/**
* ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
*
* ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version.
*
* https://www.gnu.org/licenses/gpl-3.0.html
* ----
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
**/
#include "scsiHostPhy.h"
#include "BlueSCSI_platform.h"
#include "BlueSCSI_log.h"
#include "BlueSCSI_log_trace.h"
#include "scsi_accel_host.h"
#include
#include
extern "C" {
#include
}
volatile int g_scsiHostPhyReset;
#ifndef PLATFORM_HAS_INITIATOR_MODE
// Dummy functions for platforms without hardware support for
// SCSI initiator mode.
void scsiHostPhyReset(void) {}
bool scsiHostPhySelect(int target_id) { return false; }
int scsiHostPhyGetPhase() { return 0; }
bool scsiHostRequestWaiting() { return false; }
uint32_t scsiHostWrite(const uint8_t *data, uint32_t count) { return 0; }
uint32_t scsiHostRead(uint8_t *data, uint32_t count) { return 0; }
void scsiHostPhyRelease();
#else
// Release bus and pulse RST signal, initialize PHY to host mode.
void scsiHostPhyReset(void)
{
SCSI_RELEASE_OUTPUTS();
SCSI_ENABLE_INITIATOR();
scsi_accel_host_init();
SCSI_OUT(RST, 1);
delay(2);
SCSI_OUT(RST, 0);
delay(250);
g_scsiHostPhyReset = false;
}
// Select a device and an initiator, ids 0-7.
// Returns true if the target answers to selection request.
bool scsiHostPhySelect(int target_id, uint8_t initiator_id)
{
SCSI_RELEASE_OUTPUTS();
// We can't write individual data bus bits, so use a bit modified
// arbitration scheme. We always yield to any other initiator on
// the bus.
scsiLogInitiatorPhaseChange(BUS_BUSY);
SCSI_OUT(BSY, 1);
for (int wait = 0; wait < 10; wait++)
{
delayMicroseconds(1);
if (SCSI_IN_DATA() != 0)
{
dbgmsg("scsiHostPhySelect: bus is busy");
scsiLogInitiatorPhaseChange(BUS_FREE);
SCSI_RELEASE_OUTPUTS();
return false;
}
}
// Selection phase
scsiLogInitiatorPhaseChange(SELECTION);
dbgmsg("------ SELECTING ", target_id, " with initiator ID ", (int)initiator_id);
SCSI_OUT(SEL, 1);
delayMicroseconds(5);
SCSI_OUT_DATA((1 << target_id) | (1 << initiator_id));
delayMicroseconds(5);
SCSI_OUT(BSY, 0);
// Wait for target to respond
for (int wait = 0; wait < 2500; wait++)
{
delayMicroseconds(100);
if (SCSI_IN(BSY))
{
break;
}
}
if (!SCSI_IN(BSY))
{
// No response
SCSI_RELEASE_OUTPUTS();
return false;
}
// We need to assert OUT_BSY to enable IO buffer U105 to read status signals.
SCSI_RELEASE_DATA_REQ();
SCSI_OUT(BSY, 1);
SCSI_OUT(SEL, 0);
return true;
}
// Read the current communication phase as signaled by the target
int scsiHostPhyGetPhase()
{
static absolute_time_t last_online_time;
if (g_scsiHostPhyReset)
{
// Reset request from watchdog timer
scsiHostPhyRelease();
return BUS_FREE;
}
int phase = 0;
bool req_in = SCSI_IN(REQ);
if (SCSI_IN(CD)) phase |= __scsiphase_cd;
if (SCSI_IN(IO)) phase |= __scsiphase_io;
if (SCSI_IN(MSG)) phase |= __scsiphase_msg;
if (phase == 0 && absolute_time_diff_us(last_online_time, get_absolute_time()) > 100)
{
// Disable OUT_BSY for a short time to see if the target is still on line
SCSI_OUT(BSY, 0);
delayMicroseconds(1);
if (!SCSI_IN(BSY))
{
scsiLogInitiatorPhaseChange(BUS_FREE);
return BUS_FREE;
}
// Still online, re-enable OUT_BSY to enable IO buffers
SCSI_OUT(BSY, 1);
last_online_time = get_absolute_time();
}
else if (phase != 0)
{
last_online_time = get_absolute_time();
}
if (!req_in)
{
// Don't act on phase changes until target asserts request signal.
