/**
* ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
*
* ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version.
*
* https://www.gnu.org/licenses/gpl-3.0.html
* ----
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
**/
#include "ZuluSCSI_platform.h"
#include "gd32f20x_sdio.h"
#include "gd32f20x_fmc.h"
#include "gd32f20x_fwdgt.h"
#include "gd32_sdio_sdcard.h"
#include "ZuluSCSI_log.h"
#include "ZuluSCSI_config.h"
#include "usbd_conf.h"
#include "usb_serial.h"
#include "greenpak.h"
#include
#include
#include
#include
#include
#include
extern SdFs SD;
extern bool g_rawdrive_active;
extern "C" {
const char *g_platform_name = PLATFORM_NAME;
static bool g_enable_apple_quirks = false;
bool g_direct_mode = false;
ZuluSCSIVersion_t g_zuluscsi_version = ZSVersion_unknown;
bool g_moved_select_in = false;
static bool g_led_blinking = false;
// hw_config.cpp c functions
#include "platform_hw_config.h"
// usb_log_poll() is called through function pointer to
// avoid including USB in SD card bootloader.
static void (*g_usb_log_poll_func)(void);
static void usb_log_poll();
/*************************/
/* Timing functions */
/*************************/
static volatile uint32_t g_millisecond_counter;
static volatile uint32_t g_watchdog_timeout;
static uint32_t g_ns_to_cycles; // Q0.32 fixed point format
static void watchdog_handler(uint32_t *sp);
unsigned long millis()
{
return g_millisecond_counter;
}
void delay(unsigned long ms)
{
uint32_t start = g_millisecond_counter;
while ((uint32_t)(g_millisecond_counter - start) < ms);
}
void delay_ns(unsigned long ns)
{
uint32_t CNT_start = DWT->CYCCNT;
if (ns <= 100) return; // Approximate call overhead
ns -= 100;
uint32_t cycles = ((uint64_t)ns * g_ns_to_cycles) >> 32;
while ((uint32_t)(DWT->CYCCNT - CNT_start) < cycles);
}
void SysTick_Handler_inner(uint32_t *sp)
{
g_millisecond_counter++;
if (g_watchdog_timeout > 0)
{
g_watchdog_timeout--;
const uint32_t busreset_time = WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT;
if (g_watchdog_timeout <= busreset_time)
{
if (!scsiDev.resetFlag)
{
logmsg("WATCHDOG TIMEOUT at PC ", sp[6], " LR ", sp[5], " attempting bus reset");
scsiDev.resetFlag = 1;
}
if (g_watchdog_timeout == 0)
{
watchdog_handler(sp);
}
}
}
}
__attribute__((interrupt, naked))
void SysTick_Handler(void)
{
// Take note of stack pointer so that we can print debug
// info in watchdog handler.
asm("mrs r0, msp\n"
"b SysTick_Handler_inner": : : "r0");
}
// This function is called by scsiPhy.cpp.
// It resets the systick counter to give 1 millisecond of uninterrupted transfer time.
// The total number of skips is kept track of to keep the correct time on average.
void SysTick_Handle_PreEmptively()
{
static int skipped_clocks = 0;
__disable_irq();
uint32_t loadval = SysTick->LOAD;
skipped_clocks += loadval - SysTick->VAL;
SysTick->VAL = 0;
if (skipped_clocks > loadval)
{
// We have skipped enough ticks that it is time to fake a call
// to SysTick interrupt handler.
