/** * Copyright (C) 2023 saybur * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version.  * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details.  * * You should have received a copy of the GNU General Public License * along with this program.  If not, see . **/ #ifdef ENABLE_AUDIO_OUTPUT #include #include #include #include #include #include #include "audio.h" #include "BlueSCSI_audio.h" #include "BlueSCSI_config.h" #include "BlueSCSI_log.h" #include "BlueSCSI_platform.h" extern SdFs SD; // Table with the number of '1' bits for each index. // Used for SP/DIF parity calculations. // Placed in SRAM5 for the second core to use with reduced contention. const uint8_t snd_parity[256] __attribute__((aligned(256), section(".scratch_y.snd_parity"))) = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, }; /* * Precomputed biphase-mark patterns for data. For an 8-bit value this has * 16-bits in MSB-first order for the correct high/low transitions to * represent the data, given an output clocking rate twice the bitrate (so the * bits '11' or '00' reflect a zero and '10' or '01' represent a one). Each * value below starts with a '1' and will need to be inverted if the last bit * of the previous mask was also a '1'. These values can be written to an * appropriately configured SPI peripheral to blast biphase data at a * receiver. * * To facilitate fast lookups this table should be put in SRAM with low * contention, aligned to an appropriate boundary. */ const uint16_t biphase[256] __attribute__((aligned(512), section(".scratch_y.biphase"))) = { 0xCCCC, 0xB333, 0xD333, 0xACCC, 0xCB33, 0xB4CC, 0xD4CC, 0xAB33, 0xCD33, 0xB2CC, 0xD2CC, 0xAD33, 0xCACC, 0xB533, 0xD533, 0xAACC, 0xCCB3, 0xB34C, 0xD34C, 0xACB3, 0xCB4C, 0xB4B3, 0xD4B3, 0xAB4C, 0xCD4C, 0xB2B3, 0xD2B3, 0xAD4C, 0xCAB3, 0xB54C, 0xD54C, 0xAAB3, 0xCCD3, 0xB32C, 0xD32C, 0xACD3, 0xCB2C, 0xB4D3, 0xD4D3, 0xAB2C, 0xCD2C, 0xB2D3, 0xD2D3, 0xAD2C, 0xCAD3, 0xB52C, 0xD52C, 0xAAD3, 0xCCAC, 0xB353, 0xD353, 0xACAC, 0xCB53, 0xB4AC, 0xD4AC, 0xAB53, 0xCD53, 0xB2AC, 0xD2AC, 0xAD53, 0xCAAC, 0xB553, 0xD553, 0xAAAC, 0xCCCB, 0xB334, 0xD334, 0xACCB, 0xCB34, 0xB4CB, 0xD4CB, 0xAB34, 0xCD34, 0xB2CB, 0xD2CB, 0xAD34, 0xCACB, 0xB534, 0xD534, 0xAACB, 0xCCB4, 0xB34B, 0xD34B, 0xACB4, 0xCB4B, 0xB4B4, 0xD4B4, 0xAB4B, 0xCD4B, 0xB2B4, 0xD2B4, 0xAD4B, 0xCAB4, 0xB54B, 0xD54B, 0xAAB4, 0xCCD4, 0xB32B, 0xD32B, 0xACD4, 0xCB2B, 0xB4D4, 0xD4D4, 0xAB2B, 0xCD2B, 0xB2D4, 0xD2D4, 0xAD2B, 0xCAD4, 0xB52B, 0xD52B, 0xAAD4, 0xCCAB, 0xB354, 0xD354, 0xACAB, 0xCB54, 0xB4AB, 0xD4AB, 0xAB54, 0xCD54, 0xB2AB, 0xD2AB, 0xAD54, 0xCAAB, 0xB554, 0xD554, 0xAAAB, 0xCCCD, 0xB332, 0xD332, 0xACCD, 0xCB32, 0xB4CD, 0xD4CD, 0xAB32, 0xCD32, 0xB2CD, 0xD2CD, 0xAD32, 0xCACD, 0xB532, 0xD532, 0xAACD, 0xCCB2, 0xB34D, 0xD34D, 0xACB2, 0xCB4D, 0xB4B2, 0xD4B2, 0xAB4D, 0xCD4D, 0xB2B2, 0xD2B2, 0xAD4D, 0xCAB2, 0xB54D, 0xD54D, 0xAAB2, 0xCCD2, 0xB32D, 0xD32D, 0xACD2, 0xCB2D, 0xB4D2, 0xD4D2, 0xAB2D, 0xCD2D, 0xB2D2, 0xD2D2, 0xAD2D, 0xCAD2, 0xB52D, 0xD52D, 0xAAD2, 0xCCAD, 0xB352, 0xD352, 0xACAD, 0xCB52, 0xB4AD, 0xD4AD, 0xAB52, 0xCD52, 0xB2AD, 0xD2AD, 0xAD52, 0xCAAD, 0xB552, 0xD552, 0xAAAD, 0xCCCA, 0xB335, 0xD335, 0xACCA, 0xCB35, 0xB4CA, 0xD4CA, 0xAB35, 0xCD35, 0xB2CA, 0xD2CA, 0xAD35, 0xCACA, 0xB535, 0xD535, 0xAACA, 0xCCB5, 0xB34A, 0xD34A, 0xACB5, 0xCB4A, 0xB4B5, 0xD4B5, 0xAB4A, 0xCD4A, 0xB2B5, 0xD2B5, 0xAD4A, 0xCAB5, 0xB54A, 0xD54A, 0xAAB5, 0xCCD5, 0xB32A, 0xD32A, 0xACD5, 0xCB2A, 0xB4D5, 0xD4D5, 0xAB2A, 0xCD2A, 0xB2D5, 0xD2D5, 0xAD2A, 0xCAD5, 0xB52A, 0xD52A, 0xAAD5, 0xCCAA, 0xB355, 0xD355, 0xACAA, 0xCB55, 0xB4AA, 0xD4AA, 0xAB55, 0xCD55, 0xB2AA, 0xD2AA, 0xAD55, 0xCAAA, 0xB555, 0xD555, 0xAAAA }; /* * Biphase frame headers for SP/DIF, including the special bit framing * errors