// Implementation of SDIO communication for RP2040 // // The RP2040 official work-in-progress code at // https://github.com/raspberrypi/pico-extras/tree/master/src/rp2_common/pico_sd_card // may be useful reference, but this is independent implementation. // // For official SDIO specifications, refer to: // https://www.sdcard.org/downloads/pls/ // "SDIO Physical Layer Simplified Specification Version 8.00" #include "rp2040_sdio.h" #include "rp2040_sdio.pio.h" #include #include #include #include #include #define SDIO_PIO pio1 #define SDIO_CMD_SM 0 #define SDIO_DATA_SM 1 #define SDIO_DMA_CH 1 // Maximum number of 512 byte blocks to transfer in one request #define SDIO_MAX_BLOCKS 256 enum sdio_transfer_state_t { SDIO_IDLE, SDIO_RX, SDIO_TX }; static struct { uint32_t pio_cmd_clk_offset; uint32_t pio_data_rx_offset; pio_sm_config pio_cfg_data_rx; uint32_t pio_data_tx_offset; pio_sm_config pio_cfg_data_tx; sdio_transfer_state_t transfer_state; bool inside_irq_handler; // True if we are inside crash handler code uint32_t transfer_start_time; uint32_t *data_buf; uint32_t blocks_done; // Number of blocks transferred so far uint32_t total_blocks; // Total number of blocks to transfer uint32_t blocks_checksumed; // Number of blocks that have had CRC calculated uint32_t checksum_errors; // Number of checksum errors detected uint64_t block_checksums[SDIO_MAX_BLOCKS]; } g_sdio; /******************************************************* * Checksum algorithms *******************************************************/ // Table lookup for calculating CRC-7 checksum that is used in SDIO command packets. // Usage: // uint8_t crc = 0; // crc = crc7_table[crc ^ byte]; // .. repeat for every byte .. static const uint8_t crc7_table[256] = { 0x00, 0x12, 0x24, 0x36, 0x48, 0x5a, 0x6c, 0x7e, 0x90, 0x82, 0xb4, 0xa6, 0xd8, 0xca, 0xfc, 0xee, 0x32, 0x20, 0x16, 0x04, 0x7a, 0x68, 0x5e, 0x4c, 0xa2, 0xb0, 0x86, 0x94, 0xea, 0xf8, 0xce, 0xdc, 0x64, 0x76, 0x40, 0x52, 0x2c, 0x3e, 0x08, 0x1a, 0xf4, 0xe6, 0xd0, 0xc2, 0xbc, 0xae, 0x98, 0x8a, 0x56, 0x44, 0x72, 0x60, 0x1e, 0x0c, 0x3a, 0x28, 0xc6, 0xd4, 0xe2, 0xf0, 0x8e, 0x9c, 0xaa, 0xb8, 0xc8, 0xda, 0xec, 0xfe, 0x80, 0x92, 0xa4, 0xb6, 0x58, 0x4a, 0x7c, 0x6e, 0x10, 0x02, 0x34, 0x26, 0xfa, 0xe8, 0xde, 0xcc, 0xb2, 0xa0, 0x96, 0x84, 0x6a, 0x78, 0x4e, 0x5c, 0x22, 0x30, 0x06, 0x14, 0xac, 0xbe, 0x88, 0x9a, 0xe4, 0xf6, 0xc0, 0xd2, 0x3c, 0x2e, 0x18, 0x0a, 0x74, 0x66, 0x50, 0x42, 0x9e, 0x8c, 0xba, 0xa8, 0xd6, 0xc4, 0xf2, 0xe0, 0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 0x70, 0x82, 0x90, 0xa6, 0xb4, 0xca, 0xd8, 0xee, 0xfc, 0x12, 0x00, 0x36, 0x24, 0x5a, 0x48, 0x7e, 0x6c, 0xb0, 0xa2, 0x94, 0x86, 0xf8, 0xea, 0xdc, 0xce, 0x20, 0x32, 0x04, 0x16, 0x68, 0x7a, 0x4c, 0x5e, 0xe6, 0xf4, 0xc2, 0xd0, 0xae, 0xbc, 0x8a, 0x98, 0x76, 0x64, 0x52, 0x40, 0x3e, 0x2c, 0x1a, 0x08, 0xd4, 0xc6, 0xf0, 0xe2, 0x9c, 0x8e, 0xb8, 0xaa, 0x44, 0x56, 0x60, 0x72, 0x0c, 0x1e, 0x28, 0x3a, 0x4a, 0x58, 0x6e, 0x7c, 0x02, 0x10, 0x26, 0x34, 0xda, 0xc8, 0xfe, 0xec, 0x92, 0x80, 0xb6, 0xa4, 0x78, 0x6a, 0x5c, 0x4e, 0x30, 0x22, 0x14, 0x06, 0xe8, 0xfa, 0xcc, 0xde, 0xa0, 0xb2, 0x84, 0x96, 0x2e, 0x3c, 0x0a, 0x18, 0x66, 0x74, 0x42, 0x50, 0xbe, 0xac, 0x9a, 0x88, 0xf6, 0xe4, 0xd2, 0xc0, 0x1c, 0x0e, 0x38, 0x2a, 0x54, 0x46, 0x70, 0x62, 0x8c, 0x9e, 0xa8, 0xba, 0xc4, 0xd6, 0xe0, 0xf2 }; // Calculate the CRC16 checksum for parallel 4 bit lines separately. // When the SDIO bus operates in 4-bit mode, the CRC16 algorithm // is applied to each line separately and generates total of // 4 x 16 = 64 bits of checksum. uint64_t sdio_crc16_4bit_checksum(uint32_t *data, uint32_t num_words) { uint64_t crc = 0; uint32_t *end = data + num_words; while (data < end) { // Each 32-bit word contains 8 bits per line. // Reverse the bytes because SDIO protocol is big-endian. uint32_t