skipped_clocks -= loadval;
uint32_t stack_frame[8] = {0};
stack_frame[6] = (uint32_t)__builtin_return_address(0);
SysTick_Handler_inner(stack_frame);
}
__enable_irq();
}
uint32_t platform_sys_clock_in_hz()
{
return rcu_clock_freq_get(CK_SYS);
}
/***************/
/* GPIO init */
/***************/
#ifdef PLATFORM_VERSION_1_1_PLUS
static void init_audio_gpio()
{
gpio_pin_remap1_config(GPIO_PCF5, GPIO_PCF5_SPI1_IO_REMAP1, ENABLE);
gpio_pin_remap1_config(GPIO_PCF5, GPIO_PCF5_SPI1_NSCK_REMAP1, ENABLE);
gpio_pin_remap1_config(GPIO_PCF4, GPIO_PCF4_SPI1_SCK_PD3_REMAP, ENABLE);
gpio_init(I2S_CK_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, I2S_CK_PIN);
gpio_init(I2S_SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, I2S_SD_PIN);
gpio_init(I2S_WS_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, I2S_WS_PIN);
}
#endif
// Method of determining whichi scsi board is being used
static ZuluSCSIVersion_t get_zuluscsi_version()
{
#ifdef DIGITAL_VERSION_DETECT_PORT
bool pull_down;
bool pull_up;
gpio_init(DIGITAL_VERSION_DETECT_PORT, GPIO_MODE_IPU, 0, DIGITAL_VERSION_DETECT_PIN);
delay_us(10);
pull_up = SET == gpio_input_bit_get(DIGITAL_VERSION_DETECT_PORT, DIGITAL_VERSION_DETECT_PIN);
gpio_init(DIGITAL_VERSION_DETECT_PORT, GPIO_MODE_IPD, 0, DIGITAL_VERSION_DETECT_PIN);
delay_us(10);
pull_down = RESET == gpio_input_bit_get(DIGITAL_VERSION_DETECT_PORT, DIGITAL_VERSION_DETECT_PIN);
if (pull_up && pull_down)
return ZSVersion_v1_1;
if (pull_down && !pull_up)
return ZSVersion_v1_1_ODE;
if (pull_up && !pull_down)
{
return ZSVersion_v1_2;
}
#endif // DIGITAL_DETECT_VERSION
return ZSVersion_unknown;
}
// Initialize SPI and GPIO configuration
// Clock has already been initialized by system_gd32f20x.c
void platform_init()
{
SystemCoreClockUpdate();
// Enable SysTick to drive millis()
g_millisecond_counter = 0;
SysTick_Config(SystemCoreClock / 1000U);
NVIC_SetPriority(SysTick_IRQn, 0x00U);
// Enable DWT counter to drive delay_ns()
g_ns_to_cycles = ((uint64_t)SystemCoreClock << 32) / 1000000000;
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
// Enable debug output on SWO pin
DBG_CTL |= DBG_CTL_TRACE_IOEN;
if (TPI->ACPR == 0)
{
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
TPI->ACPR = SystemCoreClock / 2000000 - 1; // 2 Mbps baudrate for SWO
// TPI->ACPR = SystemCoreClock / 30000000 - 1; // 30 Mbps baudrate for SWO
TPI->SPPR = 2;
TPI->FFCR = 0x100; // TPIU packet framing disabled
// DWT->CTRL |= (1 << DWT_CTRL_EXCTRCENA_Pos);
// DWT->CTRL |= (1 << DWT_CTRL_CYCTAP_Pos)
// | (15 << DWT_CTRL_POSTPRESET_Pos)
// | (1 << DWT_CTRL_PCSAMPLENA_Pos)
// | (3 << DWT_CTRL_SYNCTAP_Pos)
// | (1 << DWT_CTRL_CYCCNTENA_Pos);
ITM->LAR = 0xC5ACCE55;
ITM->TCR = (1 << ITM_TCR_DWTENA_Pos)
| (1 << ITM_TCR_SYNCENA_Pos)
| (1 << ITM_TCR_ITMENA_Pos);
ITM->TER = 0xFFFFFFFF; // Enable all stimulus ports
}
// Enable needed clocks for GPIO
rcu_periph_clock_enable(RCU_AF);
rcu_periph_clock_enable(RCU_GPIOA);
rcu_periph_clock_enable(RCU_GPIOB);
rcu_periph_clock_enable(RCU_GPIOC);
rcu_periph_clock_enable(RCU_GPIOD);
rcu_periph_clock_enable(RCU_GPIOE);
// Switch to SWD debug port (disable JTAG) to release PB4 as GPIO
gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP, ENABLE);
// SCSI pins.
// Initialize open drain outputs to high.
