/* Synchronous mode SCSI implementation. * * In synchronous mode, the handshake mechanism is not used. Instead * either end of the communication will just send a bunch of bytes * and only afterwards checks that the number of acknowledgement * pulses matches. * * The receiving end should latch in the data at the falling edge of * the request pulse (on either REQ or ACK pin). We use the GD32 EXMC * peripheral to implement this latching with the NWAIT pin when * reading data from the host. NOE is used to generate the REQ pulses. * * Writing data to the host is simpler, as we can just write it out * from the GPIO port at our own pace. A timer is used for generating * the output pulses on REQ pin. */ #include "scsi_accel_sync.h" #include #include #ifndef SCSI_SYNC_MODE_AVAILABLE void scsi_accel_sync_init() {} void scsi_accel_sync_read(uint8_t *data, uint32_t count, int* parityError, volatile int *resetFlag) {} void scsi_accel_sync_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag) {} void scsi_accel_sync_stopWrite() {} void scsi_accel_sync_finishWrite(volatile int *resetFlag) {} bool scsi_accel_sync_isWriteFinished(const uint8_t* data) { return true; } #else void scsi_accel_sync_init() { rcu_periph_clock_enable(RCU_EXMC); rcu_periph_clock_enable(SCSI_TIMER_RCU); exmc_norsram_timing_parameter_struct timing_param = { .asyn_access_mode = EXMC_ACCESS_MODE_A, .syn_data_latency = EXMC_DATALAT_2_CLK, .syn_clk_division = EXMC_SYN_CLOCK_RATIO_2_CLK, .bus_latency = 1, .asyn_data_setuptime = 2, .asyn_address_holdtime = 2, .asyn_address_setuptime = 1 }; exmc_norsram_parameter_struct sram_param = { .norsram_region = EXMC_BANK0_NORSRAM_REGION0, .write_mode = EXMC_ASYN_WRITE, .extended_mode = DISABLE, .asyn_wait = ENABLE, .nwait_signal = ENABLE, .memory_write = DISABLE, .nwait_config = EXMC_NWAIT_CONFIG_DURING, .wrap_burst_mode = DISABLE, .nwait_polarity = EXMC_NWAIT_POLARITY_HIGH, .burst_mode = DISABLE, .databus_width = EXMC_NOR_DATABUS_WIDTH_16B, .memory_type = EXMC_MEMORY_TYPE_SRAM, .address_data_mux = DISABLE, .read_write_timing = &timing_param }; exmc_norsram_init(&sram_param); gpio_init(SCSI_IN_ACK_EXMC_NWAIT_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_IN_ACK_EXMC_NWAIT_PIN); } void scsi_accel_sync_read(uint8_t *data, uint32_t count, int* parityError, volatile int *resetFlag) { exmc_norsram_enable(EXMC_BANK0_NORSRAM_REGION0); gpio_init(SCSI_OUT_REQ_EXMC_NOE_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_REQ_EXMC_NOE_PIN); for (int i = 0; i < count; i++) { uint32_t value = *(volatile uint32_t*)EXMC_NOR_PSRAM; data[i] = ~(value >> SCSI_EXMC_DATA_SHIFT) & 0xFF; } gpio_init(SCSI_OUT_REQ_EXMC_NOE_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_REQ_EXMC_NOE_PIN); exmc_norsram_disable(EXMC_BANK0_NORSRAM_REGION0); } void scsi_accel_sync_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag) { for (int i = 0; i < count; i++) { SCSI_OUT_DATA(data[i]); delay_100ns(); SCSI_OUT(REQ, 1); delay_ns(200); SCSI_OUT(REQ, 0); delay_ns(500); } SCSI_RELEASE_DATA_REQ(); } void scsi_accel_sync_stopWrite() { } void scsi_accel_sync_finishWrite(volatile int *resetFlag) { } bool scsi_accel_sync_isWriteFinished(const uint8_t* data) { return true; } #endif