATA(); SCSI_OUT(REQ, 0); SCSI_WAIT_INACTIVE(ACK); return r; } extern "C" uint8_t scsiReadByte(void) { uint8_t r = scsiReadOneByte(); scsiLogDataOut(&r, 1); return r; } extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError) { *parityError = 0; uint32_t count_words = count / 4; bool use_greenpak = (g_scsi_phy_mode == PHY_MODE_GREENPAK_DMA || g_scsi_phy_mode == PHY_MODE_GREENPAK_PIO); SysTick_Handle_PreEmptively(); if (g_scsi_phase == DATA_OUT && scsiDev.target->syncOffset > 0) { // Synchronous data transfer scsi_accel_sync_recv(data, count, parityError, &scsiDev.resetFlag); } else if (count_words * 4 == count && count_words >= 2 && use_greenpak) { // GreenPAK accelerated receive can handle a multiple of 4 bytes with minimum of 8 bytes. scsi_accel_greenpak_recv((uint32_t*)data, count_words, &scsiDev.resetFlag); } else if (count_words * 4 == count && count_words >= 1) { // Optimized ASM subroutine can handle multiple of 4 bytes with minimum of 4 bytes. scsi_accel_asm_recv((uint32_t*)data, count_words, &scsiDev.resetFlag); } else { // Use a simple loop for short and unaligned transfers for (uint32_t i = 0; i < count; i++) { if (scsiDev.resetFlag) break; data[i] = scsiReadOneByte(); } } scsiLogDataOut(data, count); } /**********************/ /* Interrupt handlers */ /**********************/ extern "C" void SCSI_RST_IRQ (void) { if (exti_interrupt_flag_get(SCSI_RST_EXTI)) { exti_interrupt_flag_clear(SCSI_RST_EXTI); scsi_rst_assert_interrupt(); } if (exti_interrupt_flag_get(SCSI_BSY_EXTI)) { exti_interrupt_flag_clear(SCSI_BSY_EXTI); scsi_bsy_deassert_interrupt(); } if (exti_interrupt_flag_get(SCSI_SEL_EXTI)) { // Check BSY line status when SEL goes active. // This is needed to handle SCSI-1 hosts that use the single initiator mode. // The host will just assert the SEL directly, without asserting BSY first. exti_interrupt_flag_clear(SCSI_SEL_EXTI); scsi_bsy_deassert_interrupt(); } } #if SCSI_RST_IRQn != SCSI_BSY_IRQn extern "C" void SCSI_BSY_IRQ (void) { SCSI_RST_IRQ(); } #endif #if (SCSI_SEL_IRQn != SCSI_RST_IRQn) && (SCSI_SEL_IRQn != SCSI_BSY_IRQn) extern "C" void SCSI_SEL_IRQ (void) { SCSI_RST_IRQ(); } #endif static void init_irqs() { // Falling edge of RST pin gpio_exti_source_select(SCSI_RST_EXTI_SOURCE_PORT, SCSI_RST_EXTI_SOURCE_PIN); exti_init(SCSI_RST_EXTI, EXTI_INTERRUPT, EXTI_TRIG_FALLING); NVIC_SetPriority(SCSI_RST_IRQn, 1); NVIC_EnableIRQ(SCSI_RST_IRQn); // Rising edge of BSY pin gpio_exti_source_select(SCSI_BSY_EXTI_SOURCE_PORT, SCSI_BSY_EXTI_SOURCE_PIN); exti_init(SCSI_BSY_EXTI, EXTI_INTERRUPT, EXTI_TRIG_RISING); NVIC_SetPriority(SCSI_BSY_IRQn, 1); NVIC_EnableIRQ(SCSI_BSY_IRQn); // Falling edge of SEL pin gpio_exti_source_select(SCSI_SEL_EXTI_SOURCE_PORT, SCSI_SEL_EXTI_SOURCE_PIN); exti_init(SCSI_SEL_EXTI, EXTI_INTERRUPT, EXTI_TRIG_FALLING); NVIC_SetPriority(SCSI_SEL_IRQn, 1); NVIC_EnableIRQ(SCSI_SEL_IRQn); }