data_in = __builtin_bswap32(*data++); // Shift out 8 bits for each line uint32_t data_out = crc >> 32; crc <<= 32; // XOR outgoing data to itself with 4 bit delay data_out ^= (data_out >> 16); // XOR incoming data to outgoing data with 4 bit delay data_out ^= (data_in >> 16); // XOR outgoing and incoming data to accumulator at each tap uint64_t xorred = data_out ^ data_in; crc ^= xorred; crc ^= xorred << (5 * 4); crc ^= xorred << (12 * 4); } return crc; } /******************************************************* * Basic SDIO command execution *******************************************************/ static void sdio_send_command(uint8_t command, uint32_t arg, uint8_t response_bits) { // azdbg("SDIO Command: ", (int)command, " arg ", arg); // Format the arguments in the way expected by the PIO code. uint32_t word0 = (47 << 24) | // Number of bits in command minus one ( 1 << 22) | // Transfer direction from host to card (command << 16) | // Command byte (((arg >> 24) & 0xFF) << 8) | // MSB byte of argument (((arg >> 16) & 0xFF) << 0); uint32_t word1 = (((arg >> 8) & 0xFF) << 24) | (((arg >> 0) & 0xFF) << 16) | // LSB byte of argument ( 1 << 8); // End bit // Set number of bits in response minus one, or leave at 0 if no response expected if (response_bits) { word1 |= ((response_bits - 1) << 0); } // Calculate checksum in the order that the bytes will be transmitted (big-endian) uint8_t crc = 0; crc = crc7_table[crc ^ ((word0 >> 16) & 0xFF)]; crc = crc7_table[crc ^ ((word0 >> 8) & 0xFF)]; crc = crc7_table[crc ^ ((word0 >> 0) & 0xFF)]; crc = crc7_table[crc ^ ((word1 >> 24) & 0xFF)]; crc = crc7_table[crc ^ ((word1 >> 16) & 0xFF)]; word1 |= crc << 8; // Transmit command pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM); pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word0); pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word1); } sdio_status_t rp2040_sdio_command_R1(uint8_t command, uint32_t arg, uint32_t *response) { sdio_send_command(command, arg, response ? 48 : 0); // Wait for response uint32_t start = millis(); uint32_t wait_words = response ? 2 : 1; while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < wait_words) { if ((uint32_t)(millis() - start) > 2) { azdbg("Timeout waiting for response in rp2040_sdio_command_R1(", (int)command, "), ", "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset, " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM), " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM)); // Reset the state machine program pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM); pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset)); return SDIO_ERR_RESPONSE_TIMEOUT; } } if (response) { // Read out response packet uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM); uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM); // azdbg("SDIO R1 response: ", resp0, " ", resp1); // Calculate response checksum uint8_t crc = 0; crc = crc7_table[crc ^ ((resp0 >> 24) & 0xFF)]; crc = crc7_table[crc ^ ((resp0 >> 16) & 0xFF)]; crc = crc7_table[crc ^ ((resp0 >> 8) & 0xFF)]; crc = crc7_table[crc ^ ((resp0 >> 0) & 0xFF)]; crc = crc7_table[crc ^ ((resp1 >> 8) & 0xFF)]; uint8_t actual_crc = ((resp1 >> 0) & 0xFE); if (crc != actual_crc) { azdbg("rp2040_sdio_command_R1(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc); return SDIO_ERR_RESPONSE_CRC; } uint8_t response_cmd = ((resp0 >> 24) & 0xFF); if (response_cmd != command && command != 41) { azdbg("rp2040_sdio_command_R1(", (int)command, "): received reply for ", (int)response_cmd); return SDIO_ERR_RESPONSE_CODE; } *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF); } else { // Read out dummy marker pio_sm_get(SDIO_PIO, SDIO_CMD_SM); } return SDIO_OK; } sdio_status_t rp2040_sdio_command_R2(uint8_t command, uint32_t arg, uint8_t response[16]) { // The response is too long to fit in the PIO FIFO, so use DMA to receive it. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM); uint32_t response_buf[5]; dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH); channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32); channel_config_set_read_increment(&dmacfg, false); channel_config_set_write_increment(&dmacfg, true); channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false)); dma_channel_configure(SDIO_DMA_CH, &dmacfg, &response_buf, &SDIO_PIO->rxf[SDIO_CMD_SM], 5, true); sdio_send_command(command, arg, 136); uint32_t start = millis(); while (dma_channel_is_busy(SDIO_DMA_CH)) { if ((uint32_t)(millis() - start) > 2) { azdbg("Timeout waiting for response in rp2040_sdio_command_R2(", (int)command, "), ", "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset, " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM), " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM)); // Reset the state machine program dma_channel_abort(SDIO_DMA_CH); pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM); pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset)); return SDIO_ERR_RESPONSE_TIMEOUT; } } dma_channel_abort(SDIO_DMA_CH); // Copy the response payload to output buffer response[0] = ((response_buf[0] >> 16) & 0xFF); response[1] = ((response_buf[0] >> 8) & 0xFF); response[2] = ((response_buf[0] >> 0) & 0xFF); response[3] = ((response_buf[1] >> 24) & 0xFF); response[4] = ((response_buf[1] >> 16) & 0xFF); response[5] = ((response_buf[1] >> 8) & 0xFF); response[6] = ((response_buf[1] >> 0) & 0xFF); response[7] = ((response_buf[2] >> 24) & 0xFF); response[8] = ((response_buf[2] >> 16) & 0xFF); response[9] = ((response_buf[2] >> 8) & 0xFF); response[10] = ((response_buf[2] >> 0) & 0xFF); response[11] = ((response_buf[3] >> 24) & 0xFF); response[12] = ((response_buf[3] >> 16) & 0xFF); response[13] = ((response_buf[3] >> 8) & 0xFF); response[14] = ((response_buf[3] >> 0) & 0xFF); response[15] = ((response_buf[4] >> 0) & 0xFF); // Calculate checksum of the payload uint8_t crc = 0; for (int i = 0; i < 15; i++) { crc = crc7_table[crc ^ response[i]]; } uint8_t actual_crc = response[15] & 0xFE; if (crc != actual_crc) { azdbg("rp2040_sdio_command_R2(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc); return SDIO_ERR_RESPONSE_CRC; } uint8_t response_cmd = ((response_buf[0] >> 24) & 0xFF); if (response_cmd != 0x3F) { azdbg("rp2040_sdio_command_R2(", (int)command, "): Expected reply code 0x3F"); return SDIO_ERR_RESPONSE_CODE; } return SDIO_OK; } sdio_status_t rp2040_sdio_command_R3(uint8_t command, uint32_t arg, uint32_t *response) { sdio_send_command(command, arg, 48); // Wait for response uint32_t start = millis(); while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < 2) { if ((uint32_t)(millis() - start) > 2) { azdbg("Timeout waiting for response in rp2040_sdio_command_R3(", (int)command, "), ", "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset, " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM), " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM)); // Reset the state machine program pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM); pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset)); return SDIO_ERR_RESPONSE_TIMEOUT; } } // Read out response packet uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM); uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM); *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF); // azdbg("SDIO R3 response: ", resp0, " ", resp1); return SDIO_OK; } /******************************************************* * Data reception from SD card *******************************************************/ static void