SCSI_RELEASE_OUTPUTS();
// determine the ZulusSCSI board version
g_zuluscsi_version = get_zuluscsi_version();
g_moved_select_in = g_zuluscsi_version == ZSVersion_v1_1_ODE || g_zuluscsi_version == ZSVersion_v1_2;
// Init SCSI pins GPIOs
gpio_init(SCSI_OUT_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_DATA_MASK | SCSI_OUT_REQ);
gpio_init(SCSI_OUT_IO_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_IO_PIN);
gpio_init(SCSI_OUT_CD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_CD_PIN);
gpio_init(SCSI_OUT_SEL_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_SEL_PIN);
gpio_init(SCSI_OUT_MSG_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_MSG_PIN);
gpio_init(SCSI_OUT_RST_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_RST_PIN);
gpio_init(SCSI_OUT_BSY_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_BSY_PIN);
gpio_init(SCSI_IN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_IN_MASK);
gpio_init(SCSI_ATN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ATN_PIN);
gpio_init(SCSI_BSY_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_BSY_PIN);
gpio_init(SCSI_ACK_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ACK_PIN);
gpio_init(SCSI_RST_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_RST_PIN);
// Terminator enable
gpio_bit_set(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
gpio_init(SCSI_TERM_EN_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, SCSI_TERM_EN_PIN);
#ifndef SD_USE_SDIO
// SD card pins using SPI
gpio_init(SD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SD_CS_PIN);
gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_CLK_PIN);
gpio_init(SD_PORT, GPIO_MODE_IPU, 0, SD_MISO_PIN);
gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_MOSI_PIN);
#else
// SD card pins using SDIO
gpio_init(SD_SDIO_DATA_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_SDIO_D0 | SD_SDIO_D1 | SD_SDIO_D2 | SD_SDIO_D3);
gpio_init(SD_SDIO_CLK_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_SDIO_CLK);
gpio_init(SD_SDIO_CMD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_SDIO_CMD);
#endif
#ifdef PLATFORM_VERSION_1_1_PLUS
if (g_zuluscsi_version == ZSVersion_v1_1)
{
// SCSI Select
gpio_init(SCSI_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_SEL_PIN);
// DIP switches
gpio_init(DIP_PORT, GPIO_MODE_IPD, 0, DIPSW1_PIN | DIPSW2_PIN | DIPSW3_PIN);
gpio_init(EJECT_1_PORT, GPIO_MODE_IPU, 0, EJECT_1_PIN);
gpio_init(EJECT_2_PORT, GPIO_MODE_IPU, 0, EJECT_2_PIN);
}
else if (g_zuluscsi_version == ZSVersion_v1_1_ODE)
{
// SCSI Select
gpio_init(SCSI_ODE_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ODE_SEL_PIN);
// DIP switches
gpio_init(ODE_DIP_PORT, GPIO_MODE_IPD, 0, ODE_DIPSW1_PIN | ODE_DIPSW2_PIN | ODE_DIPSW3_PIN);
// Buttons
gpio_init(EJECT_BTN_PORT, GPIO_MODE_IPU, 0, EJECT_BTN_PIN);
gpio_init(USER_BTN_PORT, GPIO_MODE_IPU, 0, USER_BTN_PIN);
init_audio_gpio();
g_audio_enabled = true;
}
else if (g_zuluscsi_version == ZSVersion_v1_2)
{
// SCSI Select
gpio_init(SCSI_ODE_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ODE_SEL_PIN);
// General settings DIP switch
gpio_init(V1_2_DIPSW_TERM_PORT, GPIO_MODE_IPD, 0, V1_2_DIPSW_TERM_PIN);
gpio_init(V1_2_DIPSW_DBG_PORT, GPIO_MODE_IPD, 0, V1_2_DIPSW_DBG_PIN);
