/**
* ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
*
* ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version.
*
* https://www.gnu.org/licenses/gpl-3.0.html
* ----
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
**/
#include "BlueSCSI_platform.h"
#include "BlueSCSI_log.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "scsi_accel_target.h"
#include "custom_timings.h"
#include
#include
#ifdef SD_USE_RP2350_SDIO
#include
#else
#include
#endif
#ifndef PIO_FRAMEWORK_ARDUINO_NO_USB
# include
# include
#endif
#include
// Definitions of Global PIN definitions that may change depending on hardware rev
uint32_t SCSI_ACCEL_PINMASK = SCSI_ACCEL_SETPINS;
uint8_t SCSI_OUT_REQ = SCSI_OUT_REQ_CURRENT;
uint8_t SCSI_OUT_SEL = SCSI_OUT_SEL_CURRENT;
#ifdef BLUESCSI_NETWORK
extern "C" {
# include
}
# ifdef BLUESCSI_RM2
# include
# endif
#endif // BLUESCSI_NETWORK
#ifdef PLATFORM_MASS_STORAGE
#include "BlueSCSI_platform_msc.h"
#endif
#ifdef ENABLE_AUDIO_OUTPUT_SPDIF
# include "audio_spdif.h"
#elif defined(ENABLE_AUDIO_OUTPUT_I2S)
# include "audio_i2s.h"
#endif // ENABLE_AUDIO_OUTPUT_SPDIF
extern bool g_rawdrive_active;
extern "C" {
#include "timings_RP2MCU.h"
const char *g_platform_name = PLATFORM_NAME;
static bool g_scsi_initiator = false;
static bool g_supports_initiator = false;
static uint32_t g_flash_chip_size = 0;
static bool g_uart_initialized = false;
static bool g_led_blinking = false;
static void usb_log_poll();
#if !defined(PICO_CYW43_SUPPORTED)
extern bool __isPicoW;
#endif
/***************/
/* GPIO init */
/***************/
// Helper function to configure whole GPIO in one line
static void gpio_conf(uint gpio, gpio_function_t fn, bool pullup, bool pulldown, bool output, bool initial_state, bool fast_slew)
{
gpio_put(gpio, initial_state);
gpio_set_dir(gpio, output);
gpio_set_pulls(gpio, pullup, pulldown);
gpio_set_function(gpio, fn);
if (fast_slew)
{
pads_bank0_hw->io[gpio] |= PADS_BANK0_GPIO0_SLEWFAST_BITS;
}
}
static void reclock() {
// ensure UART is fully drained before we mess up its clock
if (uart_is_enabled(uart0))
uart_tx_wait_blocking(uart0);
// switch clk_sys and clk_peri to pll_usb
// see code in 2.15.6.1 of the datasheet for useful comments
clock_configure(clk_sys,
CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
48 * MHZ,
48 * MHZ);
clock_configure(clk_peri,
0,
CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
48 * MHZ,
48 * MHZ);
// reset PLL
pll_init(pll_sys,
g_bluescsi_timings->pll.refdiv,
g_bluescsi_timings->pll.vco_freq,
g_bluescsi_timings->pll.post_div1,
g_bluescsi_timings->pll.post_div2);
// switch clocks back to pll_sys
clock_configure(clk_sys,
CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
g_bluescsi_timings->clk_hz,
g_bluescsi_timings->clk_hz);
clock_configure(clk_peri,
0,
CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
g_bluescsi_timings->clk_hz,
g_bluescsi_timings->clk_hz);
// reset UART for the new clock speed
if (uart_is_enabled(uart0))
uart_init(uart0, 1000000);
}
uint32_t platform_sys_clock_in_hz()
{
return clock_get_hz(clk_sys);
}
bool platform_reclock(bluescsi_speed_grade_t speed_grade)
{
CustomTimings ct;
bool do_reclock = false;
if (speed_grade != SPEED_GRADE_DEFAULT)
{
if (speed_grade == SPEED_GRADE_CUSTOM)
{
if (ct.use_custom_timings())
{
logmsg("Using custom timings found in \"", CUSTOM_TIMINGS_FILE, "\" for reclocking");
ct.set_timings_from_file();
do_reclock = true;
}
else
{
logmsg("Custom timings file, \"", CUSTOM_TIMINGS_FILE, "\" not found or disabled");
}
}
else if (set_timings(speed_grade))
do_reclock = true;
if (do_reclock)
{
#ifdef ENABLE_AUDIO_OUTPUT
if (g_bluescsi_timings->audio.audio_clocked)
logmsg("Reclocking with these settings are compatible with CD audio playback");
else
logmsg("Reclocking with these settings may cause audio playback to be too fast or slow ");
#endif
logmsg("Initial Clock set to ", (int) platform_sys_clock_in_hz() / MHZ, "MHz");
logmsg("Reclocking the MCU to ",(int) g_bluescsi_timings->clk_hz / MHZ, "MHz");
#ifndef SD_USE_RP2350_SDIO
logmsg("Setting the SDIO clock to ", (int)((g_bluescsi_timings->clk_hz / g_bluescsi_timings->sdio.clk_div_pio + (5 * MHZ / 10)) / MHZ) , "MHz");
#endif
usb_log_poll();
reclock();
logmsg("After reclocking, system reports clock set to ", (int) platform_sys_clock_in_hz() / MHZ, "MHz");
}
}
else
dbgmsg("Speed grade is set to default, reclocking skipped");
return do_reclock;
}
/**
* This is a workaround until arduino framework can be updated to handle all 4 variations of
* Pico1/1w/2/2w. In testing this works on all for BlueSCSI.
* Tracking here https://github.com/earlephilhower/arduino-pico/issues/2671
*/
bool platform_check_picow() {
static int8_t isPicoW = -1; // -1 = unchecked, 0 = false, 1 = true
if (isPicoW != -1)
return isPicoW == 1;
#ifndef CYW43_PIN_WL_CLOCK
uint8_t cyw43_pin_wl_clock = 29; // Default to GPIO 29, which is the CYW43_PIN_WL_CLOCK
#else
uint8_t cyw43_pin_wl_clock = CYW43_PIN_WL_CLOCK;
#endif
adc_init();
const auto dir = gpio_get_dir(cyw43_pin_wl_clock);
const auto fnc = gpio_get_function(cyw43_pin_wl_clock);
adc_gpio_init(cyw43_pin_wl_clock);
adc_select_input(3);
const auto adc29 = adc_read();
gpio_set_function(cyw43_pin_wl_clock, fnc);
gpio_set_dir(cyw43_pin_wl_clock, dir);
if (adc29 < 200) {
#ifdef CYW43_PIN_WL_CLOCK
__isPicoW = true; // Set the global if available for PicoW || Pico2W
#endif
isPicoW = 1;
} else {
#ifdef CYW43_PIN_WL_CLOCK
__isPicoW = false;
#endif
isPicoW = 0;
}
return isPicoW == 1;
}
bool platform_rebooted_into_mass_storage()
{
volatile uint32_t* scratch0 = (uint32_t *)(WATCHDOG_BASE + WATCHDOG_SCRATCH0_OFFSET);
if (*scratch0 == REBOOT_INTO_MASS_STORAGE_MAGIC_NUM)
{
*scratch0 = 0;
return true;
}
return false;
}
#ifdef HAS_DIP_SWITCHES
enum pin_setup_state_t {SETUP_FALSE, SETUP_TRUE, SETUP_UNDETERMINED};
static pin_setup_state_t read_setup_ack_pin()
{
/* Revision 2022d of the RP2040 hardware has problems reading initiator DIP switch setting.
