/** * ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™ * * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version.  * * https://www.gnu.org/licenses/gpl-3.0.html * ---- * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version.  * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details.  * * You should have received a copy of the GNU General Public License * along with this program.  If not, see . **/ #include "ZuluSCSI_platform.h" #include "gd32f20x_sdio.h" #include "gd32f20x_fmc.h" #include "gd32f20x_fwdgt.h" #include "gd32_sdio_sdcard.h" #include "ZuluSCSI_log.h" #include "ZuluSCSI_config.h" #include "usbd_conf.h" #include "usb_serial.h" #include "greenpak.h" #include #include #include #include #include #include extern SdFs SD; extern bool g_rawdrive_active; extern "C" { const char *g_platform_name = PLATFORM_NAME; static bool g_enable_apple_quirks = false; bool g_direct_mode = false; ZuluSCSIVersion_t g_zuluscsi_version = ZSVersion_unknown; bool g_moved_select_in = false; static bool g_led_blinking = false; // hw_config.cpp c functions #include "platform_hw_config.h" // usb_log_poll() is called through function pointer to // avoid including USB in SD card bootloader. static void (*g_usb_log_poll_func)(void); static void usb_log_poll(); /*************************/ /* Timing functions */ /*************************/ static volatile uint32_t g_millisecond_counter; static volatile uint32_t g_watchdog_timeout; static uint32_t g_ns_to_cycles; // Q0.32 fixed point format static void watchdog_handler(uint32_t *sp); unsigned long millis() { return g_millisecond_counter; } void delay(unsigned long ms) { uint32_t start = g_millisecond_counter; while ((uint32_t)(g_millisecond_counter - start) < ms); } void delay_ns(unsigned long ns) { uint32_t CNT_start = DWT->CYCCNT; if (ns <= 100) return; // Approximate call overhead ns -= 100; uint32_t cycles = ((uint64_t)ns * g_ns_to_cycles) >> 32; while ((uint32_t)(DWT->CYCCNT - CNT_start) < cycles); } void SysTick_Handler_inner(uint32_t *sp) { g_millisecond_counter++; if (g_watchdog_timeout > 0) { g_watchdog_timeout--; const uint32_t busreset_time = WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT; if (g_watchdog_timeout <= busreset_time) { if (!scsiDev.resetFlag) { logmsg("WATCHDOG TIMEOUT at PC ", sp[6], " LR ", sp[5], " attempting bus reset"); scsiDev.resetFlag = 1; } if (g_watchdog_timeout == 0) { watchdog_handler(sp); } } } } __attribute__((interrupt, naked)) void SysTick_Handler(void) { // Take note of stack pointer so that we can print debug // info in watchdog handler. asm("mrs r0, msp\n" "b SysTick_Handler_inner": : : "r0"); } // This function is called by scsiPhy.cpp. // It resets the systick counter to give 1 millisecond of uninterrupted transfer time. // The total number of skips is kept track of to keep the correct time on average. void SysTick_Handle_PreEmptively() { static int skipped_clocks = 0; __disable_irq(); uint32_t loadval = SysTick->LOAD; skipped_clocks += loadval - SysTick->VAL; SysTick->VAL = 0; if (skipped_clocks > loadval) { // We have skipped enough ticks that it is time to fake a call // to SysTick interrupt handler. skipped_clocks -= loadval; uint32_t stack_frame[8] = {0}; stack_frame[6] = (uint32_t)__builtin_return_address(0); SysTick_Handler_inner(stack_frame); } __enable_irq(); } uint32_t platform_sys_clock_in_hz() { return