gpio_init(V1_2_DIPSW_QUIRKS_PORT, GPIO_MODE_IPD, 0, V1_2_DIPSW_QUIRKS_PIN);
// Direct/Raw Mode Select
gpio_init(V1_2_DIPSW_DIRECT_MODE_PORT, GPIO_MODE_IPD, 0, V1_2_DIPSW_DIRECT_MODE_PIN);
// SCSI ID dip switch
gpio_init(DIPSW_SCSI_ID_BIT_PORT, GPIO_MODE_IPD, 0, DIPSW_SCSI_ID_BIT_PINS);
// Device select BCD rotary DIP switch
gpio_init(DIPROT_DEVICE_SEL_BIT_PORT, GPIO_MODE_IPD, 0, DIPROT_DEVICE_SEL_BIT_PINS);
// Buttons
gpio_init(EJECT_BTN_PORT, GPIO_MODE_IPU, 0, EJECT_BTN_PIN);
gpio_init(USER_BTN_PORT, GPIO_MODE_IPU, 0, USER_BTN_PIN);
LED_EJECT_OFF();
gpio_init(LED_EJECT_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, LED_EJECT_PIN);
}
#else
// SCSI Select
gpio_init(SCSI_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_SEL_PIN);
// DIP switches
gpio_init(DIP_PORT, GPIO_MODE_IPD, 0, DIPSW1_PIN | DIPSW2_PIN | DIPSW3_PIN);
// Ejection buttons
gpio_init(EJECT_1_PORT, GPIO_MODE_IPU, 0, EJECT_1_PIN);
gpio_init(EJECT_2_PORT, GPIO_MODE_IPU, 0, EJECT_2_PIN);
#endif // PLATFORM_VERSION_1_1_PLUS
// LED pins
gpio_bit_set(LED_PORT, LED_PINS);
gpio_init(LED_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, LED_PINS);
// SWO trace pin on PB3
gpio_init(GPIOB, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_3);
}
static void set_termination(uint32_t port, uint32_t pin, const char *switch_name)
{
if (gpio_input_bit_get(port, pin))
{
logmsg(switch_name, " is ON: Enabling SCSI termination");
gpio_bit_reset(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
}
else
{
logmsg(switch_name, " is OFF: Disabling SCSI termination");
}
}
static bool get_debug(uint32_t port, uint32_t pin, const char *switch_name)
{
if (gpio_input_bit_get(port, pin))
{
logmsg(switch_name, " is ON: Enabling debug messages");
return true;
}
logmsg(switch_name, " is OFF: Disabling debug messages");
return false;
}
static bool get_quirks(uint32_t port, uint32_t pin, const char *switch_name)
{
if (gpio_input_bit_get(port, pin))
{
logmsg(switch_name, " is ON: Enabling Apple quirks by default");
return true;
}
logmsg(switch_name, " is OFF: Disabling Apple quirks mode by default");
return false;
}
#ifdef PLATFORM_VERSION_1_1_PLUS
static bool get_direct_mode(uint32_t port, uint32_t pin, const char *switch_name)
{
if (!gpio_input_bit_get(port, pin))
{
logmsg(switch_name, " is OFF: Enabling direct/raw mode");
return true;
}
logmsg(switch_name, " is ON: Disabling direct/raw mode");
return false;
}
#endif
void platform_late_init()
{
// Initialize usb for CDC serial output
usb_serial_init();
g_usb_log_poll_func = &usb_log_poll;
logmsg("Platform: ", g_platform_name);
logmsg("FW Version: ", g_log_firmwareversion);
#ifdef PLATFORM_VERSION_1_1_PLUS
if (ZSVersion_v1_1 == g_zuluscsi_version)
{
logmsg("Board Version: ZuluSCSI v1.1 Standard Edition");
set_termination(DIP_PORT, DIPSW3_PIN, "DIPSW3");
g_log_debug = get_debug(DIP_PORT, DIPSW2_PIN, "DIPSW2");
g_enable_apple_quirks = get_quirks(DIP_PORT, DIPSW1_PIN, "DIPSW1");
greenpak_load_firmware();
}
else if (ZSVersion_v1_1_ODE == g_zuluscsi_version)
{
logmsg("Board Version: ZuluSCSI v1.1 ODE");
logmsg("ODE - Optical Drive Emulator");
set_termination(ODE_DIP_PORT, ODE_DIPSW3_PIN, "DIPSW3");
g_log_debug = get_debug(ODE_DIP_PORT, ODE_DIPSW2_PIN, "DIPSW2");