sdio_start_next_block_rx() { assert (g_sdio.blocks_done < g_sdio.total_blocks); // Disable and reset PIO from previous block pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false); pio_sm_restart(SDIO_PIO, SDIO_DATA_SM); pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_jmp(g_sdio.pio_data_rx_offset)); // Start new DMA transfer dma_channel_transfer_to_buffer_now(SDIO_DMA_CH, g_sdio.data_buf + 128 * g_sdio.blocks_done, 128); // Enable PIO pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true); } // Check checksums for received blocks static void sdio_verify_rx_checksums(uint32_t maxcount) { while (g_sdio.blocks_checksumed < g_sdio.blocks_done && maxcount-- > 0) { int blockidx = g_sdio.blocks_checksumed++; uint64_t checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * 128, 128); uint64_t expected = g_sdio.block_checksums[blockidx]; if (checksum != expected) { g_sdio.checksum_errors++; if (g_sdio.checksum_errors == 1) { azlog("SDIO checksum error in reception: calculated ", checksum, " expected ", expected); } } } } static void rp2040_sdio_rx_irq() { dma_hw->ints1 = 1 << SDIO_DMA_CH; // Wait for CRC to be received int maxwait = 1000; while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM) < 2) { if (maxwait-- < 0) { azlog("rp2040_sdio_rx_irq(): timeout waiting for CRC reception"); break; } } uint32_t crc0 = pio_sm_get(SDIO_PIO, SDIO_DATA_SM); uint32_t crc1 = pio_sm_get(SDIO_PIO, SDIO_DATA_SM); g_sdio.block_checksums[g_sdio.blocks_done] = ((uint64_t)crc0 << 32) | crc1; g_sdio.blocks_done++; if (g_sdio.blocks_done < g_sdio.total_blocks) { sdio_start_next_block_rx(); } else { g_sdio.transfer_state = SDIO_IDLE; } } sdio_status_t rp2040_sdio_rx_start(uint8_t *buffer, uint32_t num_blocks) { // Buffer must be aligned assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS); g_sdio.transfer_state = SDIO_RX; g_sdio.transfer_start_time = millis(); g_sdio.data_buf = (uint32_t*)buffer; g_sdio.blocks_done = 0; g_sdio.total_blocks = num_blocks; g_sdio.blocks_checksumed = 0; g_sdio.checksum_errors = 0; // Check if we are inside interrupt handler. // This happens when saving crash log from hardfault. // If true, must use polling mode instead of interrupts. g_sdio.inside_irq_handler = (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk); pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_rx_offset, &g_sdio.pio_cfg_data_rx); pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false); // Configure DMA to receive the data block payload (512 bytes). dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH); channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32); channel_config_set_read_increment(&dmacfg, false); channel_config_set_write_increment(&dmacfg, true); channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false)); channel_config_set_bswap(&dmacfg, true); dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->rxf[SDIO_DATA_SM], 0, false); sdio_start_next_block_rx(); return SDIO_OK; } sdio_status_t rp2040_sdio_rx_poll(uint32_t *bytes_complete) { if (g_sdio.inside_irq_handler && (dma_hw->ints0 & (1 << SDIO_DMA_CH))) { // Make sure DMA interrupt handler gets called even from inside hardfault handler. rp2040_sdio_rx_irq(); } if (bytes_complete) { *bytes_complete = g_sdio.blocks_done * 512; } if (g_sdio.transfer_state == SDIO_IDLE) { sdio_verify_rx_checksums(g_sdio.total_blocks); if (g_sdio.checksum_errors == 0) return SDIO_OK; else return SDIO_ERR_DATA_CRC; } else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000) { azdbg("rp2040_sdio_rx_poll() timeout, " "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_rx_offset, " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM), " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM), " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count); rp2040_sdio_stop(); return