#include "AzulSCSI_platform.h" #include "gd32f20x_spi.h" #include "AzulSCSI_log.h" #include "AzulSCSI_config.h" #include extern "C" { const char *g_azplatform_name = "GD32F205 AzulSCSI v1.x"; static volatile uint32_t g_millisecond_counter; unsigned long millis() { return g_millisecond_counter; } void delay(unsigned long ms) { uint32_t start = g_millisecond_counter; while ((uint32_t)(g_millisecond_counter - start) < ms); } void delay_ns(unsigned long ns) { int cycles = (ns * SysTick->LOAD) / 1024 / 1024; cycles -= 10; // Call overhead if (cycles > 0) { int end = (int)SysTick->VAL - cycles; if (end < 0) { end += SysTick->LOAD; while (SysTick->VAL < cycles); } while (SysTick->VAL > end); } } void SysTick_Handler(void) { g_millisecond_counter++; } // Writes log data to the PB3 SWO pin void azplatform_log(const char *s) { while (*s) { // Write to SWO pin while (ITM->PORT[0].u32 == 0); ITM->PORT[0].u8 = *s++; } } // Initialize SPI and GPIO configuration // Clock has already been initialized by system_gd32f20x.c void azplatform_init() { SystemCoreClockUpdate(); // Enable SysTick to drive millis() SysTick_Config(SystemCoreClock / 1000U); NVIC_SetPriority(SysTick_IRQn, 0x00U); // Enable debug output on SWO pin DBG_CTL |= DBG_CTL_TRACE_IOEN; CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk; TPI->ACPR = SystemCoreClock / 2000000 - 1; // 2 Mbps baudrate for SWO TPI->SPPR = 2; TPI->FFCR = 0x100; // TPIU packet framing disabled // DWT->CTRL = (1 << DWT_CTRL_CYCTAP_Pos) // | (15 << DWT_CTRL_POSTPRESET_Pos) // | (1 << DWT_CTRL_PCSAMPLENA_Pos) // | (3 << DWT_CTRL_SYNCTAP_Pos) // | (1 << DWT_CTRL_CYCCNTENA_Pos); ITM->LAR = 0xC5ACCE55; ITM->TCR = (1 << ITM_TCR_DWTENA_Pos) | (1 << ITM_TCR_SYNCENA_Pos) | (1 << ITM_TCR_ITMENA_Pos); ITM->TER = 0xFFFFFFFF; // Enable all stimulus ports // Enable needed clocks for GPIO rcu_periph_clock_enable(RCU_GPIOA); rcu_periph_clock_enable(RCU_GPIOB); rcu_periph_clock_enable(RCU_GPIOC); rcu_periph_clock_enable(RCU_GPIOD); rcu_periph_clock_enable(RCU_GPIOE); // Switch to SWD debug port (disable JTAG) to release PB4 as GPIO gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP, ENABLE); // SCSI pins. // Initialize open drain outputs to high. gpio_bit_set(SCSI_OUT_PORT, SCSI_OUT_MASK); gpio_init(SCSI_OUT_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_MASK); gpio_init(SCSI_IN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_IN_MASK); gpio_init(SCSI_ATN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ATN_PIN); gpio_init(SCSI_BSY_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_BSY_PIN); gpio_init(SCSI_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_SEL_PIN); gpio_init(SCSI_ACK_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ACK_PIN); gpio_init(SCSI_RST_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_RST_PIN); // Terminator enable gpio_bit_set(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN); gpio_init(SCSI_TERM_EN_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, SCSI_TERM_EN_PIN); // SD card pins gpio_init(SD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SD_CS_PIN); gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_CLK_PIN); gpio_init(SD_PORT, GPIO_MODE_IPU, 