g_enable_apple_quirks = get_quirks(ODE_DIP_PORT, ODE_DIPSW1_PIN, "DIPSW1");
audio_setup();
}
else if (ZSVersion_v1_2 == g_zuluscsi_version)
{
logmsg("Board Version: ZuluSCSI v1.2");
hw_config_init_gpios();
set_termination(V1_2_DIPSW_TERM_PORT, V1_2_DIPSW_TERM_PIN, "DIPSW4");
g_log_debug = get_debug(V1_2_DIPSW_DBG_PORT, V1_2_DIPSW_DBG_PIN, "DIPSW3");
g_direct_mode = get_direct_mode(V1_2_DIPSW_DIRECT_MODE_PORT, V1_2_DIPSW_DIRECT_MODE_PIN, "DIPSW2");
g_enable_apple_quirks = get_quirks(V1_2_DIPSW_QUIRKS_PORT, V1_2_DIPSW_QUIRKS_PIN, "DIPSW1");
hw_config_init_state(g_direct_mode);
}
#else // PLATFORM_VERSION_1_1_PLUS - ZuluSCSI v1.0 and v1.0 minis gpio config
#ifdef ZULUSCSI_V1_0_mini
logmsg("SCSI termination is always on");
#elif defined(ZULUSCSI_V1_0)
set_termination(DIP_PORT, DIPSW3_PIN, "DIPSW3");
g_log_debug = get_debug(DIP_PORT, DIPSW2_PIN, "DIPSW2");
g_enable_apple_quirks = get_quirks(DIP_PORT, DIPSW1_PIN, "DIPSW1");
#endif // ZULUSCSI_V1_0_mini
#endif // PLATFORM_VERSION_1_1_PLUS
}
void platform_post_sd_card_init()
{
#ifdef PLATFORM_VERSION_1_1_PLUS
if (ZSVersion_v1_2 == g_zuluscsi_version && g_scsi_settings.getSystem()->enableCDAudio)
{
logmsg("Audio enabled - an external audio DAC is required on the I2S expansion header");
init_audio_gpio();
g_audio_enabled = true;
audio_setup();
}
#endif
}
void platform_write_led(bool state)
{
if (g_led_blinking) return;
if (g_scsi_settings.getSystem()->invertStatusLed)
state = !state;
if (state)
gpio_bit_reset(LED_PORT, LED_PINS);
else
gpio_bit_set(LED_PORT, LED_PINS);
}
void platform_set_blink_status(bool status)
{
g_led_blinking = status;
}
void platform_write_led_override(bool state)
{
if (g_scsi_settings.getSystem()->invertStatusLed)
state = !state;
if (state)
gpio_bit_reset(LED_PORT, LED_PINS);
else
gpio_bit_set(LED_PORT, LED_PINS);
}
void platform_disable_led(void)
{
gpio_init(LED_PORT, GPIO_MODE_IPU, 0, LED_PINS);
logmsg("Disabling status LED");
}
uint8_t platform_no_sd_card_on_init_error_code()
{
return 0x80 | SD_CMD_RESP_TIMEOUT;
}
/*****************************************/
/* Supply voltage monitor */
/*****************************************/
// Use ADC to implement supply voltage monitoring for the +3.0V rail.
// This works by sampling the Vrefint, which has
// a voltage of 1.2 V, allowing to calculate the VDD voltage.
static void adc_poll()
{
#if PLATFORM_VDD_WARNING_LIMIT_mV > 0
static bool initialized = false;
static int lowest_vdd_seen = PLATFORM_VDD_WARNING_LIMIT_mV;
if (!initialized)
{
rcu_periph_clock_enable(RCU_ADC0);
adc_enable(ADC0);
adc_calibration_enable(ADC0);
adc_tempsensor_vrefint_enable();
adc_inserted_channel_config(ADC0, 0, ADC_CHANNEL_17, ADC_SAMPLETIME_239POINT5);
adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL, ADC0_1_2_EXTTRIG_INSERTED_NONE);
adc_external_trigger_config(ADC0, ADC_INSERTED_CHANNEL, ENABLE);
adc_software_trigger_enable(ADC0, ADC_INSERTED_CHANNEL);
initialized = true;
}
// Read previous result and start new one
int adc_value = ADC_IDATA0(ADC0);
adc_software_trigger_enable(ADC0, ADC_INSERTED_CHANNEL);
// adc_value = 1200mV * 4096 / Vdd
// => Vdd = 1200mV * 4096 / adc_value
// To avoid wasting time on division, compare against
// limit directly.