* The 74LVT245 hold current is keeping the GPIO_ACK state too strongly.
* Detect this condition by toggling the pin up and down and seeing if it sticks.
*
* Revision 2023b and 2023c of the Pico boards have issues reading TERM and DEBUG DIP switch
* settings. GPIO_ACK is externally pulled down to ground for later revisions.
* If the state is detected as undetermined then the board is the 2023b or 2023c revision.
*/
// Strong output high, then pulldown
// pin function pup pdown out state fast
gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, false, false, true, true, false);
gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, false, true, false, true, false);
delay(1);
bool ack_state1 = gpio_get(SCSI_IN_ACK);
// Strong output low, then pullup
// pin function pup pdown out state fast
gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, false, false, true, false, false);
gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, true, false, false, false, false);
delay(1);
bool ack_state2 = gpio_get(SCSI_IN_ACK);
if (ack_state1 == ack_state2)
{
// Ok, was able to read the state directly
return !ack_state1 ? SETUP_TRUE : SETUP_FALSE;
}
// Enable OUT_BSY for a short time.
// If in target mode, this will force GPIO_ACK high.
gpio_put(SCSI_OUT_BSY, 0);
delay_100ns();
gpio_put(SCSI_OUT_BSY, 1);
return SETUP_UNDETERMINED;
}
#endif
static bool is2023a = false;
bool checkIs2023a() {
#ifdef BLUESCSI_MCU_RP23XX
// Force out low for RP2350 errata
gpio_conf(GPIO_I2C_SCL, GPIO_FUNC_SIO, false, false, true, false, true);
gpio_conf(GPIO_I2C_SDA, GPIO_FUNC_SIO, false, false, true, false, true);
delay(10);
#endif
gpio_conf(GPIO_I2C_SCL, GPIO_FUNC_I2C, false, false, false, false, true);
gpio_conf(GPIO_I2C_SDA, GPIO_FUNC_I2C, false, false, false, false, true);
is2023a = gpio_get(GPIO_I2C_SCL) && gpio_get(GPIO_I2C_SDA);
if (is2023a) {
logmsg("I2C Supported");
g_supports_initiator = true;
gpio_conf(GPIO_I2C_SCL, GPIO_FUNC_I2C, true, false, false, true, true);
gpio_conf(GPIO_I2C_SDA, GPIO_FUNC_I2C, true, false, false, true, true);
// Use Pico SDK methods
gpio_set_function(GPIO_I2C_SCL, GPIO_FUNC_I2C);
gpio_set_function(GPIO_I2C_SDA, GPIO_FUNC_I2C);
// gpio_pull_up(GPIO_I2C_SCL); // TODO necessary?
// gpio_pull_up(GPIO_I2C_SDA);
} else {
dbgmsg("I2C not supported on this rev of hardware");
/* Check option switch settings */
// Option switches: S1 is iATN, S2 is iACK
// gpio_conf(BUTTON_SW1_PRE202309a, GPIO_FUNC_SIO, true, false, false, false, false);
// gpio_conf(BUTTON_SW1_PRE202309a, GPIO_FUNC_SIO, false, false, false, false, false);
// delay(10); /// Settle time
gpio_conf(BUTTON_SW1_PRE202309a, GPIO_FUNC_SIO, true, false, false, false, false);
gpio_conf(BUTTON_SW2_PRE202309a, GPIO_FUNC_SIO, true, false, false, false, false);
// Reset REQ to the appropriate pin for older hardware
SCSI_OUT_REQ = SCSI_OUT_REQ_PRE09A;
SCSI_ACCEL_PINMASK = SCSI_ACCEL_SETPINS_PRE09A;
SCSI_OUT_SEL = SCSI_OUT_SEL_PRE09A;
// Initialize logging to SWO pin (UART0)
gpio_conf(SWO_PIN, GPIO_FUNC_UART,false,false, true, false, true);
uart_init(uart0, 115200);
g_uart_initialized = true;
}
gpio_conf(SCSI_OUT_SEL, GPIO_FUNC_SIO, false,false, true, true, true);
return is2023a;
}
void platform_init()
{
// Make sure second core is stopped
multicore_reset_core1();
pio_clear_instruction_memory(pio0);
pio_clear_instruction_memory(pio1);
/* First configure the pins that affect external buffer directions.
* RP2040 defaults to pulldowns, while these pins have external pull-ups.
*/
// pin function pup pdown out state fast
gpio_conf(SCSI_DATA_DIR, GPIO_FUNC_SIO, false,false, true, true, true);
gpio_conf(SCSI_OUT_RST, GPIO_FUNC_SIO, false,false, true, true, true);
gpio_conf(SCSI_OUT_BSY, GPIO_FUNC_SIO, false,false, true, true, true);
/* Check dip switch settings */
#ifdef HAS_DIP_SWITCHES
gpio_conf(DIP_INITIATOR, GPIO_FUNC_SIO, false, false, false, false, false);
gpio_conf(DIP_DBGLOG, GPIO_FUNC_SIO, false, false, false, false, false);
gpio_conf(DIP_TERM, GPIO_FUNC_SIO, false, false, false, false, false);
delay(10); // 10 ms delay to let pull-ups do their work
bool working_dip = true;
bool dbglog = false;
bool termination = false;
# if defined(BLUESCSI_PICO) || defined(BLUESCSI_PICO_2)
// Initiator dip setting works on all rev 2023b, 2023c, and newer rev Pico boards
g_scsi_initiator = !gpio_get(DIP_INITIATOR);
working_dip = SETUP_UNDETERMINED != read_setup_ack_pin();
if (working_dip)
{
dbglog = !gpio_get(DIP_DBGLOG);
termination = !gpio_get(DIP_TERM);
}
# elif defined(BLUESCSI_V2_0)
pin_setup_state_t dip_state = read_setup_ack_pin();
if (dip_state == SETUP_UNDETERMINED)
{
// This path is used for the few early RP2040 boards assembled with
// Diodes Incorporated 74LVT245B, which has higher bus hold
// current.
working_dip = false;
g_scsi_initiator = !gpio_get(DIP_INITIATOR); // Read fallback value
}
else
{
g_scsi_initiator = (SETUP_TRUE == dip_state);
termination = !gpio_get(DIP_TERM);
}
// dbglog DIP switch works in any case, as it does not have bus hold.
