#include "BlueSCSI_platform.h" #include "BlueSCSI_log.h" #include "BlueSCSI_config.h" #include #include #include #include #include #include #include #include extern "C" { // As of 2022-09-13, the platformio RP2040 core is missing cplusplus guard on flash.h // For that reason this has to be inside the extern "C" here. #include const char *g_bluescsiplatform_name = PLATFORM_NAME; static bool g_scsi_initiator = false; void mbed_error_hook(const mbed_error_ctx * error_context); /***************/ /* GPIO init */ /***************/ // Helper function to configure whole GPIO in one line static void gpio_conf(uint gpio, enum gpio_function fn, bool pullup, bool pulldown, bool output, bool initial_state, bool fast_slew) { gpio_put(gpio, initial_state); gpio_set_dir(gpio, output); gpio_set_pulls(gpio, pullup, pulldown); gpio_set_function(gpio, fn); if (fast_slew) { padsbank0_hw->io[gpio] |= PADS_BANK0_GPIO0_SLEWFAST_BITS; } } void bluescsiplatform_init() { /* First configure the pins that affect external buffer directions. * RP2040 defaults to pulldowns, while these pins have external pull-ups. */ // pin function pup pdown out state fast gpio_conf(SCSI_DATA_DIR, GPIO_FUNC_SIO, false,false, true, false, true); //gpio_conf(SCSI_OUT_RST, GPIO_FUNC_SIO, false,false, true, true, true); gpio_conf(SCSI_OUT_BSY, GPIO_FUNC_SIO, false,false, true, true, false); //gpio_set_drive_strength(SCSI_OUT_BSY, GPIO_DRIVE_STRENGTH_8MA); gpio_conf(SCSI_OUT_SEL, GPIO_FUNC_SIO, false,false, true, true, false); /* Check dip switch settings */ // Option switches: S1 is iATN, S2 is iACK gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, false, false, false, false, false); gpio_conf(SCSI_IN_ATN, GPIO_FUNC_SIO, false, false, false, false, false); delay(10); /// Settle time bool optionS1 = !gpio_get(SCSI_IN_ATN); bool optionS2 = !gpio_get(SCSI_IN_ACK); /* Initialize logging to SWO pin (UART0) */ gpio_conf(SWO_PIN, GPIO_FUNC_UART,false,false, true, false, true); uart_init(uart0, 1000000); mbed_set_error_hook(mbed_error_hook); //bluelog("DIP switch settings: debug log ", (int)dbglog, ", termination ", (int)termination); g_bluelog_debug = false; // Debug logging can be handled with a debug firmware, very easy to reflash // if (termination) // Termination is handled by hardware jumper // { // bluelog("SCSI termination is enabled"); // } // else // { // bluelog("NOTE: SCSI termination is disabled"); // } // SD card pins // Card is used in SDIO mode for main program, and in SPI mode for crash handler & bootloader. // pin function pup pdown out state fast gpio_conf(SD_SPI_SCK, GPIO_FUNC_SPI, true, false, true, true, true); gpio_conf(SD_SPI_MOSI, GPIO_FUNC_SPI, true, false, true, true, true); gpio_conf(SD_SPI_MISO, GPIO_FUNC_SPI, true, false, false, true, true); gpio_conf(SD_SPI_CS, GPIO_FUNC_SIO, true, false, true, true, true); gpio_conf(SDIO_D1, GPIO_FUNC_SIO, true, false, false, true, true); gpio_conf(SDIO_D2, GPIO_FUNC_SIO, true, false, false, true, true); // LED pin gpio_conf(LED_PIN, GPIO_FUNC_SIO, false,false, true, false, false); // I2C pins // pin function pup pdown out state fast //gpio_conf(GPIO_I2C_SCL, GPIO_FUNC_I2C, true,false, false, true, true); //gpio_conf(GPIO_I2C_SDA, GPIO_FUNC_I2C, true,false, false, true, true); } static bool read_initiator_dip_switch() { /* Revision 2022d hardware has problems reading initiator DIP switch setting. * The 74LVT245 hold current is keeping the GPIO_ACK state too strongly. * Detect this condition by toggling the pin up and down and seeing if it sticks. */ // Strong output high, then pulldown // pin function pup pdown out state fast //gpio_conf(DIP_INITIATOR, GPIO_FUNC_SIO, false, false, true, true, false); //gpio_conf(DIP_INITIATOR, GPIO_FUNC_SIO, false, true, false, true, false); //delay(1); //bool initiator_state1 = gpio_get(DIP_INITIATOR); // Strong output low, then pullup // pin function pup pdown out state fast //gpio_conf(DIP_INITIATOR, GPIO_FUNC_SIO, false, false, true, false, false); //gpio_conf(DIP_INITIATOR, GPIO_FUNC_SIO, true, false, false, false, false); //delay(1); //bool initiator_state2 = gpio_get(DIP_INITIATOR); //if (initiator_state1 == initiator_state2) //{ // Ok, was able to read the state directly //return !initiator_state1; //} // Enable OUT_BSY for a short time. // If in target mode, this will force GPIO_ACK high. gpio_put(SCSI_OUT_BSY, 0); delay_100ns(); gpio_put(SCSI_OUT_BSY, 1); //return !gpio_get(DIP_INITIATOR); return false; } // late_init() only runs in main application, SCSI not needed in bootloader void bluescsiplatform_late_init() { if (read_initiator_dip_switch()) { g_scsi_initiator = true; bluelog("SCSI initiator mode selected by DIP switch, expecting SCSI disks on the bus"); } else { g_scsi_initiator = false; bluelog("SCSI target mode selected by DIP switch, acting as an SCSI disk"); } /* Initialize SCSI pins to required modes. * SCSI pins should be inactive / input at this point. */ // SCSI data bus direction is switched by DATA_DIR signal. // Pullups make sure that no glitches occur when switching direction. // pin function pup pdown out state fast gpio_conf(SCSI_IO_DB0, GPIO_FUNC_SIO, true, false, false, true, true); gpio_conf(SCSI_IO_DB1, GPIO_FUNC_SIO, true, false, false, true, true); gpio_conf(SCSI_IO_DB2, GPIO_FUNC_SIO, true, false, false, true, true); gpio_conf(SCSI_IO_DB3, GPIO_FUNC_SIO, true, false, false, true, true); gpio_conf(SCSI_IO_DB4, GPIO_FUNC_SIO, true, false, false, true, true); gpio_conf(SCSI_IO_DB5, GPIO_FUNC_SIO, true, false, false, true, true); gpio_conf(SCSI_IO_DB6, GPIO_FUNC_SIO, true, false, false, true, true); gpio_conf(SCSI_IO_DB7, GPIO_FUNC_SIO, true, false, false, true, true); gpio_conf(SCSI_IO_DBP, GPIO_FUNC_SIO, true, false, false, true, true); if (!g_scsi_initiator) { // Act as SCSI device / target // SCSI control outputs // pin function pup pdown out state fast gpio_conf(SCSI_OUT_IO, GPIO_FUNC_SIO, false,false, true, true, true); gpio_conf(SCSI_OUT_MSG, GPIO_FUNC_SIO, false,false, true, true, true); // REQ pin is switched between PIO and SIO, pull-up makes sure no glitches gpio_conf(SCSI_OUT_REQ, GPIO_FUNC_SIO, true ,false, true, true, true); // Shared pins are changed to input / output depending on communication phase gpio_conf(SCSI_IN_SEL, GPIO_FUNC_SIO, true, false, false, true, true); if (SCSI_OUT_CD != SCSI_IN_SEL) { gpio_conf(SCSI_OUT_CD, GPIO_FUNC_SIO, false,false, true, true, true); } gpio_conf(SCSI_IN_BSY, GPIO_FUNC_SIO, true, false, false, true, true); if (SCSI_OUT_MSG != SCSI_IN_BSY) { gpio_conf(SCSI_OUT_MSG, GPIO_FUNC_SIO, false,false, true, true, true); } // SCSI control inputs // pin function pup pdown out state fast gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, false, false, false, true, false); gpio_conf(SCSI_IN_ATN, GPIO_FUNC_SIO, false, false, false, true, false); gpio_conf(SCSI_IN_RST, GPIO_FUNC_SIO, true, false, false, true, false); } else { // Act as SCSI initiator // pin function pup pdown out state fast gpio_conf(SCSI_IN_IO, GPIO_FUNC_SIO, true ,false, false, true, false); gpio_conf(SCSI_IN_MSG, GPIO_FUNC_SIO, true ,false, false, true, false); gpio_conf(SCSI_IN_CD, GPIO_FUNC_SIO, true ,false, false, true, false); gpio_conf(SCSI_IN_REQ, GPIO_FUNC_SIO, true ,false, false, true, false); gpio_conf(SCSI_IN_BSY, GPIO_FUNC_SIO, true, false, false, true, false); gpio_conf(SCSI_IN_RST, GPIO_FUNC_SIO, true, false, false, true, false); gpio_conf(SCSI_OUT_SEL, GPIO_FUNC_SIO, false,false, true, true, true); gpio_conf(SCSI_OUT_ACK, GPIO_FUNC_SIO, false,false, true, true, true); gpio_conf(SCSI_OUT_ATN, GPIO_FUNC_SIO, false,false, true, true, true); } } bool bluescsiplatform_is_initiator_mode_enabled() { return g_scsi_initiator; } /*****************************************/ /* Crash handlers */ /*****************************************/ extern SdFs SD; extern uint32_t __StackTop; void bluescsiplatform_emergency_log_save() { bluescsiplatform_set_sd_callback(NULL, NULL); SD.begin(SD_CONFIG_CRASH); FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC); if (!crashfile.isOpen()) { // Try to reinitialize int max_retry = 10; while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH)); crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC); } uint32_t startpos = 