const int limit = (1200 * 4096) / PLATFORM_VDD_WARNING_LIMIT_mV;
if (adc_value > limit)
{
// Warn once, and then again if we detect even a lower drop.
int vdd_mV = (1200 * 4096) / adc_value;
if (vdd_mV < lowest_vdd_seen)
{
logmsg("WARNING: Detected supply voltage drop to ", vdd_mV, "mV. Verify power supply is adequate.");
lowest_vdd_seen = vdd_mV - 50; // Small hysteresis to avoid excessive warnings
}
}
#endif
}
/*****************************************/
/* Debug logging and watchdog */
/*****************************************/
// Send log data to USB UART if USB is connected.
// Data is retrieved from the shared log ring buffer and
// this function sends as much as fits in USB CDC buffer.
static void usb_log_poll()
{
static uint32_t logpos = 0;
if (usb_serial_ready())
{
// Retrieve pointer to log start and determine number of bytes available.
uint32_t available = 0;
const char *data = log_get_buffer(&logpos, &available);
// Limit to CDC packet size
uint32_t len = available;
if (len == 0) return;
if (len > USB_CDC_DATA_PACKET_SIZE) len = USB_CDC_DATA_PACKET_SIZE;
// Update log position by the actual number of bytes sent
// If USB CDC buffer is full, this may be 0
usb_serial_send((uint8_t*)data, len);
logpos -= available - len;
}
}
/*****************************************/
/* Crash handlers */
/*****************************************/
// Writes log data to the PB3 SWO pin
void platform_log(const char *s)
{
while (*s)
{
// Write to SWO pin
while (ITM->PORT[0].u32 == 0);
ITM->PORT[0].u8 = *s++;
}
}
void platform_emergency_log_save()
{
if (g_rawdrive_active)
return;
#ifdef ZULUSCSI_HARDWARE_CONFIG
if (g_hw_config.is_active())
return;
#endif
platform_set_sd_callback(NULL, NULL);
SD.begin(SD_CONFIG_CRASH);
FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
if (!crashfile.isOpen())
{
// Try to reinitialize
int max_retry = 10;
while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH));
crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
}
uint32_t startpos = 0;
crashfile.write(log_get_buffer(&startpos));
crashfile.write(log_get_buffer(&startpos));
crashfile.flush();
crashfile.close();
}
extern uint32_t _estack;
__attribute__((noinline))
void show_hardfault(uint32_t *sp)
{
uint32_t pc = sp[6];
uint32_t lr = sp[5];
uint32_t cfsr = SCB->CFSR;
logmsg("--------------");
logmsg("CRASH!");
logmsg("Platform: ", g_platform_name);
logmsg("FW Version: ", g_log_firmwareversion);
logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
logmsg("scsiDev.phase: ", (int)scsiDev.phase);
logmsg("CFSR: ", cfsr);
logmsg("SP: ", (uint32_t)sp);
logmsg("PC: ", pc);
logmsg("LR: ", lr);
logmsg("R0: ", sp[0]);
logmsg("R1: ", sp[1]);
logmsg("R2: ", sp[2]);
logmsg("R3: ", sp[3]);
uint32_t *p = (uint32_t*)((uint32_t)sp & ~3);
for (int i = 0; i < 8; i++)
{
if (p == &_estack) break; // End of stack
logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
p += 4;
}
platform_emergency_log_save();
while (1)
{
if (g_usb_log_poll_func) g_usb_log_poll_func();
// Flash the crash address on the LED
// Short pulse means 0, long pulse means 1
int base_delay = 1000;
for (int i = 31; i >= 0; i--)
{
LED_OFF();
for (int j = 0; j < base_delay; j++) delay_ns(100000);