dbglog = !gpio_get(DIP_DBGLOG);
g_log_debug = dbglog;
# else
g_scsi_initiator = !gpio_get(DIP_INITIATOR);
termination = !gpio_get(DIP_TERM);
dbglog = !gpio_get(DIP_DBGLOG);
g_log_debug = dbglog;
# endif
#else
delay(10);
#endif // HAS_DIP_SWITCHES
#ifndef DISABLE_SWO
/* Initialize logging to SWO pin (UART0) */
// gpio_conf(SWO_PIN, GPIO_FUNC_UART,false,false, true, false, true);
// uart_init(uart0, 1000000);
// g_uart_initialized = true;
#endif // DISABLE_SWO
logmsg("Platform: ", g_platform_name, " (", PLATFORM_PID, platform_check_picow() ? "/W" : "", ")");
logmsg("FW Version: ", g_log_firmwareversion);
#ifdef HAS_DIP_SWITCHES
if (working_dip)
{
logmsg("DIP switch settings: debug log ", (int)dbglog, ", termination ", (int)termination);
g_log_debug = dbglog;
if (termination)
{
logmsg("SCSI termination is enabled");
}
else
{
logmsg("NOTE: SCSI termination is disabled");
}
}
else
{
logmsg("SCSI termination is determined by the DIP switch labeled \"TERM\"");
#if defined(BLUESCSI_PICO) || defined(BLUESCSI_PICO_2)
logmsg("Debug logging can only be enabled via INI file \"DEBUG=1\" under [SCSI] in bluescsi.ini");
logmsg("-- DEBUG DIP switch setting is ignored on BlueSCSI Pico FS Rev. 2023b and 2023c boards");
g_log_debug = false;
#endif
}
#else
g_log_debug = false;
//logmsg ("SCSI termination is handled by a hardware jumper");
#endif // HAS_DIP_SWITCHES
// logmsg("===========================================================");
// logmsg(" Powered by Raspberry Pi");
// logmsg(" Raspberry Pi is a trademark of Raspberry Pi Ltd");
// logmsg("===========================================================");
// Get flash chip size
uint8_t cmd_read_jedec_id[4] = {0x9f, 0, 0, 0};
uint8_t response_jedec[4] = {0};
uint32_t saved_irq = save_and_disable_interrupts();
flash_do_cmd(cmd_read_jedec_id, response_jedec, 4);
restore_interrupts(saved_irq);
g_flash_chip_size = (1 << response_jedec[3]);
logmsg("Flash chip size: ", (int)(g_flash_chip_size / 1024), " kB");
// SD card pins
// Card is used in SDIO mode for main program, and in SPI mode for crash handler & bootloader.
// pin function pup pdown out state fast
gpio_conf(SD_SPI_SCK, GPIO_FUNC_SPI, true, false, true, true, true);
gpio_conf(SD_SPI_MOSI, GPIO_FUNC_SPI, true, false, true, true, true);
gpio_conf(SD_SPI_MISO, GPIO_FUNC_SPI, true, false, false, true, true);
gpio_conf(SD_SPI_CS, GPIO_FUNC_SIO, true, false, true, true, true);
gpio_conf(SDIO_D1, GPIO_FUNC_SIO, true, false, false, true, true);
gpio_conf(SDIO_D2, GPIO_FUNC_SIO, true, false, false, true, true);
// LED pin
gpio_conf(LED_PIN, GPIO_FUNC_SIO, false,false, true, false, false);
#ifndef ENABLE_AUDIO_OUTPUT_SPDIF
#ifdef GPIO_I2C_SDA
// I2C pins
// pin function pup pdown out state fast
// gpio_conf(GPIO_I2C_SCL, GPIO_FUNC_I2C, true,false, false, true, true);
// gpio_conf(GPIO_I2C_SDA, GPIO_FUNC_I2C, true,false, false, true, true);
#endif // GPIO_I2C_SDA
#else
// pin function pup pdown out state fast
gpio_conf(GPIO_EXP_AUDIO, GPIO_FUNC_SPI, true,false, false, true, true);
gpio_conf(GPIO_EXP_SPARE, GPIO_FUNC_SIO, true,false, false, true, false);
// configuration of corresponding SPI unit occurs in audio_setup()
#endif // ENABLE_AUDIO_OUTPUT_SPDIF
#ifdef GPIO_USB_POWER
gpio_conf(GPIO_USB_POWER, GPIO_FUNC_SIO, false, false, false, false, false);
#endif
checkIs2023a();
}
void platform_enable_initiator_mode()
{
g_scsi_initiator = true;
}
// late_init() only runs in main application, SCSI not needed in bootloader
void platform_late_init()
{
#if defined(HAS_DIP_SWITCHES) && defined(PLATFORM_HAS_INITIATOR_MODE)
if (g_scsi_initiator == true)
{
logmsg("*************************************************************************");
logmsg(" SCSI initiator mode enabled, expecting SCSI disks on the bus ");
logmsg("*************************************************************************");
}
else
{
logmsg("SCSI target/disk mode selected by DIP switch, acting as a SCSI disk");
}
#else
// Initiator mode detected will be detected via ini.
#endif // defined(HAS_DIP_SWITCHES) && defined(PLATFORM_HAS_INITIATOR_MODE)
/* Initialize SCSI pins to required modes.
* SCSI pins should be inactive / input at this point.
*/
// SCSI data bus direction is switched by DATA_DIR signal.
// Pullups make sure that no glitches occur when switching direction.