rcu_clock_freq_get(CK_SYS); } /***************/ /* GPIO init */ /***************/ #ifdef PLATFORM_VERSION_1_1_PLUS static void init_audio_gpio() { gpio_pin_remap1_config(GPIO_PCF5, GPIO_PCF5_SPI1_IO_REMAP1, ENABLE); gpio_pin_remap1_config(GPIO_PCF5, GPIO_PCF5_SPI1_NSCK_REMAP1, ENABLE); gpio_pin_remap1_config(GPIO_PCF4, GPIO_PCF4_SPI1_SCK_PD3_REMAP, ENABLE); gpio_init(I2S_CK_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, I2S_CK_PIN); gpio_init(I2S_SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, I2S_SD_PIN); gpio_init(I2S_WS_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, I2S_WS_PIN); } #endif // Method of determining whichi scsi board is being used static ZuluSCSIVersion_t get_zuluscsi_version() { #ifdef DIGITAL_VERSION_DETECT_PORT bool pull_down; bool pull_up; gpio_init(DIGITAL_VERSION_DETECT_PORT, GPIO_MODE_IPU, 0, DIGITAL_VERSION_DETECT_PIN); delay_us(10); pull_up = SET == gpio_input_bit_get(DIGITAL_VERSION_DETECT_PORT, DIGITAL_VERSION_DETECT_PIN); gpio_init(DIGITAL_VERSION_DETECT_PORT, GPIO_MODE_IPD, 0, DIGITAL_VERSION_DETECT_PIN); delay_us(10); pull_down = RESET == gpio_input_bit_get(DIGITAL_VERSION_DETECT_PORT, DIGITAL_VERSION_DETECT_PIN); if (pull_up && pull_down) return ZSVersion_v1_1; if (pull_down && !pull_up) return ZSVersion_v1_1_ODE; if (pull_up && !pull_down) { return ZSVersion_v1_2; } #endif // DIGITAL_DETECT_VERSION return ZSVersion_unknown; } // Initialize SPI and GPIO configuration // Clock has already been initialized by system_gd32f20x.c void platform_init() { SystemCoreClockUpdate(); // Enable SysTick to drive millis() g_millisecond_counter = 0; SysTick_Config(SystemCoreClock / 1000U); NVIC_SetPriority(SysTick_IRQn, 0x00U); // Enable DWT counter to drive delay_ns() g_ns_to_cycles = ((uint64_t)SystemCoreClock << 32) / 1000000000; CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk; DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk; // Enable debug output on SWO pin DBG_CTL |= DBG_CTL_TRACE_IOEN; if (TPI->ACPR == 0) { CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk; TPI->ACPR = SystemCoreClock / 2000000 - 1; // 2 Mbps baudrate for SWO // TPI->ACPR = SystemCoreClock / 30000000 - 1; // 30 Mbps baudrate for SWO TPI->SPPR = 2; TPI->FFCR = 0x100; // TPIU packet framing disabled // DWT->CTRL |= (1 << DWT_CTRL_EXCTRCENA_Pos); // DWT->CTRL |= (1 << DWT_CTRL_CYCTAP_Pos) // | (15 << DWT_CTRL_POSTPRESET_Pos) // | (1 << DWT_CTRL_PCSAMPLENA_Pos) // | (3 << DWT_CTRL_SYNCTAP_Pos) // | (1 << DWT_CTRL_CYCCNTENA_Pos); ITM->LAR = 0xC5ACCE55; ITM->TCR = (1 << ITM_TCR_DWTENA_Pos) | (1 << ITM_TCR_SYNCENA_Pos) | (1 << ITM_TCR_ITMENA_Pos); ITM->TER = 0xFFFFFFFF; // Enable all stimulus ports } // Enable needed clocks for GPIO rcu_periph_clock_enable(RCU_AF); rcu_periph_clock_enable(RCU_GPIOA); rcu_periph_clock_enable(RCU_GPIOB); rcu_periph_clock_enable(RCU_GPIOC); rcu_periph_clock_enable(RCU_GPIOD); rcu_periph_clock_enable(RCU_GPIOE); // Switch to SWD debug port (disable JTAG) to release PB4 as GPIO gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP, ENABLE); // SCSI pins. // Initialize open drain outputs to high. SCSI_RELEASE_OUTPUTS(); // determine the ZulusSCSI board version g_zuluscsi_version = get_zuluscsi_version(); g_moved_select_in = g_zuluscsi_version == ZSVersion_v1_1_ODE || g_zuluscsi_version == ZSVersion_v1_2; // Init SCSI pins GPIOs