/**
* ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
*
* ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version.
*
* https://www.gnu.org/licenses/gpl-3.0.html
* ----
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
**/
// Driver and interface for accessing SD card in SPI mode
// Used on ZuluSCSI v1.0.
#include "ZuluSCSI_platform.h"
#include "ZuluSCSI_log.h"
#include "gd32f20x_spi.h"
#include "gd32f20x_dma.h"
#include
#ifndef SD_USE_SDIO
class GD32SPIDriver : public SdSpiBaseClass
{
public:
void begin(SdSpiConfig config) {
rcu_periph_clock_enable(RCU_SPI0);
rcu_periph_clock_enable(RCU_DMA0);
dma_parameter_struct rx_dma_config =
{
.periph_addr = (uint32_t)&SPI_DATA(SD_SPI),
.periph_width = DMA_PERIPHERAL_WIDTH_8BIT,
.memory_addr = 0, // Set before transfer
.memory_width = DMA_MEMORY_WIDTH_8BIT,
.number = 0, // Set before transfer
.priority = DMA_PRIORITY_ULTRA_HIGH,
.periph_inc = DMA_PERIPH_INCREASE_DISABLE,
.memory_inc = DMA_MEMORY_INCREASE_ENABLE,
.direction = DMA_PERIPHERAL_TO_MEMORY
};
dma_init(DMA0, SD_SPI_RX_DMA_CHANNEL, &rx_dma_config);
dma_parameter_struct tx_dma_config =
{
.periph_addr = (uint32_t)&SPI_DATA(SD_SPI),
.periph_width = DMA_PERIPHERAL_WIDTH_8BIT,
.memory_addr = 0, // Set before transfer
.memory_width = DMA_MEMORY_WIDTH_8BIT,
.number = 0, // Set before transfer
.priority = DMA_PRIORITY_HIGH,
.periph_inc = DMA_PERIPH_INCREASE_DISABLE,
.memory_inc = DMA_MEMORY_INCREASE_ENABLE,
.direction = DMA_MEMORY_TO_PERIPHERAL
};
dma_init(DMA0, SD_SPI_TX_DMA_CHANNEL, &tx_dma_config);
}
void activate() {
spi_parameter_struct config = {
SPI_MASTER,
SPI_TRANSMODE_FULLDUPLEX,
SPI_FRAMESIZE_8BIT,
SPI_NSS_SOFT,
SPI_ENDIAN_MSB,
SPI_CK_PL_LOW_PH_1EDGE,
SPI_PSC_256
};
// Select closest available divider based on system frequency
int divider = (SystemCoreClock + m_sckfreq / 2) / m_sckfreq;
if (divider <= 2)
config.prescale = SPI_PSC_2;
else if (divider <= 4)
config.prescale = SPI_PSC_4;
else if (divider <= 8)
config.prescale = SPI_PSC_8;
else if (divider <= 16)
config.prescale = SPI_PSC_16;
else if (divider <= 32)
config.prescale = SPI_PSC_32;
else if (divider <= 64)
config.prescale = SPI_PSC_64;
else if (divider <= 128)
config.prescale = SPI_PSC_128;
else
config.prescale = SPI_PSC_256;
spi_init(SD_SPI, &config);
spi_enable(SD_SPI);
}
void deactivate() {
spi_disable(SD_SPI);
}
void wait_idle() {
while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE));
while (SPI_STAT(SD_SPI) & SPI_STAT_TRANS);
}
// Single byte receive
uint8_t receive() {
// Wait for idle and clear RX buffer
wait_idle();
(void)SPI_DATA(SD_SPI);
// Send dummy byte and wait for receive
SPI_DATA(SD_SPI) = 0xFF;
while (!(SPI_STAT(SD_SPI) & SPI_STAT_RBNE));
return SPI_DATA(SD_SPI);
}
// Single byte send
void send(uint8_t data) {
SPI_DATA(SD_SPI) = data;
wait_idle();
}
// Multiple byte receive
uint8_t receive(uint8_t* buf, size_t count)
{
// Wait for idle and clear RX buffer
wait_idle();
(void)SPI_DATA(SD_SPI);
// Check if this is part of callback streaming request
bool stream = false;
if (m_stream_callback && buf == m_stream_buffer + m_stream_count)
{
stream = true;
}
else if (m_stream_callback)
{
dbgmsg("Stream buffer mismatch: ", (uint32_t)buf, " vs. ", (uint32_t)(m_stream_buffer + m_stream_count));
}
// Use DMA to stream dummy TX data and store RX data
uint8_t tx_data = 0xFF;
DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL);
DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL);