// pin function pup pdown out state fast
gpio_conf(SCSI_IO_DB0, GPIO_FUNC_SIO, true, false, false, true, true);
gpio_conf(SCSI_IO_DB1, GPIO_FUNC_SIO, true, false, false, true, true);
gpio_conf(SCSI_IO_DB2, GPIO_FUNC_SIO, true, false, false, true, true);
gpio_conf(SCSI_IO_DB3, GPIO_FUNC_SIO, true, false, false, true, true);
gpio_conf(SCSI_IO_DB4, GPIO_FUNC_SIO, true, false, false, true, true);
gpio_conf(SCSI_IO_DB5, GPIO_FUNC_SIO, true, false, false, true, true);
gpio_conf(SCSI_IO_DB6, GPIO_FUNC_SIO, true, false, false, true, true);
gpio_conf(SCSI_IO_DB7, GPIO_FUNC_SIO, true, false, false, true, true);
gpio_conf(SCSI_IO_DBP, GPIO_FUNC_SIO, true, false, false, true, true);
if (!g_scsi_initiator)
{
// Act as SCSI device / target
// SCSI control outputs
// pin function pup pdown out state fast
gpio_conf(SCSI_OUT_IO, GPIO_FUNC_SIO, false,false, true, true, true);
gpio_conf(SCSI_OUT_MSG, GPIO_FUNC_SIO, false,false, true, true, true);
// REQ pin is switched between PIO and SIO, pull-up makes sure no glitches
gpio_conf(SCSI_OUT_REQ, GPIO_FUNC_SIO, true ,false, true, true, true);
// Shared pins are changed to input / output depending on communication phase
gpio_conf(SCSI_IN_SEL, GPIO_FUNC_SIO, true, false, false, true, true);
if (SCSI_OUT_CD != SCSI_IN_SEL)
{
gpio_conf(SCSI_OUT_CD, GPIO_FUNC_SIO, false,false, true, true, true);
}
gpio_conf(SCSI_IN_BSY, GPIO_FUNC_SIO, true, false, false, true, true);
if (SCSI_OUT_MSG != SCSI_IN_BSY)
{
gpio_conf(SCSI_OUT_MSG, GPIO_FUNC_SIO, false,false, true, true, true);
}
// SCSI control inputs
// pin function pup pdown out state fast
gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, true, false, false, true, false);
gpio_conf(SCSI_IN_ATN, GPIO_FUNC_SIO, true, false, false, true, false);
gpio_conf(SCSI_IN_RST, GPIO_FUNC_SIO, true, false, false, true, false);
#ifdef BLUESCSI_RM2
uint rm2_pins[CYW43_PIN_INDEX_WL_COUNT] = {0};
rm2_pins[CYW43_PIN_INDEX_WL_REG_ON] = GPIO_RM2_ON;
rm2_pins[CYW43_PIN_INDEX_WL_DATA_OUT] = GPIO_RM2_DATA;
rm2_pins[CYW43_PIN_INDEX_WL_DATA_IN] = GPIO_RM2_DATA;
rm2_pins[CYW43_PIN_INDEX_WL_HOST_WAKE] = GPIO_RM2_DATA;
rm2_pins[CYW43_PIN_INDEX_WL_CLOCK] = GPIO_RM2_CLK;
rm2_pins[CYW43_PIN_INDEX_WL_CS] = GPIO_RM2_CS;
assert(PICO_OK == cyw43_set_pins_wl(rm2_pins));
if (platform_reclock(SPEED_GRADE_WIFI_RM2))
{
// The iface check turns on the LED on the RM2 early in the init process
// Should tell the user that the RM2 is working
if(platform_network_iface_check())
{
logmsg("RM2 found");
}
else
{
# ifdef BLUESCSI_BLASTER
logmsg("RM2 not found, upclocking");
platform_reclock(SPEED_GRADE_AUDIO_I2S);
# else
logmsg("RM2 not found");
# endif
}
}
else
{
logmsg("WiFi RM2 timings not found");
}
#elif defined(ENABLE_AUDIO_OUTPUT_I2S)
logmsg("I2S audio to expansion header enabled");
if (!platform_reclock(SPEED_GRADE_AUDIO_I2S))
{
logmsg("Audio output timings not found");
}
#elif defined(ENABLE_AUDIO_OUTPUT_SPDIF)
logmsg("S/PDIF audio to expansion header enabled");
if (platform_reclock(SPEED_GRADE_AUDIO_SPDIF))
{
logmsg("Reclocked for Audio Ouput at ", (int) platform_sys_clock_in_hz(), "Hz");
}
else
{
logmsg("Audio Output timings not found");
}
#endif // ENABLE_AUDIO_OUTPUT_SPDIF
// This should turn on the LED for Pico 1/2 W devices early in the init process
// It should help indicate to the user that interface is working and the board is ready for DaynaPORT
#if defined(BLUESCSI_NETWORK) && ! defined(BLUESCSI_RM2)
if (platform_network_supported())
platform_network_iface_check();
#endif
#ifdef ENABLE_AUDIO_OUTPUT
// one-time control setup for DMA channels and second core
audio_setup();
#endif // ENABLE_AUDIO_OUTPUT_SPDIF
}
else
{
#ifndef PLATFORM_HAS_INITIATOR_MODE
assert(false);
#else
platform_initiator_gpio_setup();
#endif // PLATFORM_HAS_INITIATOR_MODE
}
#ifndef PIO_FRAMEWORK_ARDUINO_NO_USB
Serial.begin();
#endif
scsi_accel_rp2040_init();
}
// Act as SCSI initiator
void platform_initiator_gpio_setup() {
// pin function pup pdown out state fast
gpio_conf(SCSI_IN_IO, GPIO_FUNC_SIO, true ,false, false, true, false);
gpio_conf(SCSI_IN_MSG, GPIO_FUNC_SIO, true ,false, false, true, false);
gpio_conf(SCSI_IN_CD, GPIO_FUNC_SIO, true ,false, false, true, false);
gpio_conf(SCSI_IN_REQ, GPIO_FUNC_SIO, true ,false, false, true, false);
gpio_conf(SCSI_IN_BSY, GPIO_FUNC_SIO, true, false, false, true, false);
gpio_conf(SCSI_IN_RST, GPIO_FUNC_SIO, true, false, false, true, false);
gpio_conf(SCSI_OUT_RST, GPIO_FUNC_SIO, false,false, true, true, true);
gpio_conf(SCSI_OUT_ACK, GPIO_FUNC_SIO, true,false, true, true, true);
//gpio_conf(SCSI_OUT_ATN, GPIO_FUNC_SIO, false,false, true, true, true); // ATN output is unused
}
bool platform_supports_initiator_mode() {
return g_supports_initiator;
}
void platform_post_sd_card_init() {}
bool platform_is_initiator_mode_enabled()
{
// logmsg("Initiator mode enabled: ", g_scsi_initiator);
return g_scsi_initiator;
}
void platform_write_led(bool state)
{
if (g_led_blinking) return;
if (g_scsi_settings.getSystem()->invertStatusLed)
state = !state;
gpio_put(LED_PIN, state);
}
void platform_set_blink_status(bool status)
{
g_led_blinking = status;
}
void platform_write_led_override(bool state)
{
if (g_scsi_settings.getSystem()->invertStatusLed)
state = !state;
gpio_put(LED_PIN, state);
}
void platform_disable_led(void)
{
// pin function pup pdown out state fast
gpio_conf(LED_PIN, GPIO_FUNC_SIO, false,false, false, false, false);
logmsg("Disabling status LED");
}
uint8_t platform_no_sd_card_on_init_error_code()
{
return SDIO_ERR_RESPONSE_TIMEOUT;
}
/*****************************************/
/* Crash handlers */
/*****************************************/
extern SdFs SD;
extern uint32_t __StackTop;
void platform_emergency_log_save()
{
if (g_rawdrive_active)
return;
platform_set_sd_callback(NULL, NULL);
SD.begin(SD_CONFIG_CRASH);
FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
if (!crashfile.isOpen())
{
// Try to reinitialize
int max_retry = 10;
while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH));
crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
}
uint32_t startpos = 0;
crashfile.write(log_get_buffer(&startpos));
crashfile.write(log_get_buffer(&startpos));
crashfile.flush();
crashfile.close();
}
static void usb_log_poll();
static void usb_input_poll();
__attribute__((noinline))
void show_hardfault(uint32_t *sp)
{
uint32_t pc = sp[6];
uint32_t lr = sp[5];
logmsg("--------------");
logmsg("CRASH!");
logmsg("Platform: ", g_platform_name);
logmsg("FW Version: ", g_log_firmwareversion);
logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
logmsg("scsiDev.phase: ", (int)scsiDev.phase);
logmsg("SP: ", (uint32_t)sp);
logmsg("PC: ", pc);
logmsg("LR: ", lr);
logmsg("R0: ", sp[0]);
logmsg("R1: ", sp[1]);
logmsg("R2: ", sp[2]);
logmsg("R3: ", sp[3]);
uint32_t *p = (uint32_t*)((uint32_t)sp & ~3);
for (int i = 0; i < 8; i++)
{
if (p == &__StackTop) break; // End of stack
logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
p += 4;
}
platform_emergency_log_save();
while (1)
{
usb_log_poll();
// Flash the crash address on the LED
// Short pulse means 0, long pulse means 1
int base_delay = 500;
for (int i = 31; i >= 0; i--)
{
LED_OFF();
for (int j = 0; j < base_delay; j++) busy_wait_ms(1);
int delay = (pc & (1 << i)) ? (3 * base_delay) : base_delay;
LED_ON();
for (int j = 0; j < delay; j++) busy_wait_ms(1);
LED_OFF();
}
for (int j = 0; j < base_delay * 10; j++) busy_wait_ms(1);
}
}
__attribute__((naked, interrupt))
void isr_hardfault(void)
{
// Copies stack pointer into first argument
asm("mrs r0, msp\n"
"bl show_hardfault": : : "r0");
}
/*****************************************/
/* Debug logging and watchdog */
/*****************************************/
static bool usb_serial_connected()
{
#ifdef PIO_FRAMEWORK_ARDUINO_NO_USB
return false;
#endif
static bool connected;
static uint32_t last_check_time;
#ifdef PLATFORM_MASS_STORAGE
if (platform_msc_lock_get()) return connected; // Avoid re-entrant USB events
#endif
if (last_check_time == 0 || (uint32_t)(millis() - last_check_time) > 50)
{
connected = bool(Serial);
last_check_time = millis();
}
return connected;
}
// Send log data to USB UART if USB is connected.
