// Implements the low level interface to SCSI bus // Partially derived from scsiPhy.c from SCSI2SD-V6 // // Copyright (c) 2022 Rabbit Hole Computing™ // Copyright (c) 2014 Michael McMaster #include "scsiPhy.h" #include "BlueSCSI_platform.h" #include "BlueSCSI_log.h" #include "BlueSCSI_log_trace.h" #include "BlueSCSI_config.h" #include "scsi_accel_rp2040.h" #include "hardware/structs/iobank0.h" #include extern "C" { #include #include } /***********************/ /* SCSI status signals */ /***********************/ extern "C" bool scsiStatusATN() { return SCSI_IN(ATN); } extern "C" bool scsiStatusBSY() { return SCSI_IN(BSY); } /************************/ /* SCSI selection logic */ /************************/ volatile uint8_t g_scsi_sts_selection; volatile uint8_t g_scsi_ctrl_bsy; void scsi_bsy_deassert_interrupt() { if (SCSI_IN(SEL) && !SCSI_IN(BSY)) { // Check if any of the targets we simulate is selected uint8_t sel_bits = SCSI_IN_DATA(); int sel_id = -1; for (int i = 0; i < S2S_MAX_TARGETS; i++) { if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg) { if (sel_bits & (1 << scsiDev.targets[i].targetId)) { sel_id = scsiDev.targets[i].targetId; break; } } } if (sel_id >= 0) { // Set ATN flag here unconditionally, real value is only known after // OUT_BSY is enabled in scsiStatusSEL() below. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | SCSI_STS_SELECTION_ATN | sel_id; } // selFlag is required for Philips P2000C which releases it after 600ns // without waiting for BSY. // Also required for some early Mac Plus roms scsiDev.selFlag = *SCSI_STS_SELECTED; } } extern "C" bool scsiStatusSEL() { if (g_scsi_ctrl_bsy) { // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects. // Instead update the state here. // Releasing happens with bus release. g_scsi_ctrl_bsy = 0; SCSI_OUT(CD, 0); SCSI_OUT(MSG, 0); SCSI_ENABLE_CONTROL_OUT(); SCSI_OUT(BSY, 1); // On RP2040 hardware the ATN signal is only available after OUT_BSY enables // the IO buffer U105, so check the signal status here. delay_100ns(); if (!scsiStatusATN()) { // This is a SCSI1 host that does send IDENTIFY message scsiDev.atnFlag = 0; scsiDev.target->unitAttention = 0; scsiDev.compatMode = COMPAT_SCSI1; } } return SCSI_IN(SEL); } /************************/ /* SCSI bus reset logic */ /************************/ static void scsi_rst_assert_interrupt() { // Glitch filtering bool rst1 = SCSI_IN(RST); delay_ns(500); bool rst2 = SCSI_IN(RST); if (rst1 && rst2) { debuglog("BUS RESET"); scsiDev.resetFlag = 1; } } static void scsiPhyIRQ(uint gpio, uint32_t events) { if (gpio == scsi_pins.IN_BSY || gpio == scsi_pins.IN_SEL) { // Note BSY / SEL interrupts only when we are not driving OUT_BSY low ourselves. // The BSY input pin may be shared with other signals. if (sio_hw->gpio_out & (1 << scsi_pins.OUT_BSY)) { scsi_bsy_deassert_interrupt(); } } else if (gpio == scsi_pins.IN_RST && ((~sio_hw->gpio_oe) & (1 << scsi_pins.OUT_SEL))) { // If oSEL is in input mode, this is a real reset. Otherwise ignore. scsi_rst_assert_interrupt(); } } // This function is called to initialize the phy code. // It is called after power-on and after SCSI bus reset. extern "C" void scsiPhyReset(void) { SCSI_RELEASE_OUTPUTS(); g_scsi_sts_selection = 0; g_scsi_ctrl_bsy = 0; scsi_accel_rp2040_init(); // Enable BSY, RST and SEL interrupts // Note: RP2040 library currently supports only one callback, // so it has to be same for all pins. gpio_set_irq_enabled_with_callback(scsi_pins.IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ); gpio_set_irq_enabled(scsi_pins.IN_RST, GPIO_IRQ_EDGE_FALL, true); // Check BSY line status when SEL goes active. // This is needed to handle SCSI-1 hosts that use the single initiator mode. // The host will just assert the SEL directly, without asserting BSY first. gpio_set_irq_enabled(scsi_pins.IN_SEL, GPIO_IRQ_EDGE_FALL, true); } /************************/ /* SCSI bus phase logic */ /************************/ static SCSI_PHASE g_scsi_phase; extern "C" void scsiEnterPhase(int phase) { int delay = scsiEnterPhaseImmediate(phase); if (delay > 0) { s2s_delay_ns(delay); } } // Change state and return nanosecond delay to wait extern "C" uint32_t scsiEnterPhaseImmediate(int phase) { if (phase != g_scsi_phase) { // ANSI INCITS 362-2002 SPI-3 10.7.1: // Phase changes are not allowed while REQ or ACK is asserted. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {} if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT)) { // Akai S1000/S3000 seems to need extra delay before changing to data phase // after a command. The code in BlueSCSI_disk.cpp tries to do this while waiting // for SD card, to avoid any extra latency. s2s_delay_ns(400000); } int oldphase = g_scsi_phase; g_scsi_phase = (SCSI_PHASE)phase; scsiLogPhaseChange(phase); // Select between synchronous vs. asynchronous SCSI writes bool syncstatus = false; if (scsiDev.target->syncOffset > 0 && (g_scsi_phase == DATA_IN || g_scsi_phase == DATA_OUT)) { syncstatus = scsi_accel_rp2040_setSyncMode(scsiDev.target->syncOffset, scsiDev.target->syncPeriod); } else { syncstatus = scsi_accel_rp2040_setSyncMode(0, 0); } if (!syncstatus) { // SCSI DMA was not idle, we are in some kind of error state, force bus reset scsiDev.resetFlag = 1; return 0; } if (phase < 0) { // Other communication on bus or reset state SCSI_RELEASE_OUTPUTS(); return 0; } else { // The phase control signals should be changed close to simultaneously. // The SCSI spec allows 400 ns for this, but some hosts do not seem to be that // tolerant. The Cortex-M0 is also quite slow in bit twiddling. // // To avoid unnecessary delays, precalculate an XOR mask and then apply it // simultaneously to all three signals. uint32_t gpio_new = 0; if (!(phase & __scsiphase_msg)) { gpio_new |= (1 << scsi_pins.OUT_MSG); } if (!(phase & __scsiphase_cd)) { gpio_new |= (1 << scsi_pins.OUT_CD); } if (!(phase & __scsiphase_io)) { gpio_new |= (1 << scsi_pins.OUT_IO); } uint32_t mask = (1 << scsi_pins.OUT_MSG) | (1 << scsi_pins.OUT_CD) | (1 << scsi_pins.OUT_IO); uint32_t gpio_xor = (sio_hw->gpio_out ^ gpio_new) & mask; sio_hw->gpio_togl = gpio_xor; SCSI_ENABLE_CONTROL_OUT(); int delayNs = 400; // Bus settle delay if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io)) { delayNs += 400; // Data release delay } if (scsiDev.compatMode < COMPAT_SCSI2) { // EMU EMAX needs 100uS ! 10uS is not enough. delayNs += 100000; } return delayNs; } } else { return 0; } } // Release all signals void scsiEnterBusFree(void) { g_scsi_phase = BUS_FREE; g_scsi_sts_selection = 0; g_scsi_ctrl_bsy = 0; scsiDev.cdbLen = 0; SCSI_RELEASE_OUTPUTS(); } /********************/ /* Transmit to host */ /********************/ #define SCSI_WAIT_ACTIVE(pin) \ if (!SCSI_IN(pin)) { \ if (!SCSI_IN(pin)) { \ while(!SCSI_IN(pin) && !scsiDev.resetFlag); \ } \ } // In synchronous mode the ACK pulse can be very short, so use edge IRQ to detect it. #define CHECK_EDGE(pin) \ ((iobank0_hw->intr[pin / 8] >> (4 * (pin % 8))) & GPIO_IRQ_EDGE_FALL) #define SCSI_WAIT_ACTIVE_EDGE(pin) \ if (!CHECK_EDGE(SCSI_IN_ ## pin)) { \ while(!SCSI_IN(pin) && !CHECK_EDGE(SCSI_IN_ ## pin) && !scsiDev.resetFlag); \ } #define SCSI_WAIT_INACTIVE(pin) \ if (SCSI_IN(pin)) { \ if (SCSI_IN(pin)) { \ while(SCSI_IN(pin) && !scsiDev.resetFlag); \ } \ } // Write one byte to SCSI host using the handshake mechanism // This is suitable for both asynchronous and synchronous communication. static inline void scsiWriteOneByte(uint8_t value) { SCSI_OUT_DATA(value); delay_100ns(); // DB setup time before REQ gpio_acknowledge_irq(scsi_pins.IN_ACK, GPIO_IRQ_EDGE_FALL); SCSI_OUT(REQ, 1); SCSI_WAIT_ACTIVE_EDGE(ACK); SCSI_RELEASE_DATA_REQ(); SCSI_WAIT_INACTIVE(ACK); } extern "C" void scsiWriteByte(uint8_t value) { scsiLogDataIn(&value, 1); scsiWriteOneByte(value); } extern "C" void scsiWrite(const uint8_t* data, uint32_t count) { scsiStartWrite(data, count); scsiFinishWrite(); } extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count) { scsiLogDataIn(data, count); scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag); } extern "C" bool scsiIsWriteFinished(const uint8_t *data) { return scsi_accel_rp2040_isWriteFinished(data); } extern "C" void scsiFinishWrite() { scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag); } /*********************/ /* Receive from host */ /*********************/ // Read one byte from SCSI host using the handshake mechanism. static inline uint8_t scsiReadOneByte(int* parityError) { SCSI_OUT(REQ, 1); SCSI_WAIT_ACTIVE(ACK); delay_100ns(); uint16_t r = SCSI_IN_DATA(); SCSI_OUT(REQ, 0); SCSI_WAIT_INACTIVE(ACK); if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ SCSI_IO_DATA_MASK)) { debuglog("Parity error in scsiReadOneByte(): ", (uint32_t)r); *parityError = 1; } return (uint8_t)r; } extern "C" uint8_t scsiReadByte(void) { uint8_t r = scsiReadOneByte(NULL); scsiLogDataOut(&r, 1); return r; } extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError) { *parityError = 0; scsiStartRead(data, count, parityError); scsiFinishRead(data, count, parityError); } extern "C" void scsiStartRead(uint8_t* data, uint32_t count, int *parityError) { scsi_accel_rp2040_startRead(data, count, parityError, &scsiDev.resetFlag); } extern "C" void scsiFinishRead(uint8_t* data, uint32_t count, int *parityError) { scsi_accel_rp2040_finishRead(data, count, parityError, &scsiDev.resetFlag); scsiLogDataOut(data, count); } extern "C" bool scsiIsReadFinished(const uint8_t *data) { return scsi_accel_rp2040_isReadFinished(data); }