used to detect (sub)frame start conditions. See above table * for details. */ const uint16_t x_preamble = 0xE2CC; const uint16_t y_preamble = 0xE4CC; const uint16_t z_preamble = 0xE8CC; // DMA configuration info static dma_channel_config snd_dma_a_cfg; static dma_channel_config snd_dma_b_cfg; // some chonky buffers to store audio samples static uint8_t sample_buf_a[AUDIO_BUFFER_SIZE]; static uint8_t sample_buf_b[AUDIO_BUFFER_SIZE]; // tracking for the state of the above buffers enum bufstate { STALE, FILLING, READY }; static volatile bufstate sbufst_a = STALE; static volatile bufstate sbufst_b = STALE; enum bufselect { A, B }; static bufselect sbufsel = A; static uint16_t sbufpos = 0; static uint8_t sbufswap = 0; // buffers for storing biphase patterns #define SAMPLE_CHUNK_SIZE 1024 // ~5.8ms #define WIRE_BUFFER_SIZE (SAMPLE_CHUNK_SIZE * 2) static uint16_t wire_buf_a[WIRE_BUFFER_SIZE]; static uint16_t wire_buf_b[WIRE_BUFFER_SIZE]; // tracking for audio playback static uint8_t audio_owner; // SCSI ID or 0xFF when idle static volatile bool audio_paused = false; static ImageBackingStore* audio_file; static uint64_t fpos; static uint32_t fleft; // historical playback status information static audio_status_code audio_last_status[8] = {ASC_NO_STATUS}; // volume information for targets static volatile uint16_t volumes[8] = { DEFAULT_VOLUME_LEVEL_2CH, DEFAULT_VOLUME_LEVEL_2CH, DEFAULT_VOLUME_LEVEL_2CH, DEFAULT_VOLUME_LEVEL_2CH, DEFAULT_VOLUME_LEVEL_2CH, DEFAULT_VOLUME_LEVEL_2CH, DEFAULT_VOLUME_LEVEL_2CH, DEFAULT_VOLUME_LEVEL_2CH }; static volatile uint16_t channels[8] = { AUDIO_CHANNEL_ENABLE_MASK, AUDIO_CHANNEL_ENABLE_MASK, AUDIO_CHANNEL_ENABLE_MASK, AUDIO_CHANNEL_ENABLE_MASK, AUDIO_CHANNEL_ENABLE_MASK, AUDIO_CHANNEL_ENABLE_MASK, AUDIO_CHANNEL_ENABLE_MASK, AUDIO_CHANNEL_ENABLE_MASK }; // mechanism for cleanly stopping DMA units static volatile bool audio_stopping = false; // trackers for the below function call static uint16_t sfcnt = 0; // sub-frame count; 2 per frame, 192 frames/block static uint8_t invert = 0; // biphase encode help: set if last wire bit was '1' /* * Translates 16-bit stereo sound samples to biphase wire patterns for the * SPI peripheral. Produces 8 patterns (128 bits, or 1 SP/DIF frame) per pair * of input samples. Provided length is the total number of sample bytes present, * _twice_ the number of samples (little-endian order assumed) * * This function operates with side-effects and is not safe to call from both * cores. It must also be called in the same order data is intended to be * output. */ static void snd_encode(uint8_t* samples, uint16_t* wire_patterns, uint16_t len, uint8_t swap) { uint16_t wvol = volumes[audio_owner & 7]; uint8_t lvol = ((wvol >> 8) + (wvol & 0xFF)) >> 1; // average of both values // limit maximum volume; with my DACs I've had persistent issues // with signal clipping when sending data in the highest bit position lvol = lvol >> 2; uint8_t rvol = lvol; // enable or disable based on the channel information for both output // ports, where the high byte and mask control the right channel, and // the low control the left channel uint16_t chn = channels[audio_owner & 7] & AUDIO_CHANNEL_ENABLE_MASK; if (!(chn >> 8)) rvol = 0; if (!