// Driver and interface for accessing SD card in SPI mode // Used on BlueSCSI v1.0. #include "BlueSCSI_platform.h" #include "BlueSCSI_log.h" #include "gd32f20x_spi.h" #include "gd32f20x_dma.h" #include #ifndef SD_USE_SDIO class GD32SPIDriver : public SdSpiBaseClass { public: void begin(SdSpiConfig config) { rcu_periph_clock_enable(RCU_SPI0); rcu_periph_clock_enable(RCU_DMA0); dma_parameter_struct rx_dma_config = { .periph_addr = (uint32_t)&SPI_DATA(SD_SPI), .periph_width = DMA_PERIPHERAL_WIDTH_8BIT, .memory_addr = 0, // Set before transfer .memory_width = DMA_MEMORY_WIDTH_8BIT, .number = 0, // Set before transfer .priority = DMA_PRIORITY_ULTRA_HIGH, .periph_inc = DMA_PERIPH_INCREASE_DISABLE, .memory_inc = DMA_MEMORY_INCREASE_ENABLE, .direction = DMA_PERIPHERAL_TO_MEMORY }; dma_init(DMA0, SD_SPI_RX_DMA_CHANNEL, &rx_dma_config); dma_parameter_struct tx_dma_config = { .periph_addr = (uint32_t)&SPI_DATA(SD_SPI), .periph_width = DMA_PERIPHERAL_WIDTH_8BIT, .memory_addr = 0, // Set before transfer .memory_width = DMA_MEMORY_WIDTH_8BIT, .number = 0, // Set before transfer .priority = DMA_PRIORITY_HIGH, .periph_inc = DMA_PERIPH_INCREASE_DISABLE, .memory_inc = DMA_MEMORY_INCREASE_ENABLE, .direction = DMA_MEMORY_TO_PERIPHERAL }; dma_init(DMA0, SD_SPI_TX_DMA_CHANNEL, &tx_dma_config); } void activate() { spi_parameter_struct config = { SPI_MASTER, SPI_TRANSMODE_FULLDUPLEX, SPI_FRAMESIZE_8BIT, SPI_NSS_SOFT, SPI_ENDIAN_MSB, SPI_CK_PL_LOW_PH_1EDGE, SPI_PSC_256 }; // Select closest available divider based on system frequency int divider = (SystemCoreClock + m_sckfreq / 2) / m_sckfreq; if (divider <= 2) config.prescale = SPI_PSC_2; else if (divider <= 4) config.prescale = SPI_PSC_4; else if (divider <= 8) config.prescale = SPI_PSC_8; else if (divider <= 16) config.prescale = SPI_PSC_16; else if (divider <= 32) config.prescale = SPI_PSC_32; else if (divider <= 64) config.prescale = SPI_PSC_64; else if (divider <= 128) config.prescale = SPI_PSC_128; else config.prescale = SPI_PSC_256; spi_init(SD_SPI, &config); spi_enable(SD_SPI); } void deactivate() { spi_disable(SD_SPI); } void wait_idle() { while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE)); while (SPI_STAT(SD_SPI) & SPI_STAT_TRANS); } // Single byte receive uint8_t receive() { // Wait for idle and clear RX buffer wait_idle(); (void)SPI_DATA(SD_SPI); // Send dummy byte and wait for receive SPI_DATA(SD_SPI) = 0xFF; while (!(SPI_STAT(SD_SPI) & SPI_STAT_RBNE)); return SPI_DATA(SD_SPI); } // Single byte send void send(uint8_t data) { SPI_DATA(SD_SPI) = data; wait_idle(); } // Multiple byte receive uint8_t receive(uint8_t* buf, size_t count) { // Wait for idle and clear RX buffer wait_idle(); (void)SPI_DATA(SD_SPI); // Check if this is part of callback streaming request bool stream = false; if (m_stream_callback && buf == m_stream_buffer + m_stream_count) { stream = true; } else if (m_stream_callback) { bluedbg("Stream buffer mismatch: ", (uint32_t)buf, " vs. ", (uint32_t)(m_stream_buffer + m_stream_count)); } // Use DMA to stream dummy TX data and store RX data uint8_t tx_data = 0xFF; DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL); DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL); DMA_CHMADDR(DMA0, SD_SPI_RX_DMA_CHANNEL) = (uint32_t)buf; DMA_CHMADDR(DMA0, SD_SPI_TX_DMA_CHANNEL) = (uint32_t)&tx_data; DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_MNAGA; // No memory increment for TX DMA_CHCNT(DMA0, SD_SPI_RX_DMA_CHANNEL) = count; DMA_CHCNT(DMA0, SD_SPI_TX_DMA_CHANNEL) = count; DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN; DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN; SPI_CTL1(SD_SPI) |= SPI_CTL1_DMAREN | SPI_CTL1_DMATEN; uint32_t start = millis(); while (!(DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL))) { if (millis() - start > 500) { bluelog("ERROR: SPI DMA receive of ", (int)count, " bytes timeouted"); return 1; } if (stream) { uint32_t complete = m_stream_count + (count - DMA_CHCNT(DMA0, SD_SPI_RX_DMA_CHANNEL)); m_stream_callback(complete); } } if (DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL)) { bluelog("ERROR: SPI DMA receive set DMA_FLAG_ERR"); } SPI_CTL1(SD_SPI) &= ~(SPI_CTL1_DMAREN | SPI_CTL1_DMATEN); DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN; DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN; if (stream) { m_stream_count += count; } return 0; } // Multiple byte send void send(const uint8_t* buf, size_t count) { // Check if this is part of callback streaming request bool stream = false; if (m_stream_callback && buf == m_stream_buffer + m_stream_count) { stream = true; } else if (m_stream_callback) { bluedbg("Stream buffer mismatch: ", (uint32_t)buf, " vs. ", (uint32_t)(m_stream_buffer + m_stream_count)); } // Use DMA to stream TX data DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL); DMA_CHMADDR(DMA0, SD_SPI_TX_DMA_CHANNEL) = (uint32_t)buf; DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) |= DMA_CHXCTL_MNAGA; // Memory increment for TX DMA_CHCNT(DMA0, SD_SPI_TX_DMA_CHANNEL) = count; DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN; SPI_CTL1(SD_SPI) |= SPI_CTL1_DMATEN; uint32_t start = millis(); while (!(DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL))) { if (millis() - start > 500) { bluelog("ERROR: SPI DMA transmit of ", (int)count, " bytes timeouted"); return; } if (stream) { uint32_t complete = m_stream_count + (count - DMA_CHCNT(DMA0, SD_SPI_TX_DMA_CHANNEL)); m_stream_callback(complete); } } if (DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL)) { bluelog("ERROR: SPI DMA transmit set DMA_FLAG_ERR"); } wait_idle(); SPI_CTL1(SD_SPI) &= ~(SPI_CTL1_DMAREN | SPI_CTL1_DMATEN); DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN; if (stream) { m_stream_count += count; } } void setSckSpeed(uint32_t maxSck) { m_sckfreq = maxSck; } void set_sd_callback(sd_callback_t func, const uint8_t *buffer) { m_stream_buffer = buffer; m_stream_count = 0; m_stream_callback = func; } private: uint32_t m_sckfreq; const uint8_t *m_stream_buffer; uint32_t m_stream_count; sd_callback_t m_stream_callback; }; void sdCsInit(SdCsPin_t pin) { } void sdCsWrite(SdCsPin_t pin, bool level) { if (level) GPIO_BOP(SD_PORT) = SD_CS_PIN; else GPIO_BC(SD_PORT) = SD_CS_PIN; } GD32SPIDriver g_sd_spi_port; SdSpiConfig g_sd_spi_config(0, DEDICATED_SPI, SD_SCK_MHZ(30), &g_sd_spi_port); void bluescsiplatform_set_sd_callback(sd_callback_t func, const uint8_t *buffer) { g_sd_spi_port.set_sd_callback(func, buffer); } // Check if a DMA request for SD card read has completed. // This is used to optimize the timing of data transfers on SCSI bus. bool check_sd_read_done() { return (DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) & DMA_CHXCTL_CHEN) && (DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_FTF, SD_SPI_RX_DMA_CHANNEL)); } #endif