DMA_CHMADDR(DMA0, SD_SPI_RX_DMA_CHANNEL) = (uint32_t)buf;
DMA_CHMADDR(DMA0, SD_SPI_TX_DMA_CHANNEL) = (uint32_t)&tx_data;
DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_MNAGA; // No memory increment for TX
DMA_CHCNT(DMA0, SD_SPI_RX_DMA_CHANNEL) = count;
DMA_CHCNT(DMA0, SD_SPI_TX_DMA_CHANNEL) = count;
DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
SPI_CTL1(SD_SPI) |= SPI_CTL1_DMAREN | SPI_CTL1_DMATEN;
uint32_t start = millis();
while (!(DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL)))
{
if (millis() - start > 500)
{
logmsg("ERROR: SPI DMA receive of ", (int)count, " bytes timeouted");
return 1;
}
if (stream)
{
uint32_t complete = m_stream_count + (count - DMA_CHCNT(DMA0, SD_SPI_RX_DMA_CHANNEL));
m_stream_callback(complete);
}
}
if (DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL))
{
logmsg("ERROR: SPI DMA receive set DMA_FLAG_ERR");
}
SPI_CTL1(SD_SPI) &= ~(SPI_CTL1_DMAREN | SPI_CTL1_DMATEN);
DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
if (stream)
{
m_stream_count += count;
}
return 0;
}
// Multiple byte send
void send(const uint8_t* buf, size_t count) {
// Check if this is part of callback streaming request
bool stream = false;
if (m_stream_callback && buf == m_stream_buffer + m_stream_count)
{
stream = true;
}
else if (m_stream_callback)
{
dbgmsg("Stream buffer mismatch: ", (uint32_t)buf, " vs. ", (uint32_t)(m_stream_buffer + m_stream_count));
}
// Use DMA to stream TX data
DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL);
DMA_CHMADDR(DMA0, SD_SPI_TX_DMA_CHANNEL) = (uint32_t)buf;
DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) |= DMA_CHXCTL_MNAGA; // Memory increment for TX
DMA_CHCNT(DMA0, SD_SPI_TX_DMA_CHANNEL) = count;
DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
SPI_CTL1(SD_SPI) |= SPI_CTL1_DMATEN;
uint32_t start = millis();
while (!(DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL)))
{
if (millis() - start > 500)
{
logmsg("ERROR: SPI DMA transmit of ", (int)count, " bytes timeouted");
return;
}
if (stream)
{
uint32_t complete = m_stream_count + (count - DMA_CHCNT(DMA0, SD_SPI_TX_DMA_CHANNEL));
m_stream_callback(complete);
}
}
if (DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL))
{
logmsg("ERROR: SPI DMA transmit set DMA_FLAG_ERR");
}
wait_idle();
SPI_CTL1(SD_SPI) &= ~(SPI_CTL1_DMAREN | SPI_CTL1_DMATEN);
DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
if (stream)
{
m_stream_count += count;
}
}
void setSckSpeed(uint32_t maxSck) {
m_sckfreq = maxSck;
}
void set_sd_callback(sd_callback_t func, const uint8_t *buffer)
{
m_stream_buffer = buffer;
m_stream_count = 0;
m_stream_callback = func;
}
private:
uint32_t m_sckfreq;
const uint8_t *m_stream_buffer;
uint32_t m_stream_count;
sd_callback_t m_stream_callback;
};
void sdCsInit(SdCsPin_t pin)
{
}
void sdCsWrite(SdCsPin_t pin, bool level)
{
if (level)
GPIO_BOP(SD_PORT) = SD_CS_PIN;
else
GPIO_BC(SD_PORT) = SD_CS_PIN;
}
GD32SPIDriver g_sd_spi_port;
SdSpiConfig g_sd_spi_config(0, DEDICATED_SPI, SD_SCK_MHZ(30), &g_sd_spi_port);
void platform_set_sd_callback(sd_callback_t func, const uint8_t *buffer)
{
g_sd_spi_port.set_sd_callback(func, buffer);
}
// Check if a DMA request for SD card read has completed.
// This is used to optimize the timing of data transfers on SCSI bus.
bool check_sd_read_done()
{
return (DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) & DMA_CHXCTL_CHEN)
&& (DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_FTF, SD_SPI_RX_DMA_CHANNEL));
}
#endif