gpio_init(SCSI_OUT_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_DATA_MASK | SCSI_OUT_REQ); gpio_init(SCSI_OUT_IO_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_IO_PIN); gpio_init(SCSI_OUT_CD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_CD_PIN); gpio_init(SCSI_OUT_SEL_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_SEL_PIN); gpio_init(SCSI_OUT_MSG_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_MSG_PIN); gpio_init(SCSI_OUT_RST_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_RST_PIN); gpio_init(SCSI_OUT_BSY_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_BSY_PIN); gpio_init(SCSI_IN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_IN_MASK); gpio_init(SCSI_ATN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ATN_PIN); gpio_init(SCSI_BSY_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_BSY_PIN); gpio_init(SCSI_ACK_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ACK_PIN); gpio_init(SCSI_RST_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_RST_PIN); // Terminator enable gpio_bit_set(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN); gpio_init(SCSI_TERM_EN_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, SCSI_TERM_EN_PIN); #ifndef SD_USE_SDIO // SD card pins using SPI gpio_init(SD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SD_CS_PIN); gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_CLK_PIN); gpio_init(SD_PORT, GPIO_MODE_IPU, 0, SD_MISO_PIN); gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_MOSI_PIN); #else // SD card pins using SDIO gpio_init(SD_SDIO_DATA_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_SDIO_D0 | SD_SDIO_D1 | SD_SDIO_D2 | SD_SDIO_D3); gpio_init(SD_SDIO_CLK_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_SDIO_CLK); gpio_init(SD_SDIO_CMD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_SDIO_CMD); #endif #ifdef PLATFORM_VERSION_1_1_PLUS if (g_zuluscsi_version == ZSVersion_v1_1) { // SCSI Select gpio_init(SCSI_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_SEL_PIN); // DIP switches gpio_init(DIP_PORT, GPIO_MODE_IPD, 0, DIPSW1_PIN | DIPSW2_PIN | DIPSW3_PIN); gpio_init(EJECT_1_PORT, GPIO_MODE_IPU, 0, EJECT_1_PIN); gpio_init(EJECT_2_PORT, GPIO_MODE_IPU, 0, EJECT_2_PIN); } else if (g_zuluscsi_version == ZSVersion_v1_1_ODE) { // SCSI Select gpio_init(SCSI_ODE_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ODE_SEL_PIN); // DIP switches gpio_init(ODE_DIP_PORT, GPIO_MODE_IPD, 0, ODE_DIPSW1_PIN | ODE_DIPSW2_PIN | ODE_DIPSW3_PIN); // Buttons gpio_init(EJECT_BTN_PORT, GPIO_MODE_IPU, 0, EJECT_BTN_PIN); gpio_init(USER_BTN_PORT, GPIO_MODE_IPU, 0, USER_BTN_PIN); init_audio_gpio(); g_audio_enabled = true; } else if (g_zuluscsi_version == ZSVersion_v1_2) { // SCSI Select gpio_init(SCSI_ODE_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ODE_SEL_PIN); // General settings DIP switch gpio_init(V1_2_DIPSW_TERM_PORT, GPIO_MODE_IPD, 0, V1_2_DIPSW_TERM_PIN); gpio_init(V1_2_DIPSW_DBG_PORT, GPIO_MODE_IPD, 0, V1_2_DIPSW_DBG_PIN); gpio_init(V1_2_DIPSW_QUIRKS_PORT, GPIO_MODE_IPD, 0, V1_2_DIPSW_QUIRKS_PIN); // Direct/Raw Mode Select gpio_init(V1_2_DIPSW_DIRECT_MODE_PORT, GPIO_MODE_IPD, 0, V1_2_DIPSW_DIRECT_MODE_PIN); // SCSI ID dip switch gpio_init(DIPSW_SCSI_ID_BIT_PORT, GPIO_MODE_IPD, 0, DIPSW_SCSI_ID_BIT_PINS); // Device select BCD rotary DIP switch gpio_init(DIPROT_DEVICE_SEL_BIT_PORT, GPIO_MODE_IPD, 