// Data is retrieved from the shared log ring buffer and
// this function sends as much as fits in USB CDC buffer.
//
// This is normally called by platform_reset_watchdog() in
// the normal polling loop. If code hangs, the watchdog_callback()
// also starts calling this after 2 seconds.
// This ensures that log messages get passed even if code hangs,
// but does not unnecessarily delay normal execution.
static void usb_log_poll()
{
#ifndef PIO_FRAMEWORK_ARDUINO_NO_USB
static uint32_t logpos = 0;
if (!usb_serial_connected()) return;
#ifdef PLATFORM_MASS_STORAGE
if (platform_msc_lock_get()) return; // Avoid re-entrant USB events
#endif
if (Serial.availableForWrite())
{
// Retrieve pointer to log start and determine number of bytes available.
uint32_t available = 0;
const char *data = log_get_buffer(&logpos, &available);
// Limit to CDC packet size
uint32_t len = available;
if (len == 0) return;
if (len > CFG_TUD_CDC_EP_BUFSIZE) len = CFG_TUD_CDC_EP_BUFSIZE;
// Update log position by the actual number of bytes sent
// If USB CDC buffer is full, this may be 0
uint32_t actual = 0;
actual = Serial.write(data, len);
logpos -= available - actual;
}
#endif // PIO_FRAMEWORK_ARDUINO_NO_USB
}
// Grab input from USB Serial terminal
static void usb_input_poll()
{
#ifndef PIO_FRAMEWORK_ARDUINO_NO_USB
if (!usb_serial_connected()) return;
#ifdef PLATFORM_MASS_STORAGE
if (platform_msc_lock_get()) return; // Avoid re-entrant USB events
#endif
// Capture reboot key sequence
static bool mass_storage_reboot_keyed = false;
static bool basic_reboot_keyed = false;
static bool uf2_reboot_keyed = false;
volatile uint32_t* scratch0 = (uint32_t *)(WATCHDOG_BASE + WATCHDOG_SCRATCH0_OFFSET);
int32_t available = Serial.available();
if(available > 0)
{
int32_t read = Serial.read();
switch((char) read)
{
case 'R':
case 'r':
basic_reboot_keyed = true;
mass_storage_reboot_keyed = uf2_reboot_keyed = false;
logmsg("Basic reboot requested, press 'y' to engage or any key to clear");
break;
case 'M':
case 'm':
mass_storage_reboot_keyed = true;
basic_reboot_keyed = uf2_reboot_keyed = false;
logmsg("Boot into mass storage requested, press 'y' to engage or any key to clear");
*scratch0 = REBOOT_INTO_MASS_STORAGE_MAGIC_NUM;
break;
case 'B':
case 'b':
uf2_reboot_keyed = true;
basic_reboot_keyed = mass_storage_reboot_keyed = false;
logmsg("Boot into uf2 bootloader requested, press 'y' to engage or any key to clear");
break;
case 'd':
case 'D':
g_log_debug = !g_log_debug;
logmsg("Debug logging ", g_log_debug ? "enabled" : "disabled");
break;
case 'H':
case 'h':
logmsg("Available commands:");
logmsg(" r - Reboot");
logmsg(" m - Reboot into mass storage mode");
logmsg(" b - Reboot into uf2 bootloader");
logmsg(" d - Toggle debug logging");
logmsg(" h - Show this help message");
break;
case 'Y':
case 'y':
if (basic_reboot_keyed || mass_storage_reboot_keyed)
{
logmsg("Rebooting", mass_storage_reboot_keyed ? " into mass storage": "");
watchdog_reboot(0, 0, 2000);
} else if (uf2_reboot_keyed) {
rom_reset_usb_boot(0, 0);
}
break;
case '\n':
break;
default:
if (basic_reboot_keyed || mass_storage_reboot_keyed || uf2_reboot_keyed)
logmsg("Cleared reboot setting");
mass_storage_reboot_keyed =basic_reboot_keyed = uf2_reboot_keyed = false;
}
}
#endif // PIO_FRAMEWORK_ARDUINO_NO_USB
}
// Use ADC to implement supply voltage monitoring for the +3.0V rail.
// This works by sampling the temperature sensor channel, which has
// a voltage of 0.7 V, allowing to calculate the VDD voltage.
static void adc_poll()
{
#if PLATFORM_VDD_WARNING_LIMIT_mV > 0
static bool initialized = false;
static bool adc_initial_logged = false;
static int lowest_vdd_seen = PLATFORM_VDD_WARNING_LIMIT_mV;
if (!initialized)
{
adc_init();
adc_set_temp_sensor_enabled(true);
adc_set_clkdiv(65535); // Lowest samplerate, about 2 kHz
#ifdef BLUESCSI_BLASTER
adc_select_input(8);
#else
adc_select_input(4);
#endif
adc_fifo_setup(true, false, 0, false, false);
adc_run(true);
initialized = true;
}
#ifdef ENABLE_AUDIO_OUTPUT_SPDIF
/*
* If ADC sample reads are done, either via direct reading, FIFO, or DMA,
* at the same time a SPI DMA write begins, it appears that the first
* 16-bit word of the DMA data is lost. This causes the bitstream to glitch
* and audio to 'pop' noticably. For now, just disable ADC reads when audio
* is playing.