SDIO_ERR_DATA_TIMEOUT; } else { // Use the idle time to calculate checksums sdio_verify_rx_checksums(1); } return SDIO_BUSY; } /******************************************************* * Data transmission to SD card *******************************************************/ static void sdio_start_next_block_tx() { assert (g_sdio.blocks_done < g_sdio.total_blocks && g_sdio.blocks_checksumed > g_sdio.blocks_done); // Start new DMA transfer dma_channel_transfer_from_buffer_now(SDIO_DMA_CH, g_sdio.data_buf + 128 * g_sdio.blocks_done, 128); } static void sdio_compute_tx_checksums(uint32_t maxcount) { while (g_sdio.blocks_checksumed < g_sdio.blocks_done && maxcount-- > 0) { int blockidx = g_sdio.blocks_checksumed++; g_sdio.block_checksums[blockidx] = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * 128, 128); } } static void rp2040_sdio_tx_irq() { // Wait for there to be enough space for checksum int maxwait = 1000; while (pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM) < 5) { if (maxwait-- < 0) { azlog("rp2040_sdio_tx_irq(): timeout waiting for space in TX buffer for CRC"); break; } } // Send the checksum and block end marker uint64_t crc = g_sdio.block_checksums[g_sdio.blocks_done]; pio_sm_put(SDIO_PIO, SDIO_DATA_SM, (uint32_t)(crc >> 32)); pio_sm_put(SDIO_PIO, SDIO_DATA_SM, (uint32_t)(crc >> 0)); pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 0xFFFFFFFF); g_sdio.blocks_done++; if (g_sdio.blocks_done < g_sdio.total_blocks) { sdio_start_next_block_tx(); } else { g_sdio.transfer_state = SDIO_IDLE; } } // Start transferring data from memory to SD card sdio_status_t rp2040_sdio_tx_start(const uint8_t *buffer, uint32_t num_blocks) { // Buffer must be aligned assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS); g_sdio.transfer_state = SDIO_TX; g_sdio.transfer_start_time = millis(); g_sdio.data_buf = (uint32_t*)buffer; g_sdio.blocks_done = 0; g_sdio.total_blocks = num_blocks; g_sdio.blocks_checksumed = 0; g_sdio.checksum_errors = 0; // Check if we are inside interrupt handler. // This happens when saving crash log from hardfault. // If true, must use polling mode instead of interrupts. g_sdio.inside_irq_handler = (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk); // Compute first block checksum sdio_compute_tx_checksums(1); // Initialize PIO pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_tx_offset, &g_sdio.pio_cfg_data_tx); pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, true); // Configure DMA to send the data block payload (512 bytes) dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH); channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32); channel_config_set_read_increment(&dmacfg, true); channel_config_set_write_increment(&dmacfg, false); channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false)); channel_config_set_bswap(&dmacfg, true); dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->txf[SDIO_DATA_SM], 0, false); // Start first DMA transfer and PIO sdio_start_next_block_tx(); pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true); // Compute rest of the block checksums so that they are ready when needed sdio_compute_tx_checksums(g_sdio.total_blocks); return SDIO_OK; } // Check if transmission is complete sdio_status_t rp2040_sdio_tx_poll(uint32_t *bytes_complete) { if (g_sdio.inside_irq_handler && (dma_hw->ints0 & (1 << SDIO_DMA_CH))) { // Make sure DMA interrupt handler gets called even from inside hardfault handler. rp2040_sdio_tx_irq(); } if (bytes_complete) { *bytes_complete = g_sdio.blocks_done * 512; } if (g_sdio.transfer_state == SDIO_IDLE) { pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false); pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false); return