0, DIPROT_DEVICE_SEL_BIT_PINS); // Buttons gpio_init(EJECT_BTN_PORT, GPIO_MODE_IPU, 0, EJECT_BTN_PIN); gpio_init(USER_BTN_PORT, GPIO_MODE_IPU, 0, USER_BTN_PIN); LED_EJECT_OFF(); gpio_init(LED_EJECT_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, LED_EJECT_PIN); } #else // SCSI Select gpio_init(SCSI_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_SEL_PIN); // DIP switches gpio_init(DIP_PORT, GPIO_MODE_IPD, 0, DIPSW1_PIN | DIPSW2_PIN | DIPSW3_PIN); // Ejection buttons gpio_init(EJECT_1_PORT, GPIO_MODE_IPU, 0, EJECT_1_PIN); gpio_init(EJECT_2_PORT, GPIO_MODE_IPU, 0, EJECT_2_PIN); #endif // PLATFORM_VERSION_1_1_PLUS // LED pins gpio_bit_set(LED_PORT, LED_PINS); gpio_init(LED_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, LED_PINS); // SWO trace pin on PB3 gpio_init(GPIOB, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_3); } static void set_termination(uint32_t port, uint32_t pin, const char *switch_name) { if (gpio_input_bit_get(port, pin)) { logmsg(switch_name, " is ON: Enabling SCSI termination"); gpio_bit_reset(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN); } else { logmsg(switch_name, " is OFF: Disabling SCSI termination"); } } static bool get_debug(uint32_t port, uint32_t pin, const char *switch_name) { if (gpio_input_bit_get(port, pin)) { logmsg(switch_name, " is ON: Enabling debug messages"); return true; } logmsg(switch_name, " is OFF: Disabling debug messages"); return false; } static bool get_quirks(uint32_t port, uint32_t pin, const char *switch_name) { if (gpio_input_bit_get(port, pin)) { logmsg(switch_name, " is ON: Enabling Apple quirks by default"); return true; } logmsg(switch_name, " is OFF: Disabling Apple quirks mode by default"); return false; } #ifdef PLATFORM_VERSION_1_1_PLUS static bool get_direct_mode(uint32_t port, uint32_t pin, const char *switch_name) { if (!gpio_input_bit_get(port, pin)) { logmsg(switch_name, " is OFF: Enabling direct/raw mode"); return true; } logmsg(switch_name, " is ON: Disabling direct/raw mode"); return false; } #endif void platform_late_init() { // Initialize usb for CDC serial output usb_serial_init(); g_usb_log_poll_func = &usb_log_poll; logmsg("Platform: ", g_platform_name); logmsg("FW Version: ", g_log_firmwareversion); #ifdef PLATFORM_VERSION_1_1_PLUS if (ZSVersion_v1_1 == g_zuluscsi_version) { logmsg("Board Version: ZuluSCSI v1.1 Standard Edition"); set_termination(DIP_PORT, DIPSW3_PIN, "DIPSW3"); g_log_debug = get_debug(DIP_PORT, DIPSW2_PIN, "DIPSW2"); g_enable_apple_quirks = get_quirks(DIP_PORT, DIPSW1_PIN, "DIPSW1"); greenpak_load_firmware(); } else if (ZSVersion_v1_1_ODE == g_zuluscsi_version) { logmsg("Board Version: ZuluSCSI v1.1 ODE"); logmsg("ODE - Optical Drive Emulator"); set_termination(ODE_DIP_PORT, ODE_DIPSW3_PIN, "DIPSW3"); g_log_debug = get_debug(ODE_DIP_PORT, ODE_DIPSW2_PIN, "DIPSW2"); g_enable_apple_quirks = get_quirks(ODE_DIP_PORT, ODE_DIPSW1_PIN, "DIPSW1"); audio_setup(); } else if (ZSVersion_v1_2 == g_zuluscsi_version) { logmsg("Board Version: ZuluSCSI v1.2"); hw_config_init_gpios(); set_termination(V1_2_DIPSW_TERM_PORT, V1_2_DIPSW_TERM_PIN, "DIPSW4"); g_log_debug = get_debug(V1_2_DIPSW_DBG_PORT, V1_2_DIPSW_DBG_PIN, "DIPSW3"); g_direct_mode = get_direct_mode(V1_2_DIPSW_DIRECT_MODE_PORT, V1_2_DIPSW_DIRECT_MODE_PIN, "DIPSW2"); g_enable_apple_quirks = get_quirks(V1_2_DIPSW_QUIRKS_PORT, V1_2_DIPSW_QUIRKS_PIN, "DIPSW1"); hw_config_init_state(g_direct_mode); } #else // PLATFORM_VERSION_1_1_PLUS - ZuluSCSI v1.0 and v1.0 minis gpio config #ifdef ZULUSCSI_V1_0_mini logmsg("SCSI termination is always on"); #elif defined(ZULUSCSI_V1_0) set_termination(DIP_PORT, DIPSW3_PIN, "DIPSW3"); g_log_debug = get_debug(DIP_PORT, DIPSW2_PIN, "DIPSW2"); g_enable_apple_quirks = get_quirks(DIP_PORT, DIPSW1_PIN, "DIPSW1"); #endif // ZULUSCSI_V1_0_mini #endif // PLATFORM_VERSION_1_1_PLUS } void platform_post_sd_card_init() { #ifdef PLATFORM_VERSION_1_1_PLUS if (ZSVersion_v1_2 == g_zuluscsi_version && g_scsi_settings.getSystem()->enableCDAudio) { logmsg("Audio enabled - an external audio DAC is required on the I2S expansion header"); init_audio_gpio(); g_audio_enabled = true; audio_setup(); } #endif } void platform_write_led(bool state) { if (g_led_blinking) return; if (g_scsi_settings.getSystem()->invertStatusLed) state = !state; if (state) gpio_bit_reset(LED_PORT, LED_PINS); else gpio_bit_set(LED_PORT, LED_PINS); } void platform_set_blink_status(bool status) { g_led_blinking = status; } void platform_write_led_override(bool state) { if (g_scsi_settings.getSystem()->invertStatusLed) state = !state; if (state) gpio_bit_reset(LED_PORT, LED_PINS); else gpio_bit_set(LED_PORT, LED_PINS); } void platform_disable_led(void) { gpio_init(LED_PORT, GPIO_MODE_IPU, 0, LED_PINS); logmsg("Disabling status LED"); } uint8_t platform_no_sd_card_on_init_error_code() { return 0x80 | SD_CMD_RESP_TIMEOUT; } /*****************************************/ /* Supply voltage monitor */ /*****************************************/ // Use ADC to implement supply voltage monitoring for the +3.0V rail. // This works by sampling the Vrefint, which has // a voltage of 1.2 V, allowing to calculate the VDD voltage. static void adc_poll() { #if PLATFORM_VDD_WARNING_LIMIT_mV > 0 static bool initialized = false; static int lowest_vdd_seen = PLATFORM_VDD_WARNING_LIMIT_mV; if (!initialized) { rcu_periph_clock_enable(RCU_ADC0); adc_enable(ADC0); adc_calibration_enable(ADC0); adc_tempsensor_vrefint_enable(); adc_inserted_channel_config(ADC0, 0, ADC_CHANNEL_17, ADC_SAMPLETIME_239POINT5); adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL, ADC0_1_2_EXTTRIG_INSERTED_NONE); adc_external_trigger_config(ADC0, ADC_INSERTED_CHANNEL, ENABLE); adc_software_trigger_enable(ADC0, ADC_INSERTED_CHANNEL); initialized = true; } // Read previous result and start new one int adc_value = ADC_IDATA0(ADC0); adc_software_trigger_enable(ADC0, ADC_INSERTED_CHANNEL); // adc_value = 1200mV * 4096 / Vdd // => Vdd = 1200mV * 4096 / adc_value // To avoid wasting time on division, compare against // limit directly. const int limit = (1200 * 4096) / PLATFORM_VDD_WARNING_LIMIT_mV; if (adc_value > limit) { // Warn once, and then again if we detect even a lower drop. int vdd_mV = (1200 * 4096) / adc_value; if (vdd_mV < lowest_vdd_seen) { logmsg("WARNING: Detected supply voltage drop to ", vdd_mV, "mV. Verify power supply is adequate."); lowest_vdd_seen = vdd_mV - 50; // Small hysteresis to avoid excessive warnings } } #endif } /*****************************************/ /* Debug logging and watchdog */ /*****************************************/ // Send log data to USB UART if USB is connected. // Data is retrieved from the shared log ring buffer and // this function sends as