int delay = (pc & (1 << i)) ? (3 * base_delay) : base_delay;
LED_ON();
for (int j = 0; j < delay; j++) delay_ns(100000);
LED_OFF();
}
for (int j = 0; j < base_delay * 10; j++) delay_ns(100000);
}
}
__attribute__((naked, interrupt))
void HardFault_Handler(void)
{
// Copies stack pointer into first argument
asm("mrs r0, msp\n"
"b show_hardfault": : : "r0");
}
__attribute__((naked, interrupt))
void MemManage_Handler(void)
{
asm("mrs r0, msp\n"
"b show_hardfault": : : "r0");
}
__attribute__((naked, interrupt))
void BusFault_Handler(void)
{
asm("mrs r0, msp\n"
"b show_hardfault": : : "r0");
}
__attribute__((naked, interrupt))
void UsageFault_Handler(void)
{
asm("mrs r0, msp\n"
"b show_hardfault": : : "r0");
}
void __assert_func(const char *file, int line, const char *func, const char *expr)
{
uint32_t dummy = 0;
logmsg("--------------");
logmsg("ASSERT FAILED!");
logmsg("Platform: ", g_platform_name);
logmsg("FW Version: ", g_log_firmwareversion);
logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
logmsg("scsiDev.phase: ", (int)scsiDev.phase);
logmsg("Assert failed: ", file , ":", line, " in ", func, ":", expr);
uint32_t *p = (uint32_t*)((uint32_t)&dummy & ~3);
for (int i = 0; i < 8; i++)
{
if (p == &_estack) break; // End of stack
logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
p += 4;
}
platform_emergency_log_save();
while(1)
{
if (g_usb_log_poll_func) g_usb_log_poll_func();
LED_OFF();
for (int j = 0; j < 1000; j++) delay_ns(100000);
LED_ON();
for (int j = 0; j < 1000; j++) delay_ns(100000);
}
}
} /* extern "C" */
static void watchdog_handler(uint32_t *sp)
{
logmsg("-------------- WATCHDOG TIMEOUT");
show_hardfault(sp);
}
void platform_reset_watchdog()
{
// This uses a software watchdog based on systick timer interrupt.
// It gives us opportunity to collect better debug info than the
// full hardware reset that would be caused by hardware watchdog.
g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT;
// USB log is polled here also to make sure any log messages in fault states
// get passed to USB.
usb_log_poll();
}
void platform_reset_mcu()
{
// reset in 2 sec ( 1 / (40KHz / 32) * 2500 == 2sec)
fwdgt_config(2500, FWDGT_PSC_DIV32);
fwdgt_enable();
}
// Poll function that is called every few milliseconds.
// Can be left empty or used for platform-specific processing.
void platform_poll()
{
#ifdef ENABLE_AUDIO_OUTPUT
audio_poll();
#endif
adc_poll();
usb_log_poll();
}
uint8_t platform_get_buttons()
{
// Buttons are active low: internal pull-up is enabled,
// and when button is pressed the pin goes low.
uint8_t buttons = 0;
#ifdef PLATFORM_VERSION_1_1_PLUS
if (g_zuluscsi_version == ZSVersion_v1_1_ODE || g_zuluscsi_version == ZSVersion_v1_2)
{
if (!gpio_input_bit_get(EJECT_BTN_PORT, EJECT_BTN_PIN)) buttons |= 1;
if (!gpio_input_bit_get(USER_BTN_PORT, USER_BTN_PIN)) buttons |= 4;
}
else
{
if (!gpio_input_bit_get(EJECT_1_PORT, EJECT_1_PIN)) buttons |= 1;
if (!gpio_input_bit_get(EJECT_2_PORT, EJECT_2_PIN)) buttons |= 2;
}
#else
if (!gpio_input_bit_get(EJECT_1_PORT, EJECT_1_PIN)) buttons |= 1;
if (!gpio_input_bit_get(EJECT_2_PORT, EJECT_2_PIN)) buttons |= 2;
#endif
// Simple debouncing logic: handle button releases after 100 ms delay.