0; crashfile.write(bluelog_get_buffer(&startpos)); crashfile.write(bluelog_get_buffer(&startpos)); crashfile.flush(); crashfile.close(); } void mbed_error_hook(const mbed_error_ctx * error_context) { bluelog("--------------"); bluelog("CRASH!"); bluelog("Platform: ", g_bluescsiplatform_name); bluelog("FW Version: ", g_bluelog_firmwareversion); bluelog("error_status: ", (uint32_t)error_context->error_status); bluelog("error_address: ", error_context->error_address); bluelog("error_value: ", error_context->error_value); uint32_t *p = (uint32_t*)((uint32_t)error_context->thread_current_sp & ~3); for (int i = 0; i < 8; i++) { if (p == &__StackTop) break; // End of stack bluelog("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]); p += 4; } bluescsiplatform_emergency_log_save(); while (1) { // Flash the crash address on the LED // Short pulse means 0, long pulse means 1 int base_delay = 1000; for (int i = 31; i >= 0; i--) { LED_OFF(); for (int j = 0; j < base_delay; j++) delay_ns(100000); int delay = (error_context->error_address & (1 << i)) ? (3 * base_delay) : base_delay; LED_ON(); for (int j = 0; j < delay; j++) delay_ns(100000); LED_OFF(); } for (int j = 0; j < base_delay * 10; j++) delay_ns(100000); } } /*****************************************/ /* Debug logging and watchdog */ /*****************************************/ // This function is called for every log message. void bluescsiplatform_log(const char *s) { uart_puts(uart0, s); } static int g_watchdog_timeout; static bool g_watchdog_initialized; static void watchdog_callback(unsigned alarm_num) { g_watchdog_timeout -= 1000; if (g_watchdog_timeout <= WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT) { if (!scsiDev.resetFlag || !g_scsiHostPhyReset) { bluelog("--------------"); bluelog("WATCHDOG TIMEOUT, attempting bus reset"); bluelog("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in); uint32_t *p = (uint32_t*)__get_PSP(); for (int i = 0; i < 8; i++) { if (p == &__StackTop) break; // End of stack bluelog("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]); p += 4; } scsiDev.resetFlag = 1; g_scsiHostPhyReset = true; } if (g_watchdog_timeout <= 0) { bluelog("--------------"); bluelog("WATCHDOG TIMEOUT!"); bluelog("Platform: ", g_bluescsiplatform_name); bluelog("FW Version: ", g_bluelog_firmwareversion); bluelog("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in); uint32_t *p = (uint32_t*)__get_PSP(); for (int i = 0; i < 8; i++) { if (p == &__StackTop) break; // End of stack bluelog("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]); p += 4; } bluescsiplatform_emergency_log_save(); bluescsiplatform_boot_to_main_firmware(); } } hardware_alarm_set_target(3, delayed_by_ms(get_absolute_time(), 1000)); } // This function can be used to periodically reset watchdog timer for crash handling. // It can also be left empty if the platform does not use a watchdog timer. void bluescsiplatform_reset_watchdog() { g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT; if (!g_watchdog_initialized) { hardware_alarm_claim(3); hardware_alarm_set_callback(3, &watchdog_callback); hardware_alarm_set_target(3, delayed_by_ms(get_absolute_time(), 1000)); g_watchdog_initialized = true; } } /*****************************************/ /* Flash reprogramming from bootloader */ /*****************************************/ #ifdef BLUESCSIPLATFORM_BOOTLOADER_SIZE extern uint32_t __real_vectors_start; extern uint32_t __StackTop; static volatile void *g_bootloader_exit_req; bool bluescsiplatform_rewrite_flash_page(uint32_t offset, uint8_t buffer[BLUESCSIPLATFORM_FLASH_PAGE_SIZE]) { if (offset == BLUESCSIPLATFORM_BOOTLOADER_SIZE) { if (buffer[3] != 0x20 || buffer[7] != 0x10) { bluelog("Invalid firmware file, starts with: ", bytearray(buffer, 16)); return false; } } bluedbg("Writing flash at offset ", offset, " data ", bytearray(buffer, 4)); assert(offset % BLUESCSIPLATFORM_FLASH_PAGE_SIZE == 0); assert(offset >= BLUESCSIPLATFORM_BOOTLOADER_SIZE); // Avoid any mbed timer interrupts triggering during the flashing. __disable_irq(); // For some reason any code executed after flashing crashes // unless we disable the