much as fits in USB CDC buffer. static void usb_log_poll() { static uint32_t logpos = 0; if (usb_serial_ready()) { // Retrieve pointer to log start and determine number of bytes available. uint32_t available = 0; const char *data = log_get_buffer(&logpos, &available); // Limit to CDC packet size uint32_t len = available; if (len == 0) return; if (len > USB_CDC_DATA_PACKET_SIZE) len = USB_CDC_DATA_PACKET_SIZE; // Update log position by the actual number of bytes sent // If USB CDC buffer is full, this may be 0 usb_serial_send((uint8_t*)data, len); logpos -= available - len; } } /*****************************************/ /* Crash handlers */ /*****************************************/ // Writes log data to the PB3 SWO pin void platform_log(const char *s) { while (*s) { // Write to SWO pin while (ITM->PORT[0].u32 == 0); ITM->PORT[0].u8 = *s++; } } void platform_emergency_log_save() { if (g_rawdrive_active) return; #ifdef ZULUSCSI_HARDWARE_CONFIG if (g_hw_config.is_active()) return; #endif platform_set_sd_callback(NULL, NULL); SD.begin(SD_CONFIG_CRASH); FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC); if (!crashfile.isOpen()) { // Try to reinitialize int max_retry = 10; while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH)); crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC); } uint32_t startpos = 0; crashfile.write(log_get_buffer(&startpos)); crashfile.write(log_get_buffer(&startpos)); crashfile.flush(); crashfile.close(); } extern uint32_t _estack; __attribute__((noinline)) void show_hardfault(uint32_t *sp) { uint32_t pc = sp[6]; uint32_t lr = sp[5]; uint32_t cfsr = SCB->CFSR; logmsg("--------------"); logmsg("CRASH!"); logmsg("Platform: ", g_platform_name); logmsg("FW Version: ", g_log_firmwareversion); logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12)); logmsg("scsiDev.phase: ", (int)scsiDev.phase); logmsg("CFSR: ", cfsr); logmsg("SP: ", (uint32_t)sp); logmsg("PC: ", pc); logmsg("LR: ", lr); logmsg("R0: ", sp[0]); logmsg("R1: ", sp[1]); logmsg("R2: ", sp[2]); logmsg("R3: ", sp[3]); uint32_t *p = (uint32_t*)((uint32_t)sp & ~3); for (int i = 0; i < 8; i++) { if (p == &_estack) break; // End of stack logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]); p += 4; } platform_emergency_log_save(); while (1) { if (g_usb_log_poll_func) g_usb_log_poll_func(); // Flash the crash address on the LED // Short pulse means 0, long pulse means 1 int base_delay = 1000; for (int i = 31; i >= 0; i--) { LED_OFF(); for (int j = 0; j < base_delay; j++) delay_ns(100000); int delay = (pc & (1 << i)) ? (3 * base_delay) : base_delay; LED_ON(); for (int j = 0; j < delay; j++) delay_ns(100000); LED_OFF(); } for (int j = 0; j < base_delay * 10; j++) delay_ns(100000); } } __attribute__((naked, interrupt)) void HardFault_Handler(void) { // Copies stack pointer into first argument asm("mrs r0, msp\n" "b show_hardfault": : : "r0"); } __attribute__((naked, interrupt)) void MemManage_Handler(void) { asm("mrs r0, msp\n" "b show_hardfault": : : "r0"); } __attribute__((naked, interrupt)) void BusFault_Handler(void) { asm("mrs r0, msp\n" "b show_hardfault": : : "r0"); } __attribute__((naked, interrupt)) void UsageFault_Handler(void) { asm("mrs r0, msp\n" "b show_hardfault": : : "r0"); } void __assert_func(const char *file, int line, const char *func, const char *expr) { uint32_t dummy = 