static uint32_t debounce;
static uint8_t buttons_debounced = 0;
if (buttons != 0)
{
buttons_debounced = buttons;
debounce = millis();
}
else if ((uint32_t)(millis() - debounce) > 100)
{
buttons_debounced = 0;
}
#ifdef PLATFORM_VERSION_1_1_PLUS
if(g_zuluscsi_version == ZSVersion_v1_1_ODE || g_zuluscsi_version == ZSVersion_v1_2)
{
static uint8_t previous = 0x00;
uint8_t bitmask = buttons_debounced & USER_BTN_MASK;
uint8_t ejectors = (previous ^ bitmask) & previous;
previous = bitmask;
if (ejectors & USER_BTN_MASK)
{
logmsg("User button pressed - feature not yet implemented");
}
}
#endif
return buttons_debounced;
}
bool platform_has_phy_eject_button()
{
return g_zuluscsi_version == ZSVersion_v1_1_ODE || g_zuluscsi_version == ZSVersion_v1_2;
}
/***********************/
/* Flash reprogramming */
/***********************/
bool platform_rewrite_flash_page(uint32_t offset, uint8_t buffer[PLATFORM_FLASH_PAGE_SIZE])
{
if (offset == 0)
{
if (buffer[3] != 0x20 || buffer[7] != 0x08)
{
logmsg("Invalid firmware file, starts with: ", bytearray(buffer, 16));
return false;
}
}
dbgmsg("Writing flash at offset ", offset, " data ", bytearray(buffer, 4));
assert(offset % PLATFORM_FLASH_PAGE_SIZE == 0);
assert(offset >= PLATFORM_BOOTLOADER_SIZE);
fmc_unlock();
fmc_bank0_unlock();
fmc_state_enum status;
status = fmc_page_erase(FLASH_BASE + offset);
if (status != FMC_READY)
{
logmsg("Erase failed: ", (int)status);
return false;
}
uint32_t *buf32 = (uint32_t*)buffer;
uint32_t num_words = PLATFORM_FLASH_PAGE_SIZE / 4;
for (int i = 0; i < num_words; i++)
{
status = fmc_word_program(FLASH_BASE + offset + i * 4, buf32[i]);
if (status != FMC_READY)
{
logmsg("Flash write failed: ", (int)status);
return false;
}
}
fmc_lock();
for (int i = 0; i < num_words; i++)
{
uint32_t expected = buf32[i];
uint32_t actual = *(volatile uint32_t*)(FLASH_BASE + offset + i * 4);
if (actual != expected)
{
logmsg("Flash verify failed at offset ", offset + i * 4, " got ", actual, " expected ", expected);
return false;
}
}
return true;
}
void platform_boot_to_main_firmware()
{
uint32_t *mainprogram_start = (uint32_t*)(0x08000000 + PLATFORM_BOOTLOADER_SIZE);
SCB->VTOR = (uint32_t)mainprogram_start;
__asm__(
"msr msp, %0\n\t"
"bx %1" : : "r" (mainprogram_start[0]),
"r" (mainprogram_start[1]) : "memory");
}
/**************************************/
/* SCSI configuration based on DIPSW1 */
/**************************************/
void platform_config_hook(S2S_TargetCfg *config)
{
// Enable Apple quirks by dip switch
if (g_enable_apple_quirks)
{
if (config->quirks == S2S_CFG_QUIRKS_NONE)
{
config->quirks = S2S_CFG_QUIRKS_APPLE;
}
}
}
/**********************************************/
/* Mapping from data bytes to GPIO BOP values */
/**********************************************/
#define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)
#define X(n) (\
((n & 0x01) ? (SCSI_OUT_DB0 << 16) : SCSI_OUT_DB0) | \
((n & 0x02) ? (SCSI_OUT_DB1 << 16) : SCSI_OUT_DB1) | \
((n & 0x04) ? (SCSI_OUT_DB2 << 16) : SCSI_OUT_DB2) | \
((n & 0x08) ? (SCSI_OUT_DB3 << 16) : SCSI_OUT_DB3) | \
((n & 0x10) ? (SCSI_OUT_DB4 << 16) : SCSI_OUT_DB4) | \
((n & 0x20) ? (SCSI_OUT_DB5 << 16) : SCSI_OUT_DB5) | \
((n & 0x40) ? (SCSI_OUT_DB6 << 16) : SCSI_OUT_DB6) | \
((n & 0x80) ? (SCSI_OUT_DB7 << 16) : SCSI_OUT_DB7) | \
(PARITY(n) ? (SCSI_OUT_DBP << 16) : SCSI_OUT_DBP) | \
(SCSI_OUT_REQ) \
)
const uint32_t g_scsi_out_byte_to_bop[256] =
{
X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),
X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),
X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),
X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),
X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),
X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),
X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),
X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),
X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),
X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),
X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),
X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),
X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),
X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),
X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),
X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)
};
#undef X