(chn & 0xFF)) lvol = 0; uint16_t widx = 0; for (uint16_t i = 0; i < len; i += 2) { uint32_t sample = 0; uint8_t parity = 0; if (samples != NULL) { int32_t rsamp; if (swap) { rsamp = (int16_t)(samples[i + 1] + (samples[i] << 8)); } else { rsamp = (int16_t)(samples[i] + (samples[i + 1] << 8)); } // linear scale to requested audio value if (i & 2) { rsamp *= rvol; } else { rsamp *= lvol; } // use 20 bits of value only, which allows ignoring the lowest 8 // bits during biphase conversion (after including sample shift) sample = ((uint32_t)rsamp) & 0xFFFFF0; // determine parity, simplified to one lookup via XOR parity = ((sample >> 16) ^ (sample >> 8)) ^ sample; parity = snd_parity[parity]; // shift sample into the correct bit positions of the sub-frame. sample = sample << 4; } // if needed, establish even parity with P bit if (parity % 2) sample |= 0x80000000; // translate sample into biphase encoding // first is low 8 bits: preamble and 4 least-significant bits of // 24-bit audio, pre-encoded as all '0' due to 16-bit samples uint16_t wp; if (sfcnt == 0) { wp = z_preamble; // left channel, block start } else if (sfcnt % 2) { wp = y_preamble; // right channel } else { wp = x_preamble; // left channel, not block start } if (invert) wp = ~wp; invert = wp & 1; wire_patterns[widx++] = wp; // next 8 bits wp = biphase[(uint8_t) (sample >> 8)]; if (invert) wp = ~wp; invert = wp & 1; wire_patterns[widx++] = wp; // next 8 again, all audio data wp = biphase[(uint8_t) (sample >> 16)]; if (invert) wp = ~wp; invert = wp & 1; wire_patterns[widx++] = wp; // final 8, low 4 audio data and high 4 control bits wp = biphase[(uint8_t) (sample >> 24)]; if (invert) wp = ~wp; invert = wp & 1; wire_patterns[widx++] = wp; // increment subframe counter for next pass sfcnt++; if (sfcnt == 384) sfcnt = 0; // if true, block complete } } // functions for passing to Core1 static void snd_process_a() { if (sbufsel == A) { if (sbufst_a == READY) { snd_encode(sample_buf_a + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap); sbufpos += SAMPLE_CHUNK_SIZE; if (sbufpos >= AUDIO_BUFFER_SIZE) { sbufsel = B; sbufpos = 0; sbufst_a = STALE; } } else { snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap); } } else { if (sbufst_b == READY) { snd_encode(sample_buf_b + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap); sbufpos += SAMPLE_CHUNK_SIZE; if (sbufpos >= AUDIO_BUFFER_SIZE) { sbufsel = A; sbufpos = 0; sbufst_b = STALE; } } else { snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap); } } } static void snd_process_b() { // clone of above for the other wire buffer if (sbufsel == A) { if (sbufst_a == READY) { snd_encode(sample_buf_a + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap); sbufpos += SAMPLE_CHUNK_SIZE; if (sbufpos >= AUDIO_BUFFER_SIZE) { sbufsel = B; sbufpos = 0; sbufst_a = STALE; } } else { snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap); } } else { if (sbufst_b == READY) { snd_encode(sample_buf_b + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap); sbufpos += SAMPLE_CHUNK_SIZE; if (sbufpos >= AUDIO_BUFFER_SIZE) { sbufsel = A; sbufpos = 0; sbufst_b = STALE; } } else { snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap); } } } // Allows execution on Core1 via function pointers. Each function can take // no parameters and should return nothing, operating via side effects only. static void core1_handler() { while (1) { void (*function)() = (void (*)()) multicore_fifo_pop_blocking(); (*function)(); } } /* ------------------------------------------------------------------------ */ /* ---------- VISIBLE FUNCTIONS ------------------------------------------- */ /* ------------------------------------------------------------------------ */ void audio_dma_irq() { if (dma_hw->intr & (1 << SOUND_DMA_CHA)) { dma_hw->ints0 = (1 << SOUND_DMA_CHA); multicore_fifo_push_blocking((uintptr_t) &snd_process_a); if (audio_stopping) { channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHA); } dma_channel_configure(SOUND_DMA_CHA, &snd_dma_a_cfg, &(spi_get_hw(AUDIO_SPI)->dr), &wire_buf_a, WIRE_BUFFER_SIZE, false); } else if (dma_hw->intr & (1 << SOUND_DMA_CHB)) { dma_hw->ints0 = (1 << SOUND_DMA_CHB); multicore_fifo_push_blocking((uintptr_t) &snd_process_b); if (audio_stopping) { channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHB); } dma_channel_configure(SOUND_DMA_CHB, &snd_dma_b_cfg, &(spi_get_hw(AUDIO_SPI)->dr), &wire_buf_b, WIRE_BUFFER_SIZE, false); } } bool audio_is_active() { return audio_owner != 0xFF; } bool audio_is_playing(uint8_t id) { return audio_owner == (id & 7); } void audio_setup() { // setup SPI to blast SP/DIF data over the TX pin spi_set_baudrate(AUDIO_SPI, 5644800); // will be slightly wrong, ~0.03% slow hw_write_masked(&spi_get_hw(AUDIO_SPI)->cr0, 0x1F, // TI mode with 16 bits SPI_SSPCR0_DSS_BITS | SPI_SSPCR0_FRF_BITS); spi_get_hw(AUDIO_SPI)->dmacr = SPI_SSPDMACR_TXDMAE_BITS; hw_set_bits(&spi_get_hw(AUDIO_SPI)->cr1, SPI_SSPCR1_SSE_BITS); dma_channel_claim(SOUND_DMA_CHA); dma_channel_claim(SOUND_DMA_CHB); log("Starting Core1 for audio"); multicore_launch_core1(core1_handler); } void audio_poll() { if (!audio_is_active()) return; if (audio_paused) return; if (fleft == 0 && sbufst_a == STALE && sbufst_b == STALE) { // out of data and ready to stop audio_stop(audio_owner); return; } else if (fleft == 0) { // out of data to read but still working on remainder return; } else if (!audio_file->isOpen()) { // closed elsewhere, maybe disk ejected? debuglog("------ Playback stop due to closed file"); audio_stop(audio_owner); return; } // are new audio samples needed from the memory card? uint8_t* audiobuf; if (sbufst_a == STALE) { sbufst_a = FILLING; audiobuf = sample_buf_a; } else if (sbufst_b == STALE) { sbufst_b = FILLING; audiobuf = sample_buf_b; } else { // no data needed this time return; } platform_set_sd_callback(NULL, NULL); uint16_t toRead = AUDIO_BUFFER_SIZE; if (fleft < toRead) toRead = fleft; if (audio_file->position() != fpos) { // should be uncommon due to SCSI command restrictions on devices // playing audio; if this is showing up in logs a different approach // will be needed to avoid seek performance issues on FAT32 vols debuglog("------ Audio seek required on ", audio_owner); if (!audio_file->seek(fpos)) { log("Audio error, unable to seek to ", fpos, ", ID:", audio_owner); } } if (audio_file->read(audiobuf, toRead) != toRead) { log("Audio sample data underrun"); } fpos += toRead; fleft -= toRead; if (sbufst_a == FILLING) { sbufst_a = READY; } else if (sbufst_b == FILLING) { sbufst_b = READY; } } bool audio_play(uint8_t owner, ImageBackingStore* img, uint64_t start, uint64_t end, bool swap) { // stop any existing playback first if (audio_is_active()) audio_stop(audio_owner); // debuglog("Request to play ('", file, "':", start, ":", end, ")"); // verify audio file is present and inputs are (somewhat) sane if (owner == 0xFF) { log("Illegal audio owner"); return false; } if (start >= end) { log("Invalid range for audio (", start, ":", end, ")"); return false; } platform_set_sd_callback(NULL, NULL); audio_file = img; if (!audio_file->isOpen()) { log("File not open for audio playback, ", owner); return false; } uint64_t len = audio_file->size(); if (start > len) { log("File playback request start (", start, ":", len, ") outside file bounds"); return false; } // truncate playback end to end of file // we will not consider this to be an error at the moment if (end > len) { debuglog("------ Truncate audio play request end ", end, " to file size ", len); end = len; } fleft = end - start; if (fleft <= 2 * AUDIO_BUFFER_SIZE) { log("File playback request (", start, ":", end, ") too short"); return false; } // read in initial sample buffers if (!audio_file->seek(start)) { log("Sample file failed start seek to ", start); return false; } if (audio_file->read(sample_buf_a, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) { log("File