SDIO_OK; } else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000) { azdbg("rp2040_sdio_tx_poll() timeout, " "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_rx_offset, " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM), " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM), " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count); rp2040_sdio_stop(); return SDIO_ERR_DATA_TIMEOUT; } return SDIO_BUSY; } // Force everything to idle state sdio_status_t rp2040_sdio_stop() { dma_channel_abort(SDIO_DMA_CH); pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false); pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false); g_sdio.transfer_state = SDIO_IDLE; return SDIO_OK; } void rp2040_sdio_dma_irq() { dma_hw->ints1 = 1 << SDIO_DMA_CH; if (g_sdio.transfer_state == SDIO_TX) rp2040_sdio_tx_irq(); else if (g_sdio.transfer_state == SDIO_RX) rp2040_sdio_rx_irq(); } void rp2040_sdio_init() { // Mark resources as being in use, unless it has been done already. static bool resources_claimed = false; if (!resources_claimed) { pio_sm_claim(SDIO_PIO, SDIO_CMD_SM); pio_sm_claim(SDIO_PIO, SDIO_DATA_SM); dma_channel_claim(SDIO_DMA_CH); resources_claimed = true; } memset(&g_sdio, 0, sizeof(g_sdio)); // Load PIO programs pio_clear_instruction_memory(SDIO_PIO); // Command & clock state machine g_sdio.pio_cmd_clk_offset = pio_add_program(SDIO_PIO, &sdio_cmd_clk_program); pio_sm_config cfg = sdio_cmd_clk_program_get_default_config(g_sdio.pio_cmd_clk_offset); sm_config_set_out_pins(&cfg, SDIO_CMD, 1); sm_config_set_in_pins(&cfg, SDIO_CMD); sm_config_set_set_pins(&cfg, SDIO_CMD, 1); sm_config_set_jmp_pin(&cfg, SDIO_CMD); sm_config_set_sideset_pins(&cfg, SDIO_CLK); sm_config_set_out_shift(&cfg, false, true, 32); sm_config_set_in_shift(&cfg, false, true, 32); sm_config_set_clkdiv_int_frac(&cfg, 5, 0); sm_config_set_mov_status(&cfg, STATUS_TX_LESSTHAN, 2); pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_clk_offset, &cfg); pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true); pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, true); // Data reception program g_sdio.pio_data_rx_offset = pio_add_program(SDIO_PIO, &sdio_data_rx_program); g_sdio.pio_cfg_data_rx = sdio_data_rx_program_get_default_config(g_sdio.pio_data_rx_offset); sm_config_set_in_pins(&g_sdio.pio_cfg_data_rx, SDIO_D0); sm_config_set_in_shift(&g_sdio.pio_cfg_data_rx, false, true, 32); sm_config_set_fifo_join(&g_sdio.pio_cfg_data_rx, PIO_FIFO_JOIN_RX); // Data transmission program g_sdio.pio_data_tx_offset = pio_add_program(SDIO_PIO, &sdio_data_tx_program); g_sdio.pio_cfg_data_tx = sdio_data_rx_program_get_default_config(g_sdio.pio_data_tx_offset); sm_config_set_out_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4); sm_config_set_out_shift(&g_sdio.pio_cfg_data_tx, false, true, 32); sm_config_set_fifo_join(&g_sdio.pio_cfg_data_tx, PIO_FIFO_JOIN_TX); // Disable CLK pin input synchronizer. // This reduces delay from clk state machine to data state machine. // Because the CLK pin is output and driven synchronously to CPU clock, // there is no metastability problems. SDIO_PIO->input_sync_bypass |= (1 << SDIO_CLK); // Redirect GPIOs to PIO gpio_set_function(SDIO_CMD, GPIO_FUNC_PIO1); gpio_set_function(SDIO_CLK, GPIO_FUNC_PIO1); gpio_set_function(SDIO_D0, GPIO_FUNC_PIO1); gpio_set_function(SDIO_D1, GPIO_FUNC_PIO1); gpio_set_function(SDIO_D2, GPIO_FUNC_PIO1); gpio_set_function(SDIO_D3, GPIO_FUNC_PIO1); // Set up IRQ handler when DMA completes. // This is time-critical because the CRC must be written / read before PIO FIFO runs out. dma_hw->ints1 = 1 << SDIO_DMA_CH; dma_channel_set_irq1_enabled(SDIO_DMA_CH, true); irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_dma_irq); irq_set_enabled(DMA_IRQ_1, true); irq_set_priority(DMA_IRQ_1, 255); }