0, SD_MISO_PIN); gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_MOSI_PIN); // DIP switches gpio_init(DIP_PORT, GPIO_MODE_IPD, 0, DIPSW1_PIN | DIPSW2_PIN | DIPSW3_PIN); // LED pins gpio_bit_set(LED_PORT, LED_PINS); gpio_init(LED_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, LED_PINS); // SWO trace pin on PB3 gpio_init(GPIOB, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_3); if (gpio_input_bit_get(DIP_PORT, DIPSW3_PIN)) { azlog("DIPSW3 is ON: Enabling SCSI termination"); gpio_bit_reset(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN); } else { azlog("DIPSW3 is OFF: SCSI termination disabled"); } if (gpio_input_bit_get(DIP_PORT, DIPSW2_PIN)) { azlog("DIPSW2 is ON: enabling debug messages"); g_azlog_debug = true; } else { g_azlog_debug = false; } } static void (*g_rst_callback)(); void azplatform_set_rst_callback(void (*callback)()) { g_rst_callback = callback; gpio_exti_source_select(SCSI_RST_EXTI_SOURCE_PORT, SCSI_RST_EXTI_SOURCE_PIN); exti_init(SCSI_RST_EXTI, EXTI_INTERRUPT, EXTI_TRIG_FALLING); NVIC_SetPriority(SCSI_RST_IRQn, 0x00U); } void SCSI_RST_IRQ (void) { if (exti_interrupt_flag_get(SCSI_RST_EXTI)) { exti_interrupt_flag_clear(SCSI_RST_EXTI); if (g_rst_callback) { g_rst_callback(); } } } /*****************************************/ /* Crash handlers */ /*****************************************/ extern SdFs SD; void azplatform_emergency_log_save() { FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC); if (!crashfile.isOpen()) { // Try to reinitialize int max_retry = 10; while (max_retry-- > 0 && !SD.begin(SD_CONFIG)); crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC); } uint32_t startpos = 0; crashfile.write(azlog_get_buffer(&startpos)); crashfile.write(azlog_get_buffer(&startpos)); crashfile.flush(); crashfile.close(); } __attribute__((noinline)) void show_hardfault(uint32_t *sp) { uint32_t pc = sp[6]; uint32_t lr = sp[5]; uint32_t cfsr = SCB->CFSR; azlog("--------------"); azlog("CRASH!"); azlog("Platform: ", g_azplatform_name); azlog("FW Version: ", g_azlog_firmwareversion); azlog("CFSR: ", cfsr); azlog("PC: ", pc); azlog("LR: ", lr); azlog("R0: ", sp[0]); azlog("R1: ", sp[1]); azlog("R2: ", sp[2]); azlog("R3: ", sp[3]); azplatform_emergency_log_save(); while (1) { // Flash the crash address on the LED // Short pulse means 0, long pulse means 1 int base_delay = 1000; for (int i = 31; i >= 0; i--) { LED_OFF(); for (int j = 0; j < base_delay; j++) delay_ns(100000); int delay = (pc & (1 << i)) ? (3 * base_delay) : base_delay; LED_ON(); for (int j = 0; j < delay; j++) delay_ns(100000); LED_OFF(); } for (int j = 0; j < base_delay * 10; j++) delay_ns(100000); } } __attribute__((naked)) void HardFault_Handler(void) { // Copies stack pointer into first argument asm("mrs r0, msp\n" "b show_hardfault": : : "r0"); } __attribute__((naked)) void MemManage_Handler(void) { asm("mrs r0, msp\n" "b show_hardfault": : : "r0"); } __attribute__((naked)) void BusFault_Handler(void) { asm("mrs r0, msp\n" "b show_hardfault": : : "r0"); } __attribute__((naked)) void UsageFault_Handler(void) { asm("mrs r0, msp\n" "b show_hardfault": : : "r0"); } } /* extern "C" */ /*****************************************/ /* Driver for GD32 SPI for SdFat library */ /*****************************************/ extern volatile bool g_busreset; #define SCSI_WAIT_ACTIVE(pin) \ if (!SCSI_IN(pin)) { \ if (!SCSI_IN(pin)) { \ while(!SCSI_IN(pin) && !g_busreset); \ } \ } #define SCSI_WAIT_INACTIVE(pin) \ if (SCSI_IN(pin)) { \ if (SCSI_IN(pin)) { \ while(SCSI_IN(pin) && !g_busreset); \ } \ } #define SD_SPI SPI0 class GD32SPIDriver : public SdSpiBaseClass { public: void begin(SdSpiConfig config) { rcu_periph_clock_enable(RCU_SPI0); } void activate() { spi_parameter_struct config = { SPI_MASTER, SPI_TRANSMODE_FULLDUPLEX, SPI_FRAMESIZE_8BIT, SPI_NSS_SOFT, SPI_ENDIAN_MSB, SPI_CK_PL_LOW_PH_1EDGE, SPI_PSC_256 }; // Select closest available divider based on system frequency int divider = SystemCoreClock / m_sckfreq; if (divider <= 2) config.prescale = SPI_PSC_2; else if (divider <= 4) config.prescale = SPI_PSC_4; else if (divider <= 8) config.prescale = SPI_PSC_8; else if (divider <= 16) config.prescale = SPI_PSC_16; else if (divider <= 32) config.prescale = SPI_PSC_32; else if (divider <= 64) config.prescale = SPI_PSC_64; else if (divider <= 128) config.prescale = SPI_PSC_128; else config.prescale = SPI_PSC_256; spi_init(SD_SPI, &config); spi_enable(SD_SPI); } void deactivate() { spi_disable(SD_SPI); } void wait_idle() { while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE)); while (SPI_STAT(SD_SPI) & SPI_STAT_TRANS); } uint8_t receive() { // Wait for idle and clear RX buffer wait_idle(); (void)SPI_DATA(SD_SPI); // Send dummy byte and wait for receive SPI_DATA(SD_SPI) = 0xFF; while (!(SPI_STAT(SD_SPI) & SPI_STAT_RBNE)); return SPI_DATA(SD_SPI); } uint8_t receive(uint8_t* buf, size_t count) { // Wait for idle and clear RX buffer wait_idle(); (void)SPI_DATA(SD_SPI); if (buf == m_stream_buffer + m_stream_status) { // Stream data directly to SCSI bus return stream_receive(count); } // Store data to buffer for (size_t i = 0; i < count; i++) { while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE)); SPI_DATA(SD_SPI) = 0xFF; while (!(SPI_STAT(SD_SPI) & SPI_STAT_RBNE)); buf[i] = SPI_DATA(SD_SPI); } return 0; } // Stream data directly to SCSI bus uint8_t stream_receive(size_t count) { // Handle first byte SPI_DATA(SD_SPI) = 0xFF; while (!(SPI_STAT(SD_SPI) & SPI_STAT_RBNE)); uint8_t data = SPI_DATA(SD_SPI); SCSI_OUT_DATA(data); SPI_DATA(SD_SPI) = 0xFF; SCSI_WAIT_INACTIVE(ACK); SCSI_OUT(REQ, 1); // Handle main payload for (size_t i = 1; i < count - 1; i++) { // Wait that host confirms previous reception SCSI_WAIT_ACTIVE(ACK); SCSI_OUT(REQ, 0); // Wait for received byte while (!(SPI_STAT(SD_SPI) & SPI_STAT_RBNE)); data = SPI_DATA(SD_SPI); // Stream byte to SCSI SCSI_OUT_DATA(data); // Start SPI transfer for next byte SPI_DATA(SD_SPI) = 0xFF; SCSI_WAIT_INACTIVE(ACK); // This takes long enough to fullfill the 100 ns setup time. SCSI_OUT(REQ, 1); } // Handle last byte while (!