*/
if (audio_is_active()) return;
#endif // ENABLE_AUDIO_OUTPUT_SPDIF
int adc_value_max = 0;
while (!adc_fifo_is_empty())
{
int adc_value = adc_fifo_get();
if (adc_value > adc_value_max) adc_value_max = adc_value;
}
// adc_value = 700mV * 4096 / Vdd
// => Vdd = 700mV * 4096 / adc_value
// To avoid wasting time on division, compare against
// limit directly.
const int limit = (700 * 4096) / PLATFORM_VDD_WARNING_LIMIT_mV;
if (adc_value_max > limit)
{
// Warn once, and then again if we detect even a lower drop.
int vdd_mV = (700 * 4096) / adc_value_max;
if (vdd_mV < lowest_vdd_seen)
{
logmsg("WARNING: Detected supply voltage drop to ", vdd_mV, "mV. Verify power supply is adequate.");
lowest_vdd_seen = vdd_mV - 50; // Small hysteresis to avoid excessive warnings
}
}
else if (!adc_initial_logged && adc_value_max != 0)
{
adc_initial_logged = true;
int vdd_mV = (700 * 4096) / adc_value_max;
logmsg("INFO: Pico Voltage: ", (vdd_mV / 1000.0), "V.");
}
#endif // PLATFORM_VDD_WARNING_LIMIT_mV > 0
}
// This function is called for every log message.
void platform_log(const char *s)
{
if (g_uart_initialized)
{
uart_puts(uart0, s);
}
}
static int g_watchdog_timeout;
static bool g_watchdog_initialized;
static void watchdog_callback(unsigned alarm_num)
{
g_watchdog_timeout -= 1000;
if (g_watchdog_timeout < WATCHDOG_CRASH_TIMEOUT - 1000)
{
// Been stuck for at least a second, start dumping USB log
usb_log_poll();
}
if (g_watchdog_timeout <= WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT)
{
if (!scsiDev.resetFlag || !g_scsiHostPhyReset)
{
logmsg("--------------");
logmsg("WATCHDOG TIMEOUT, attempting bus reset");
logmsg("Platform: ", g_platform_name);
logmsg("FW Version: ", g_log_firmwareversion);
logmsg("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in);
logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
logmsg("scsiDev.phase: ", (int)scsiDev.phase);
scsi_accel_log_state();
uint32_t msp;
asm volatile ("MRS %0, msp" : "=r" (msp) );
uint32_t *p = (uint32_t*)msp;
for (int i = 0; i < 8; i++)
{
if (p == &__StackTop) break; // End of stack
logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
p += 4;
}
scsiDev.resetFlag = 1;
g_scsiHostPhyReset = true;
}
if (g_watchdog_timeout <= 0)
{
logmsg("--------------");
logmsg("WATCHDOG TIMEOUT, already attempted bus reset, rebooting");
logmsg("Platform: ", g_platform_name);
logmsg("FW Version: ", g_log_firmwareversion);
logmsg("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in);
logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
logmsg("scsiDev.phase: ", (int)scsiDev.phase);
uint32_t msp;
asm volatile ("MRS %0, msp" : "=r" (msp) );
uint32_t *p = (uint32_t*)msp;
for (int i = 0; i < 8; i++)
{
if (p == &__StackTop) break; // End of stack
logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
p += 4;
}
usb_log_poll();
platform_emergency_log_save();
platform_boot_to_main_firmware();
}
}
hardware_alarm_set_target(alarm_num, delayed_by_ms(get_absolute_time(), 1000));
}
// This function can be used to periodically reset watchdog timer for crash handling.
// It can also be left empty if the platform does not use a watchdog timer.
void platform_reset_watchdog()
{
g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT;
if (!g_watchdog_initialized)
{
int alarm_num = -1;
for (int i = 0; i < NUM_GENERIC_TIMERS; i++)
{
if (!hardware_alarm_is_claimed(i))
{
alarm_num = i;
break;
}
}
if (alarm_num == -1)
{
logmsg("No free watchdog hardware alarms to claim");
return;
}
hardware_alarm_claim(alarm_num);
hardware_alarm_set_callback(alarm_num, &watchdog_callback);
hardware_alarm_set_target(alarm_num, delayed_by_ms(get_absolute_time(), 1000));
g_watchdog_initialized = true;
}
// USB log is polled here also to make sure any log messages in fault states
// get passed to USB.
usb_log_poll();
}
// Poll function that is called every few milliseconds.
// Can be left empty or used for platform-specific processing.
void platform_poll()
{
usb_input_poll();
usb_log_poll();
adc_poll();
#if defined(ENABLE_AUDIO_OUTPUT_SPDIF) || defined(ENABLE_AUDIO_OUTPUT_I2S)
audio_poll();
#endif // ENABLE_AUDIO_OUTPUT_SPDIF
}
void platform_reset_mcu()
{
watchdog_reboot(0, 0, 2000);
}
bool platform_has_i2c() {
return is2023a;
}
bool disable_i2c = false;
void platform_disable_i2c() {
gpio_conf(GPIO_I2C_SCL, GPIO_FUNC_SIO, true, false, false, false, false);
gpio_conf(GPIO_I2C_SDA, GPIO_FUNC_SIO, true, false, false, false, false);
disable_i2c = true;
}
uint8_t platform_get_buttons()
{
uint8_t buttons = 0;
#if defined(ENABLE_AUDIO_OUTPUT_SPDIF)
// pulled to VCC via resistor, sinking when pressed
if (!gpio_get(GPIO_EXP_SPARE)) buttons |= 1;
#elif defined(GPIO_I2C_SDA)
// SDA = button 1, SCL = button 2
// if (!gpio_get(GPIO_I2C_SDA)) buttons |= 1;
// if (!gpio_get(GPIO_I2C_SCL)) buttons |= 2;
#endif // defined(ENABLE_AUDIO_OUTPUT_SPDIF)
if (!is2023a) { // Pre-2023a boards have buttons on GPIO pins labeled SW1 and SW2
if (!gpio_get(BUTTON_SW1_PRE202309a)) buttons |= 1;
if (!gpio_get(BUTTON_SW2_PRE202309a)) buttons |= 2;
} else if (disable_i2c) // User wants simple buttons instead of an i2c panel
{
if (!gpio_get(GPIO_I2C_SCL)) buttons |= 1;
if (!gpio_get(GPIO_I2C_SDA)) buttons |= 2;
}
static uint8_t debounced_state = 0;
static uint8_t last_state = 0;
static uint32_t last_debounce_time = 0;
if (buttons != last_state) {
last_debounce_time = millis();
}
if ((millis() - last_debounce_time) > 50) { // 50ms debounce
debounced_state = buttons;
}
last_state = buttons;
return debounced_state;
}
bool platform_has_phy_eject_button()
{
// 2023a and later boards have i2c buttons
return !is2023a || (is2023a && disable_i2c);
}
/************************************/
/* ROM drive in extra flash space */
/************************************/
#ifdef PLATFORM_HAS_ROM_DRIVE
# ifndef ROMDRIVE_OFFSET
// Reserve up to 352 kB for firmware by default.