0; logmsg("--------------"); logmsg("ASSERT FAILED!"); logmsg("Platform: ", g_platform_name); logmsg("FW Version: ", g_log_firmwareversion); logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12)); logmsg("scsiDev.phase: ", (int)scsiDev.phase); logmsg("Assert failed: ", file , ":", line, " in ", func, ":", expr); uint32_t *p = (uint32_t*)((uint32_t)&dummy & ~3); for (int i = 0; i < 8; i++) { if (p == &_estack) break; // End of stack logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]); p += 4; } platform_emergency_log_save(); while(1) { if (g_usb_log_poll_func) g_usb_log_poll_func(); LED_OFF(); for (int j = 0; j < 1000; j++) delay_ns(100000); LED_ON(); for (int j = 0; j < 1000; j++) delay_ns(100000); } } } /* extern "C" */ static void watchdog_handler(uint32_t *sp) { logmsg("-------------- WATCHDOG TIMEOUT"); show_hardfault(sp); } void platform_reset_watchdog() { // This uses a software watchdog based on systick timer interrupt. // It gives us opportunity to collect better debug info than the // full hardware reset that would be caused by hardware watchdog. g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT; // USB log is polled here also to make sure any log messages in fault states // get passed to USB. usb_log_poll(); } void platform_reset_mcu() { // reset in 2 sec ( 1 / (40KHz / 32) * 2500 == 2sec) fwdgt_config(2500, FWDGT_PSC_DIV32); fwdgt_enable(); } // Poll function that is called every few milliseconds. // Can be left empty or used for platform-specific processing. void platform_poll() { #ifdef ENABLE_AUDIO_OUTPUT audio_poll(); #endif adc_poll(); usb_log_poll(); } uint8_t platform_get_buttons() { // Buttons are active low: internal pull-up is enabled, // and when button is pressed the pin goes low. uint8_t buttons = 0; #ifdef PLATFORM_VERSION_1_1_PLUS if (g_zuluscsi_version == ZSVersion_v1_1_ODE || g_zuluscsi_version == ZSVersion_v1_2) { if (!gpio_input_bit_get(EJECT_BTN_PORT, EJECT_BTN_PIN)) buttons |= 1; if (!gpio_input_bit_get(USER_BTN_PORT, USER_BTN_PIN)) buttons |= 4; } else { if (!gpio_input_bit_get(EJECT_1_PORT, EJECT_1_PIN)) buttons |= 1; if (!gpio_input_bit_get(EJECT_2_PORT, EJECT_2_PIN)) buttons |= 2; } #else if (!gpio_input_bit_get(EJECT_1_PORT, EJECT_1_PIN)) buttons |= 1; if (!gpio_input_bit_get(EJECT_2_PORT, EJECT_2_PIN)) buttons |= 2; #endif // Simple debouncing logic: handle button releases after 100 ms delay. static uint32_t debounce; static uint8_t buttons_debounced = 0; if (buttons != 0) { buttons_debounced = buttons; debounce = millis(); } else if ((uint32_t)(millis() - debounce) > 100) { buttons_debounced = 0; } #ifdef PLATFORM_VERSION_1_1_PLUS if(g_zuluscsi_version == ZSVersion_v1_1_ODE || g_zuluscsi_version == ZSVersion_v1_2) { static uint8_t previous = 0x00; uint8_t bitmask = buttons_debounced & USER_BTN_MASK; uint8_t ejectors = (previous ^ bitmask) & previous; previous = bitmask; if (ejectors & USER_BTN_MASK) { logmsg("User button pressed - feature not yet implemented"); } } #endif return buttons_debounced; } bool platform_has_phy_eject_button() { return g_zuluscsi_version == ZSVersion_v1_1_ODE || g_zuluscsi_version == ZSVersion_v1_2; } /***********************/ /* Flash reprogramming */ /***********************/ bool platform_rewrite_flash_page(uint32_t offset, uint8_t buffer[PLATFORM_FLASH_PAGE_SIZE]) { if (offset == 0) { if (buffer[3] != 0x20 || buffer[7] != 