(SPI_STAT(SD_SPI) & SPI_STAT_RBNE)); data = SPI_DATA(SD_SPI); SCSI_OUT_DATA(data); delay_100ns(); // DB hold time before REQ (DTC-510B) SCSI_WAIT_INACTIVE(ACK); SCSI_OUT(REQ, 1); SCSI_WAIT_ACTIVE(ACK); SCSI_RELEASE_DATA_REQ(); SCSI_WAIT_INACTIVE(ACK); m_stream_status += count; return 0; } void send(uint8_t data) { SPI_DATA(SD_SPI) = data; wait_idle(); } void send(const uint8_t* buf, size_t count) { if (buf == m_stream_buffer + m_stream_status) { stream_send(count); return; } for (size_t i = 0; i < count; i++) { while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE)); SPI_DATA(SD_SPI) = buf[i]; } wait_idle(); } // Stream data directly from SCSI bus void stream_send(size_t count) { for (size_t i = 0; i < count; i++) { SCSI_OUT(REQ, 1); SCSI_WAIT_ACTIVE(ACK); delay_100ns(); // ACK.Fall to DB output delay 100ns(MAX) (DTC-510B) uint8_t data = SCSI_IN_DATA(); SCSI_OUT(REQ, 0); while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE)); SPI_DATA(SD_SPI) = data; SCSI_WAIT_INACTIVE(ACK); } wait_idle(); m_stream_status += count; } void setSckSpeed(uint32_t maxSck) { m_sckfreq = maxSck; } void prepare_stream(uint8_t *buffer) { m_stream_buffer = buffer; m_stream_status = 0; } size_t finish_stream() { size_t result = m_stream_status; m_stream_status = 0; m_stream_buffer = NULL; return result; } private: uint32_t m_sckfreq; uint8_t *m_stream_buffer; size_t m_stream_status; // Number of bytes transferred so far }; void sdCsInit(SdCsPin_t pin) { } void sdCsWrite(SdCsPin_t pin, bool level) { if (level) GPIO_BOP(SD_PORT) = SD_CS_PIN; else GPIO_BC(SD_PORT) = SD_CS_PIN; } GD32SPIDriver g_sd_spi_port; SdSpiConfig g_sd_spi_config(0, DEDICATED_SPI, SD_SCK_MHZ(25), &g_sd_spi_port); void azplatform_prepare_stream(uint8_t *buffer) { g_sd_spi_port.prepare_stream(buffer); } size_t azplatform_finish_stream() { return g_sd_spi_port.finish_stream(); } /**********************************************/ /* Mapping from data bytes to GPIO BOP values */ /**********************************************/ #define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1) #define X(n) (\ ((n & 0x01) ? (SCSI_OUT_DB0 << 16) : SCSI_OUT_DB0) | \ ((n & 0x02) ? (SCSI_OUT_DB1 << 16) : SCSI_OUT_DB1) | \ ((n & 0x04) ? (SCSI_OUT_DB2 << 16) : SCSI_OUT_DB2) | \ ((n & 0x08) ? (SCSI_OUT_DB3 << 16) : SCSI_OUT_DB3) | \ ((n & 0x10) ? (SCSI_OUT_DB4 << 16) : SCSI_OUT_DB4) | \ ((n & 0x20) ? (SCSI_OUT_DB5 << 16) : SCSI_OUT_DB5) | \ ((n & 0x40) ? (SCSI_OUT_DB6 << 16) : SCSI_OUT_DB6) | \ ((n & 0x80) ? (SCSI_OUT_DB7 << 16) : SCSI_OUT_DB7) | \ (PARITY(n) ? (SCSI_OUT_DBP << 16) : SCSI_OUT_DBP) | \ (SCSI_OUT_REQ) \ ) const uint32_t g_scsi_out_byte_to_bop[256] = { X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f), X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f), X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f), X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f), X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f), X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f), X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f), X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f), X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f), X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f), X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf), X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf), X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf), X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf), X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef), X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff) }; #undef X