#define ROMDRIVE_OFFSET (352 * 1024)
# endif
uint32_t platform_get_romdrive_maxsize()
{
if (g_flash_chip_size >= ROMDRIVE_OFFSET)
{
return g_flash_chip_size - ROMDRIVE_OFFSET;
}
else
{
// Failed to read flash chip size, default to 2 MB
return 2048 * 1024 - ROMDRIVE_OFFSET;
}
}
bool platform_read_romdrive(uint8_t *dest, uint32_t start, uint32_t count)
{
xip_ctrl_hw->stream_ctr = 0;
while (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))
{
(void) xip_ctrl_hw->stream_fifo;
}
xip_ctrl_hw->stream_addr = start + ROMDRIVE_OFFSET;
xip_ctrl_hw->stream_ctr = count / 4;
// Transfer happens in multiples of 4 bytes
assert(start < platform_get_romdrive_maxsize());
assert((count & 3) == 0);
assert((((uint32_t)dest) & 3) == 0);
uint32_t *dest32 = (uint32_t*)dest;
uint32_t words_remain = count / 4;
while (words_remain > 0)
{
if (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))
{
*dest32++ = xip_ctrl_hw->stream_fifo;
words_remain--;
}
}
return true;
}
bool platform_write_romdrive(const uint8_t *data, uint32_t start, uint32_t count)
{
assert(start < platform_get_romdrive_maxsize());
assert((count % PLATFORM_ROMDRIVE_PAGE_SIZE) == 0);
uint32_t saved_irq = save_and_disable_interrupts();
flash_range_erase(start + ROMDRIVE_OFFSET, count);
flash_range_program(start + ROMDRIVE_OFFSET, data, count);
restore_interrupts(saved_irq);
return true;
}
#endif // PLATFORM_HAS_ROM_DRIVE
/**********************************************/
/* Mapping from data bytes to GPIO BOP values */
/**********************************************/
/* A lookup table is the fastest way to calculate parity and convert the IO pin mapping for data bus.
* For RP2040 we expect that the bits are consecutive and in order.
* The PIO-based parity scheme also requires that the lookup table is aligned to 512-byte increment.
* The parity table is placed into SRAM4 area to reduce bus contention.
*/
#define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)
#ifdef BLUESCSI_BLASTER
# define X(n) (\
((n & 0x01) ? 0 : (1 << 0)) | \
((n & 0x02) ? 0 : (1 << 1)) | \
((n & 0x04) ? 0 : (1 << 2)) | \
((n & 0x08) ? 0 : (1 << 3)) | \
((n & 0x10) ? 0 : (1 << 4)) | \
((n & 0x20) ? 0 : (1 << 5)) | \
((n & 0x40) ? 0 : (1 << 6)) | \
((n & 0x80) ? 0 : (1 << 7)) | \
(PARITY(n) ? 0 : (1 << 8)) \
)
#else
# define X(n) (\
((n & 0x01) ? 0 : (1 << SCSI_IO_DB0)) | \
((n & 0x02) ? 0 : (1 << SCSI_IO_DB1)) | \
((n & 0x04) ? 0 : (1 << SCSI_IO_DB2)) | \
((n & 0x08) ? 0 : (1 << SCSI_IO_DB3)) | \
((n & 0x10) ? 0 : (1 << SCSI_IO_DB4)) | \
((n & 0x20) ? 0 : (1 << SCSI_IO_DB5)) | \
((n & 0x40) ? 0 : (1 << SCSI_IO_DB6)) | \
((n & 0x80) ? 0 : (1 << SCSI_IO_DB7)) | \
(PARITY(n) ? 0 : (1 << SCSI_IO_DBP)) \
)
#endif
const uint16_t g_scsi_parity_lookup[256] __attribute__((aligned(512), section(".scratch_x.parity"))) =
{
X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),
X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),
X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),
X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),
X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),
X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),
X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),
X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),
X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),
X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),
X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),
X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),
X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),
X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),
X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),
X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)
};
#undef X
/* Similarly, another lookup table is used to verify parity of received data.
* This table is indexed by the 8 data bits + 1 parity bit from SCSI bus (active low)
* Each word contains the data byte (inverted to active-high) and a bit indicating whether parity is valid.
*/
#define X(n) (\
((n & 0xFF) ^ 0xFF) | \
(((PARITY(n & 0xFF) ^ (n >> 8)) & 1) << 8) \
)
const uint16_t g_scsi_parity_check_lookup[512] __attribute__((aligned(1024), section(".scratch_x.parity"))) =
{
X(0x000), X(0x001), X(0x002), X(0x003), X(0x004), X(0x005), X(0x006), X(0x007), X(0x008), X(0x009), X(0x00a), X(0x00b), X(0x00c), X(0x00d), X(0x00e), X(0x00f),
X(0x010), X(0x011), X(0x012), X(0x013), X(0x014), X(0x015), X(0x016), X(0x017), X(0x018), X(0x019), X(0x01a), X(0x01b), X(0x01c), X(0x01d), X(0x01e), X(0x01f),
X(0x020), X(0x021), X(0x022), X(0x023), X(0x024), X(0x025), X(0x026), X(0x027), X(0x028), X(0x029), X(0x02a), X(0x02b), X(0x02c), X(0x02d), X(0x02e), X(0x02f),
X(0x030), X(0x031), X(0x032), X(0x033), X(0x034), X(0x035), X(0x036), X(0x037), X(0x038), X(0x039), X(0x03a), X(0x03b), X(0x03c), X(0x03d), X(0x03e), X(0x03f),