// This filters out any spurious changes on control signals.
return BUS_BUSY;
}
else
{
scsiLogInitiatorPhaseChange(phase);
return phase;
}
}
bool scsiHostRequestWaiting()
{
return SCSI_IN(REQ);
}
// Blocking data transfer
#define SCSIHOST_WAIT_ACTIVE(pin) \
if (!SCSI_IN(pin)) { \
if (!SCSI_IN(pin)) { \
while(!SCSI_IN(pin) && !g_scsiHostPhyReset); \
} \
}
#define SCSIHOST_WAIT_INACTIVE(pin) \
if (SCSI_IN(pin)) { \
if (SCSI_IN(pin)) { \
while(SCSI_IN(pin) && !g_scsiHostPhyReset); \
} \
}
// Write one byte to SCSI target using the handshake mechanism
static inline void scsiHostWriteOneByte(uint8_t value)
{
SCSIHOST_WAIT_ACTIVE(REQ);
SCSI_OUT_DATA(value);
delay_100ns(); // DB setup time before ACK
SCSI_OUT(ACK, 1);
SCSIHOST_WAIT_INACTIVE(REQ);
SCSI_RELEASE_DATA_REQ();
SCSI_OUT(ACK, 0);
}
// Read one byte from SCSI target using the handshake mechanism.
static inline uint8_t scsiHostReadOneByte(int* parityError)
{
SCSIHOST_WAIT_ACTIVE(REQ);
uint16_t r = SCSI_IN_DATA();
SCSI_OUT(ACK, 1);
SCSIHOST_WAIT_INACTIVE(REQ);
SCSI_OUT(ACK, 0);
if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ (SCSI_IO_DATA_MASK >> SCSI_IO_SHIFT)))
{
logmsg("Parity error in scsiReadOneByte(): ", (uint32_t)r);
*parityError = 1;
}
return (uint8_t)r;
}
uint32_t scsiHostWrite(const uint8_t *data, uint32_t count)
{
scsiLogDataOut(data, count);
int cd_start = SCSI_IN(CD);
int msg_start = SCSI_IN(MSG);
for (uint32_t i = 0; i < count; i++)
{
while (!SCSI_IN(REQ))
{
if (g_scsiHostPhyReset || SCSI_IN(IO) || SCSI_IN(CD) != cd_start || SCSI_IN(MSG) != msg_start)
{
// Target switched out of DATA_OUT mode
logmsg("scsiHostWrite: sent ", (int)i, " bytes, expected ", (int)count);
return i;
}
}
scsiHostWriteOneByte(data[i]);
}
return count;
}
uint32_t scsiHostRead(uint8_t *data, uint32_t count)
{
int parityError = 0;
uint32_t fullcount = count;
int cd_start = SCSI_IN(CD);
int msg_start = SCSI_IN(MSG);
if ((count & 1) == 0 && ((uint32_t)data & 1) == 0)
{
// Even number of bytes, use accelerated routine
count = scsi_accel_host_read(data, count, &parityError, &g_scsiHostPhyReset);
}
else
{
for (uint32_t i = 0; i < count; i++)
{
uint32_t start = millis();
while (!SCSI_IN(REQ) && (millis() - start) < 10000)
{
// Wait for REQ asserted
}
int io = SCSI_IN(IO);
int cd = SCSI_IN(CD);
int msg = SCSI_IN(MSG);
if (g_scsiHostPhyReset)
{
dbgmsg("sciHostRead: aborting due to reset request");
count = i;
break;
}
else if (!io || cd != cd_start || msg != msg_start)
{
dbgmsg("scsiHostRead: aborting because target switched transfer phase (IO: ", io, ", CD: ", cd, ", MSG: ", msg, ")");
count = i;
break;
}
data[i] = scsiHostReadOneByte(&parityError);
}
}
scsiLogDataIn(data, count);
if (g_scsiHostPhyReset || parityError)
{
return 0;
}
else
{
if (count < fullcount)
{
logmsg("scsiHostRead: received ", (int)count, " bytes, expected ", (int)fullcount);
}
return count;
}
}
// Release bus signals and expect the target to do the same.
// Cycles ACK in case target still holds BSY and REQ.
void scsiHostWaitBusFree()
{
SCSI_RELEASE_OUTPUTS();
sleep_us(2);
// Wait for the target to release BSY signal.
// If the target is expecting more data, transfer dummy bytes.
// This happens for some reason with READ6 command on IBM H3171-S2.
uint32_t start = millis();
int extra_bytes = 0;
while (SCSI_IN(BSY))
{
platform_poll();
if (SCSI_IN(REQ))
{
// Target is expecting something more
// Transfer dummy bytes
SCSI_OUT(BSY, 1);
sleep_us(1);
while (SCSI_IN(REQ))
{
scsiHostReadOneByte(nullptr);
extra_bytes++;
sleep_us(1);
}
SCSI_OUT(BSY, 0);
sleep_us(1);
}
if ((uint32_t)(millis() - start) > 10000)
{
logmsg("Target is holding BSY for unexpectedly long, running reset.");
scsiHostPhyReset();
break;
}
}
if (extra_bytes > 0)
{
dbgmsg("---- Target requested ", extra_bytes, " extra bytes after command complete");
}
scsiHostPhyRelease();
}
// Release all bus signals
void scsiHostPhyRelease()
{
scsiLogInitiatorPhaseChange(BUS_FREE);
SCSI_RELEASE_OUTPUTS();
}
#endif