playback start returned fewer bytes than allowed"); return false; } if (audio_file->read(sample_buf_b, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) { log("File playback start returned fewer bytes than allowed"); return false; } // prepare initial tracking state fpos = audio_file->position(); fleft -= AUDIO_BUFFER_SIZE * 2; sbufsel = A; sbufpos = 0; sbufswap = swap; sbufst_a = READY; sbufst_b = READY; audio_owner = owner & 7; audio_last_status[audio_owner] = ASC_PLAYING; audio_paused = false; // prepare the wire buffers for (uint16_t i = 0; i < WIRE_BUFFER_SIZE; i++) { wire_buf_a[i] = 0; wire_buf_b[i] = 0; } sfcnt = 0; invert = 0; // setup the two DMA units to hand off to each other // to maintain a stable bitstream these need to run without interruption snd_dma_a_cfg = dma_channel_get_default_config(SOUND_DMA_CHA); channel_config_set_transfer_data_size(&snd_dma_a_cfg, DMA_SIZE_16); channel_config_set_dreq(&snd_dma_a_cfg, spi_get_dreq(AUDIO_SPI, true)); channel_config_set_read_increment(&snd_dma_a_cfg, true); channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHB); // version of pico-sdk lacks channel_config_set_high_priority() snd_dma_a_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS; dma_channel_configure(SOUND_DMA_CHA, &snd_dma_a_cfg, &(spi_get_hw(AUDIO_SPI)->dr), &wire_buf_a, WIRE_BUFFER_SIZE, false); dma_channel_set_irq0_enabled(SOUND_DMA_CHA, true); snd_dma_b_cfg = dma_channel_get_default_config(SOUND_DMA_CHB); channel_config_set_transfer_data_size(&snd_dma_b_cfg, DMA_SIZE_16); channel_config_set_dreq(&snd_dma_b_cfg, spi_get_dreq(AUDIO_SPI, true)); channel_config_set_read_increment(&snd_dma_b_cfg, true); channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHA); snd_dma_b_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS; dma_channel_configure(SOUND_DMA_CHB, &snd_dma_b_cfg, &(spi_get_hw(AUDIO_SPI)->dr), &wire_buf_b, WIRE_BUFFER_SIZE, false); dma_channel_set_irq0_enabled(SOUND_DMA_CHB, true); // ready to go dma_channel_start(SOUND_DMA_CHA); return true; } bool audio_set_paused(uint8_t id, bool paused) { if (audio_owner != (id & 7)) return false; else if (audio_paused && paused) return false; else if (!audio_paused && !paused) return false; audio_paused = paused; if (paused) { audio_last_status[audio_owner] = ASC_PAUSED; } else { audio_last_status[audio_owner] = ASC_PLAYING; } return true; } void audio_stop(uint8_t id) { if (audio_owner != (id & 7)) return; // to help mute external hardware, send a bunch of '0' samples prior to // halting the datastream; easiest way to do this is invalidating the // sample buffers, same as if there was a sample data underrun sbufst_a = STALE; sbufst_b = STALE; // then indicate that the streams should no longer chain to one another // and wait for them to shut down naturally audio_stopping = true; while (dma_channel_is_busy(SOUND_DMA_CHA)) tight_loop_contents(); while (dma_channel_is_busy(SOUND_DMA_CHB)) tight_loop_contents(); while (spi_is_busy(AUDIO_SPI)) tight_loop_contents(); audio_stopping = false; // idle the subsystem audio_last_status[audio_owner] = ASC_COMPLETED; audio_paused = false; audio_owner = 0xFF; } audio_status_code audio_get_status_code(uint8_t id) { audio_status_code tmp = audio_last_status[id & 7]; if (tmp == ASC_COMPLETED || tmp == ASC_ERRORED) { audio_last_status[id & 7] = ASC_NO_STATUS; } return tmp; } uint16_t audio_get_volume(uint8_t id) { return volumes[id & 7]; } void audio_set_volume(uint8_t id, uint16_t vol) { volumes[id & 7] = vol; } uint16_t audio_get_channel(uint8_t id) { return channels[id & 7]; } void audio_set_channel(uint8_t id, uint16_t chn) { channels[id & 7] = chn; } #endif // ENABLE_AUDIO_OUTPUT