XIP cache. // Not sure why this happens, as flash_range_program() is flushing // the cache correctly. // The cache is now enabled from bootloader start until it starts // flashing, and again after reset to main firmware. xip_ctrl_hw->ctrl = 0; flash_range_erase(offset, BLUESCSIPLATFORM_FLASH_PAGE_SIZE); flash_range_program(offset, buffer, BLUESCSIPLATFORM_FLASH_PAGE_SIZE); uint32_t *buf32 = (uint32_t*)buffer; uint32_t num_words = BLUESCSIPLATFORM_FLASH_PAGE_SIZE / 4; for (int i = 0; i < num_words; i++) { uint32_t expected = buf32[i]; uint32_t actual = *(volatile uint32_t*)(XIP_NOCACHE_BASE + offset + i * 4); if (actual != expected) { bluelog("Flash verify failed at offset ", offset + i * 4, " got ", actual, " expected ", expected); return false; } } __enable_irq(); return true; } void bluescsiplatform_boot_to_main_firmware() { // To ensure that the system state is reset properly, we perform // a SYSRESETREQ and jump straight from the reset vector to main application. g_bootloader_exit_req = &g_bootloader_exit_req; SCB->AIRCR = 0x05FA0004; while(1); } void btldr_reset_handler() { uint32_t* application_base = &__real_vectors_start; if (g_bootloader_exit_req == &g_bootloader_exit_req) { // Boot to main application application_base = (uint32_t*)(XIP_BASE + BLUESCSIPLATFORM_BOOTLOADER_SIZE); } SCB->VTOR = (uint32_t)application_base; __asm__( "msr msp, %0\n\t" "bx %1" : : "r" (application_base[0]), "r" (application_base[1]) : "memory"); } // Replace the reset handler when building the bootloader // The rp2040_btldr.ld places real vector table at an offset. __attribute__((section(".btldr_vectors"))) const void * btldr_vectors[2] = {&__StackTop, (void*)&btldr_reset_handler}; #endif /**********************************************/ /* Mapping from data bytes to GPIO BOP values */ /**********************************************/ /* A lookup table is the fastest way to calculate parity and convert the IO pin mapping for data bus. * For RP2040 we expect that the bits are consecutive and in order. */ #define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1) #define X(n) (\ ((n & 0x01) ? 0 : (1 << SCSI_IO_DB0)) | \ ((n & 0x02) ? 0 : (1 << SCSI_IO_DB1)) | \ ((n & 0x04) ? 0 : (1 << SCSI_IO_DB2)) | \ ((n & 0x08) ? 0 : (1 << SCSI_IO_DB3)) | \ ((n & 0x10) ? 0 : (1 << SCSI_IO_DB4)) | \ ((n & 0x20) ? 0 : (1 << SCSI_IO_DB5)) | \ ((n & 0x40) ? 0 : (1 << SCSI_IO_DB6)) | \ ((n & 0x80) ? 0 : (1 << SCSI_IO_DB7)) | \ (PARITY(n) ? 0 : (1 << SCSI_IO_DBP)) \ ) const uint32_t g_scsi_parity_lookup[256] = { X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f), X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f), X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f), X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f), X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f), X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f), X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f), X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f), X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f), X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f), X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf), X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf), X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf), X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf), X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef), X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff) }; #undef X } /* extern "C" */ /* Logging from mbed */ static class LogTarget: public mbed::FileHandle { public: virtual ssize_t read(void *buffer, size_t size) { return 0; } virtual ssize_t write(const void *buffer, size_t size) { // A bit inefficient but mbed seems to write() one character // at a time anyways. for (int i = 0; i < size; i++) { char buf[2] = {((const char*)buffer)[i], 0}; bluelog_raw(buf); } return size; } virtual off_t seek(off_t offset, int whence = SEEK_SET) { return offset; } virtual int close() { return 0; } virtual off_t size() { return 0; } } g_LogTarget; mbed::FileHandle *mbed::mbed_override_console(int fd) { return &g_LogTarget; }