X(0x040), X(0x041), X(0x042), X(0x043), X(0x044), X(0x045), X(0x046), X(0x047), X(0x048), X(0x049), X(0x04a), X(0x04b), X(0x04c), X(0x04d), X(0x04e), X(0x04f),
X(0x050), X(0x051), X(0x052), X(0x053), X(0x054), X(0x055), X(0x056), X(0x057), X(0x058), X(0x059), X(0x05a), X(0x05b), X(0x05c), X(0x05d), X(0x05e), X(0x05f),
X(0x060), X(0x061), X(0x062), X(0x063), X(0x064), X(0x065), X(0x066), X(0x067), X(0x068), X(0x069), X(0x06a), X(0x06b), X(0x06c), X(0x06d), X(0x06e), X(0x06f),
X(0x070), X(0x071), X(0x072), X(0x073), X(0x074), X(0x075), X(0x076), X(0x077), X(0x078), X(0x079), X(0x07a), X(0x07b), X(0x07c), X(0x07d), X(0x07e), X(0x07f),
X(0x080), X(0x081), X(0x082), X(0x083), X(0x084), X(0x085), X(0x086), X(0x087), X(0x088), X(0x089), X(0x08a), X(0x08b), X(0x08c), X(0x08d), X(0x08e), X(0x08f),
X(0x090), X(0x091), X(0x092), X(0x093), X(0x094), X(0x095), X(0x096), X(0x097), X(0x098), X(0x099), X(0x09a), X(0x09b), X(0x09c), X(0x09d), X(0x09e), X(0x09f),
X(0x0a0), X(0x0a1), X(0x0a2), X(0x0a3), X(0x0a4), X(0x0a5), X(0x0a6), X(0x0a7), X(0x0a8), X(0x0a9), X(0x0aa), X(0x0ab), X(0x0ac), X(0x0ad), X(0x0ae), X(0x0af),
X(0x0b0), X(0x0b1), X(0x0b2), X(0x0b3), X(0x0b4), X(0x0b5), X(0x0b6), X(0x0b7), X(0x0b8), X(0x0b9), X(0x0ba), X(0x0bb), X(0x0bc), X(0x0bd), X(0x0be), X(0x0bf),
X(0x0c0), X(0x0c1), X(0x0c2), X(0x0c3), X(0x0c4), X(0x0c5), X(0x0c6), X(0x0c7), X(0x0c8), X(0x0c9), X(0x0ca), X(0x0cb), X(0x0cc), X(0x0cd), X(0x0ce), X(0x0cf),
X(0x0d0), X(0x0d1), X(0x0d2), X(0x0d3), X(0x0d4), X(0x0d5), X(0x0d6), X(0x0d7), X(0x0d8), X(0x0d9), X(0x0da), X(0x0db), X(0x0dc), X(0x0dd), X(0x0de), X(0x0df),
X(0x0e0), X(0x0e1), X(0x0e2), X(0x0e3), X(0x0e4), X(0x0e5), X(0x0e6), X(0x0e7), X(0x0e8), X(0x0e9), X(0x0ea), X(0x0eb), X(0x0ec), X(0x0ed), X(0x0ee), X(0x0ef),
X(0x0f0), X(0x0f1), X(0x0f2), X(0x0f3), X(0x0f4), X(0x0f5), X(0x0f6), X(0x0f7), X(0x0f8), X(0x0f9), X(0x0fa), X(0x0fb), X(0x0fc), X(0x0fd), X(0x0fe), X(0x0ff),
X(0x100), X(0x101), X(0x102), X(0x103), X(0x104), X(0x105), X(0x106), X(0x107), X(0x108), X(0x109), X(0x10a), X(0x10b), X(0x10c), X(0x10d), X(0x10e), X(0x10f),
X(0x110), X(0x111), X(0x112), X(0x113), X(0x114), X(0x115), X(0x116), X(0x117), X(0x118), X(0x119), X(0x11a), X(0x11b), X(0x11c), X(0x11d), X(0x11e), X(0x11f),
X(0x120), X(0x121), X(0x122), X(0x123), X(0x124), X(0x125), X(0x126), X(0x127), X(0x128), X(0x129), X(0x12a), X(0x12b), X(0x12c), X(0x12d), X(0x12e), X(0x12f),
X(0x130), X(0x131), X(0x132), X(0x133), X(0x134), X(0x135), X(0x136), X(0x137), X(0x138), X(0x139), X(0x13a), X(0x13b), X(0x13c), X(0x13d), X(0x13e), X(0x13f),
X(0x140), X(0x141), X(0x142), X(0x143), X(0x144), X(0x145), X(0x146), X(0x147), X(0x148), X(0x149), X(0x14a), X(0x14b), X(0x14c), X(0x14d), X(0x14e), X(0x14f),
X(0x150), X(0x151), X(0x152), X(0x153), X(0x154), X(0x155), X(0x156), X(0x157), X(0x158), X(0x159), X(0x15a), X(0x15b), X(0x15c), X(0x15d), X(0x15e), X(0x15f),
X(0x160), X(0x161), X(0x162), X(0x163), X(0x164), X(0x165), X(0x166), X(0x167), X(0x168), X(0x169), X(0x16a), X(0x16b), X(0x16c), X(0x16d), X(0x16e), X(0x16f),
X(0x170), X(0x171), X(0x172), X(0x173), X(0x174), X(0x175), X(0x176), X(0x177), X(0x178), X(0x179), X(0x17a), X(0x17b), X(0x17c), X(0x17d), X(0x17e), X(0x17f),
X(0x180), X(0x181), X(0x182), X(0x183), X(0x184), X(0x185), X(0x186), X(0x187), X(0x188), X(0x189), X(0x18a), X(0x18b), X(0x18c), X(0x18d), X(0x18e), X(0x18f),
X(0x190), X(0x191), X(0x192), X(0x193), X(0x194), X(0x195), X(0x196), X(0x197), X(0x198), X(0x199), X(0x19a), X(0x19b), X(0x19c), X(0x19d), X(0x19e), X(0x19f),
X(0x1a0), X(0x1a1), X(0x1a2), X(0x1a3), X(0x1a4), X(0x1a5), X(0x1a6), X(0x1a7), X(0x1a8), X(0x1a9), X(0x1aa), X(0x1ab), X(0x1ac), X(0x1ad), X(0x1ae), X(0x1af),
X(0x1b0), X(0x1b1), X(0x1b2), X(0x1b3), X(0x1b4), X(0x1b5), X(0x1b6), X(0x1b7), X(0x1b8), X(0x1b9), X(0x1ba), X(0x1bb), X(0x1bc), X(0x1bd), X(0x1be), X(0x1bf),
X(0x1c0), X(0x1c1), X(0x1c2), X(0x1c3), X(0x1c4), X(0x1c5), X(0x1c6), X(0x1c7), X(0x1c8), X(0x1c9), X(0x1ca), X(0x1cb), X(0x1cc), X(0x1cd), X(0x1ce), X(0x1cf),
X(0x1d0), X(0x1d1), X(0x1d2), X(0x1d3), X(0x1d4), X(0x1d5), X(0x1d6), X(0x1d7), X(0x1d8), X(0x1d9), X(0x1da), X(0x1db), X(0x1dc), X(0x1dd), X(0x1de), X(0x1df),
X(0x1e0), X(0x1e1), X(0x1e2), X(0x1e3), X(0x1e4), X(0x1e5), X(0x1e6), X(0x1e7), X(0x1e8), X(0x1e9), X(0x1ea), X(0x1eb), X(0x1ec), X(0x1ed), X(0x1ee), X(0x1ef),
X(0x1f0), X(0x1f1), X(0x1f2), X(0x1f3), X(0x1f4), X(0x1f5), X(0x1f6), X(0x1f7), X(0x1f8), X(0x1f9), X(0x1fa), X(0x1fb), X(0x1fc), X(0x1fd), X(0x1fe), X(0x1ff),
};
#undef X
} /* extern "C" */
#ifdef SD_USE_SDIO
// These functions are not used for SDIO mode but are needed to avoid build error.
void sdCsInit(SdCsPin_t pin) {}
void sdCsWrite(SdCsPin_t pin, bool level) {}
// SDIO configuration for main program
SdioConfig g_sd_sdio_config(DMA_SDIO);
#ifdef SD_USE_RP2350_SDIO
void platform_set_sd_callback(sd_callback_t func, const uint8_t *buffer)
{
rp2350_sdio_sdfat_set_callback(func, buffer);
}
#endif
#endif