0x08) { logmsg("Invalid firmware file, starts with: ", bytearray(buffer, 16)); return false; } } dbgmsg("Writing flash at offset ", offset, " data ", bytearray(buffer, 4)); assert(offset % PLATFORM_FLASH_PAGE_SIZE == 0); assert(offset >= PLATFORM_BOOTLOADER_SIZE); fmc_unlock(); fmc_bank0_unlock(); fmc_state_enum status; status = fmc_page_erase(FLASH_BASE + offset); if (status != FMC_READY) { logmsg("Erase failed: ", (int)status); return false; } uint32_t *buf32 = (uint32_t*)buffer; uint32_t num_words = PLATFORM_FLASH_PAGE_SIZE / 4; for (int i = 0; i < num_words; i++) { status = fmc_word_program(FLASH_BASE + offset + i * 4, buf32[i]); if (status != FMC_READY) { logmsg("Flash write failed: ", (int)status); return false; } } fmc_lock(); for (int i = 0; i < num_words; i++) { uint32_t expected = buf32[i]; uint32_t actual = *(volatile uint32_t*)(FLASH_BASE + offset + i * 4); if (actual != expected) { logmsg("Flash verify failed at offset ", offset + i * 4, " got ", actual, " expected ", expected); return false; } } return true; } void platform_boot_to_main_firmware() { uint32_t *mainprogram_start = (uint32_t*)(0x08000000 + PLATFORM_BOOTLOADER_SIZE); SCB->VTOR = (uint32_t)mainprogram_start; __asm__( "msr msp, %0\n\t" "bx %1" : : "r" (mainprogram_start[0]), "r" (mainprogram_start[1]) : "memory"); } /**************************************/ /* SCSI configuration based on DIPSW1 */ /**************************************/ void platform_config_hook(S2S_TargetCfg *config) { // Enable Apple quirks by dip switch if (g_enable_apple_quirks) { if (config->quirks == S2S_CFG_QUIRKS_NONE) { config->quirks = S2S_CFG_QUIRKS_APPLE; } } } /**********************************************/ /* Mapping from data bytes to GPIO BOP values */ /**********************************************/ #define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1) #define X(n) (\ ((n & 0x01) ? (SCSI_OUT_DB0 << 16) : SCSI_OUT_DB0) | \ ((n & 0x02) ? (SCSI_OUT_DB1 << 16) : SCSI_OUT_DB1) | \ ((n & 0x04) ? (SCSI_OUT_DB2 << 16) : SCSI_OUT_DB2) | \ ((n & 0x08) ? (SCSI_OUT_DB3 << 16) : SCSI_OUT_DB3) | \ ((n & 0x10) ? (SCSI_OUT_DB4 << 16) : SCSI_OUT_DB4) | \ ((n & 0x20) ? (SCSI_OUT_DB5 << 16) : SCSI_OUT_DB5) | \ ((n & 0x40) ? (SCSI_OUT_DB6 << 16) : SCSI_OUT_DB6) | \ ((n & 0x80) ? (SCSI_OUT_DB7 << 16) : SCSI_OUT_DB7) | \ (PARITY(n) ? (SCSI_OUT_DBP << 16) : SCSI_OUT_DBP) | \ (SCSI_OUT_REQ) \ ) const uint32_t g_scsi_out_byte_to_bop[256] = { X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f), X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f), X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f), X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f), X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f), X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f), X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f), X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f), X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f), X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f), X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf), X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf), X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf), X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf), X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef), X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff) }; #undef X