// Copyright (c) 2022 Rabbit Hole Computing™ /* Data flow in SCSI acceleration: * * 1. Application provides a buffer of bytes to send. * 2. Code in this module adds parity bit to the bytes and packs two bytes into 32 bit words. * 3. DMA controller copies the words to PIO peripheral FIFO. * 4. PIO peripheral handles low-level SCSI handshake and writes bytes and parity to GPIO. */ #include "BlueSCSI_platform.h" #include "BlueSCSI_log.h" #include "scsi_accel_rp2040.h" #include "scsi_accel.pio.h" #include #include #include #include #include #include #include // SCSI bus write acceleration uses up to 3 PIO state machines: // SM0: Convert data bytes to lookup addresses to add parity // SM1: Write data to SCSI bus // SM2: For synchronous mode only, count ACK pulses #define SCSI_DMA_PIO pio0 #define SCSI_PARITY_SM 1 #define SCSI_DATA_SM 2 #define SCSI_SYNC_SM 3 // SCSI bus write acceleration uses 3 or 4 DMA channels (data flow A->B->C->D): // A: Bytes from RAM to scsi_parity PIO // B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register // C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO // D: For sync transfers, scsi_sync_write to scsi_sync_write_pacer PIO // // SCSI bus read acceleration uses 4 DMA channels (data flow D->C->B->A): // A: Bytes from scsi_read_parity PIO to memory buffer // B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO // C: Addresses from scsi_accel_read PIO to lookup DMA READ_ADDR register // D: From pacer to data state machine to trigger transfers #define SCSI_DMA_CH_A 6 #define SCSI_DMA_CH_B 7 #define SCSI_DMA_CH_C 8 #define SCSI_DMA_CH_D 9 static struct { uint8_t *app_buf; // Buffer provided by application uint32_t app_bytes; // Bytes available in application buffer uint32_t dma_bytes; // Bytes that have been scheduled for DMA so far uint8_t *next_app_buf; // Next buffer from application after current one finishes uint32_t next_app_bytes; // Bytes in next buffer // Synchronous mode? int syncOffset; int syncPeriod; int syncOffsetDivider; // Autopush/autopull threshold for the write pacer state machine int syncOffsetPreload; // Number of items to preload in the RX fifo of scsi_sync_write // PIO configurations uint32_t pio_offset_parity; uint32_t pio_offset_async_write; uint32_t pio_offset_sync_write_pacer; uint32_t pio_offset_sync_write; uint32_t pio_offset_read; uint32_t pio_offset_read_parity; uint32_t pio_offset_sync_read_pacer; pio_sm_config pio_cfg_parity; pio_sm_config pio_cfg_async_write; pio_sm_config pio_cfg_sync_write_pacer; pio_sm_config pio_cfg_sync_write; pio_sm_config pio_cfg_read; pio_sm_config pio_cfg_read_parity; pio_sm_config pio_cfg_sync_read_pacer; // DMA configurations for write dma_channel_config dmacfg_write_chA; // Data from RAM to scsi_parity PIO dma_channel_config dmacfg_write_chB; // Addresses from scsi_parity PIO to lookup DMA dma_channel_config dmacfg_write_chC; // Data from g_scsi_parity_lookup to scsi write PIO dma_channel_config dmacfg_write_chD; // In synchronous mode only, transfer between state machines // DMA configurations for read dma_channel_config dmacfg_read_chA; // Data to destination memory buffer dma_channel_config dmacfg_read_chB; // From lookup table to scsi_read_parity PIO dma_channel_config dmacfg_read_chC; // From scsi_accel_read to channel B READ_ADDR dma_channel_config dmacfg_read_chD; // From pacer to data state machine } g_scsi_dma; enum scsidma_state_t { SCSIDMA_IDLE = 0, SCSIDMA_WRITE, SCSIDMA_WRITE_DONE, SCSIDMA_READ, SCSIDMA_READ_DONE }; static const char* scsidma_states[5] = {"IDLE", "WRITE", "WRITE_DONE", "READ", "READ_DONE"}; static volatile scsidma_state_t g_scsi_dma_state; static bool g_channels_claimed = false; static void scsidma_config_gpio(); void scsi_accel_log_state() { log("SCSI DMA state: ", scsidma_states[g_scsi_dma_state]); log("Current buffer: ", g_scsi_dma.dma_bytes, "/", g_scsi_dma.app_bytes, ", next ", g_scsi_dma.next_app_bytes, " bytes"); log("SyncOffset: ", g_scsi_dma.syncOffset, " SyncPeriod ", g_scsi_dma.syncPeriod); log("PIO Parity SM:", " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_PARITY_SM), ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_PARITY_SM), ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_PARITY_SM), ", instr ", SCSI_DMA_PIO->sm[SCSI_PARITY_SM].instr); log("PIO Data SM:", " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM), ", instr ", SCSI_DMA_PIO->sm[SCSI_DATA_SM].instr); log("PIO Sync SM:", " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM), ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM), ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM), ", instr ", SCSI_DMA_PIO->sm[SCSI_SYNC_SM].instr); log("DMA CH A:", " ctrl: ", dma_hw->ch[SCSI_DMA_CH_A].ctrl_trig, " count: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count); log("DMA CH B:", " ctrl: ", dma_hw->ch[SCSI_DMA_CH_B].ctrl_trig, " count: ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count); log("DMA CH C:", " ctrl: ", dma_hw->ch[SCSI_DMA_CH_C].ctrl_trig, " count: ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count); log("DMA CH D:", " ctrl: ", dma_hw->ch[SCSI_DMA_CH_D].ctrl_trig, " count: ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count); log("GPIO states: ", sio_hw->gpio_in); } /****************************************/ /* Accelerated writes to SCSI bus */ /****************************************/ // Load the SCSI parity state machine with the address of the parity lookup table. // Also sets up DMA channels B and C static void config_parity_sm_for_write() { // Load base address to state machine register X uint32_t addrbase = (uint32_t)&g_scsi_parity_lookup[0]; assert((addrbase & 0x1FF) == 0); pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_parity, &g_scsi_dma.pio_cfg_parity); pio_sm_put(SCSI_DMA_PIO, SCSI_PARITY_SM, addrbase >> 9); pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_pull(false, false)); pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_mov(pio_x, pio_osr)); // DMA channel B will copy addresses from parity PIO to DMA channel C read address register. // It is triggered by the parity SM RX FIFO request dma_channel_configure(SCSI_DMA_CH_B, &g_scsi_dma.dmacfg_write_chB, &dma_hw->ch[SCSI_DMA_CH_C].al3_read_addr_trig, &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM], 1, true); // DMA channel C will read g_scsi_parity_lookup to copy data + parity to SCSI write state machine. // It is triggered by SCSI write machine TX FIFO request and chains to re-enable channel B. dma_channel_configure(SCSI_DMA_CH_C, &g_scsi_dma.dmacfg_write_chC, &SCSI_DMA_PIO->txf[SCSI_DATA_SM], NULL, 1, false); } static void start_dma_write() { if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes) { // Buffer has been fully processed, swap it g_scsi_dma.dma_bytes = 0; g_scsi_dma.app_buf = g_scsi_dma.next_app_buf; g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes; g_scsi_dma.next_app_buf = 0; g_scsi_dma.next_app_bytes = 0; } // Check if we are all done. // From SCSIDMA_WRITE_DONE state we can either go to IDLE in stopWrite() // or back to WRITE in startWrite(). uint32_t bytes_to_send = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes; if (bytes_to_send == 0) { g_scsi_dma_state = SCSIDMA_WRITE_DONE; return; } uint8_t *src_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes]; g_scsi_dma.dma_bytes += bytes_to_send; // Start DMA from current buffer to parity generator dma_channel_configure(SCSI_DMA_CH_A, &g_scsi_dma.dmacfg_write_chA, &SCSI_DMA_PIO->txf[SCSI_PARITY_SM], src_buf, bytes_to_send, true ); } void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag) { // Any read requests should be matched with a stopRead() assert(g_scsi_dma_state != SCSIDMA_READ && g_scsi_dma_state != SCSIDMA_READ_DONE); uint32_t status = save_and_disable_interrupts(); if (g_scsi_dma_state == SCSIDMA_WRITE) { if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes) { // Combine with currently running request g_scsi_dma.app_bytes += count; count = 0; } else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes) { // Combine with queued request g_scsi_dma.next_app_bytes += count; count = 0; } else if (!g_scsi_dma.next_app_buf) { // Add as queued request g_scsi_dma.next_app_buf = (uint8_t*)data; g_scsi_dma.next_app_bytes = count; count = 0; } } restore_interrupts_from_disabled(status); // Check if the request was combined if (count == 0) return; if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_WRITE_DONE) { // Wait for previous request to finish scsi_accel_rp2040_finishWrite(resetFlag); if (*resetFlag) { return; } } bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE); g_scsi_dma_state = SCSIDMA_WRITE; g_scsi_dma.app_buf = (uint8_t*)data; g_scsi_dma.app_bytes = count; g_scsi_dma.dma_bytes = 0; g_scsi_dma.next_app_buf = 0; g_scsi_dma.next_app_bytes = 0; if (must_reconfig_gpio) { SCSI_ENABLE_DATA_OUT(); if (g_scsi_dma.syncOffset == 0) { // Asynchronous write config_parity_sm_for_write(); pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_async_write, &g_scsi_dma.pio_cfg_async_write); scsidma_config_gpio(); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true); } else { // Synchronous write // Data state machine writes data to SCSI bus and dummy bits to its RX fifo. // Sync state machine empties the dummy bits every time ACK is received, to control the transmit pace. config_parity_sm_for_write(); pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_sync_write, &g_scsi_dma.pio_cfg_sync_write); pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_write_pacer, &g_scsi_dma.pio_cfg_sync_write_pacer); scsidma_config_gpio(); // Prefill RX fifo to set the syncOffset for (int i = 0; i < g_scsi_dma.syncOffsetPreload; i++) { pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_push(false, false) | pio_encode_sideset(1, 1)); } // Fill the pacer TX fifo // DMA should start transferring only after ACK pulses are received for (int i = 0; i < 4; i++) { pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, 0); } // Fill the pacer OSR pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_mov(pio_osr, pio_null)); // Start DMA transfer to move dummy bits to write pacer dma_channel_configure(SCSI_DMA_CH_D, &g_scsi_dma.dmacfg_write_chD, &SCSI_DMA_PIO->txf[SCSI_SYNC_SM], &SCSI_DMA_PIO->rxf[SCSI_DATA_SM], 0xFFFFFFFF, true ); // Enable state machines pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true); } dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true); } start_dma_write(); } bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data) { // Check if everything has completed if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_WRITE_DONE) { return true; } if (!data) return false; // Check if this data item is still in queue. bool finished = true; uint32_t status = save_and_disable_interrupts(); if (data >= g_scsi_dma.app_buf && data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes && (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].al1_read_addr) { finished = false; // In current transfer } else if (data >= g_scsi_dma.next_app_buf && data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes) { finished = false; // In queued transfer } restore_interrupts_from_disabled(status); return finished; } // Once DMA has finished, check if all PIO queues have been drained static bool scsi_accel_rp2040_isWriteDone() { // Check if data is still waiting in PIO FIFO if (!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) || !pio_sm_is_rx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) || !pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_DATA_SM)) { return false; } if (g_scsi_dma.syncOffset > 0) { // Check if all bytes of synchronous write have been acknowledged if (pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM) > g_scsi_dma.syncOffsetPreload) return false; } else { // Check if state machine has written out its OSR if (pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM) != g_scsi_dma.pio_offset_async_write) return false; } // Check if ACK of the final byte has finished if (SCSI_IN(ACK)) return false; return true; } static void scsi_accel_rp2040_stopWrite(volatile int *resetFlag) { // Wait for TX fifo to be empty and ACK to go high // For synchronous writes wait for all ACKs to be received also uint32_t start = millis(); while (!scsi_accel_rp2040_isWriteDone() && !*resetFlag) { if ((uint32_t)(millis() - start) > 5000) { log("scsi_accel_rp2040_stopWrite() timeout"); scsi_accel_log_state(); *resetFlag = 1; break; } } dma_channel_abort(SCSI_DMA_CH_A); dma_channel_abort(SCSI_DMA_CH_B); dma_channel_abort(SCSI_DMA_CH_C); dma_channel_abort(SCSI_DMA_CH_D); dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false); g_scsi_dma_state = SCSIDMA_IDLE; SCSI_RELEASE_DATA_REQ(); scsidma_config_gpio(); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false); } void scsi_accel_rp2040_finishWrite(volatile int *resetFlag) { uint32_t start = millis(); while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag) { if ((uint32_t)(millis() - start) > 5000) { log("scsi_accel_rp2040_finishWrite() timeout"); scsi_accel_log_state(); *resetFlag = 1; break; } if (g_scsi_dma_state == SCSIDMA_WRITE_DONE || *resetFlag) { // DMA done, wait for PIO to finish also and reconfig GPIO. scsi_accel_rp2040_stopWrite(resetFlag); } } } /****************************************/ /* Accelerated reads from SCSI bus */ /****************************************/ // Load the SCSI read state machine with the address of the parity lookup table. // Also sets up DMA channels B, C and D static void config_parity_sm_for_read() { // Configure parity check state machine pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_read_parity, &g_scsi_dma.pio_cfg_read_parity); // Load base address to state machine register X uint32_t addrbase = (uint32_t)&g_scsi_parity_check_lookup[0]; assert((addrbase & 0x3FF) == 0); pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_read, &g_scsi_dma.pio_cfg_read); pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, addrbase >> 10); pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1)); pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_mov(pio_y, pio_osr) | pio_encode_sideset(1, 1)); // For synchronous mode, the REQ pin is driven by SCSI_SYNC_SM, so disable it in SCSI_DATA_SM if (g_scsi_dma.syncOffset > 0) { pio_sm_set_sideset_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0); } // DMA channel B will read g_scsi_parity_check_lookup and write to scsi_read_parity PIO. dma_channel_configure(SCSI_DMA_CH_B, &g_scsi_dma.dmacfg_read_chB, &SCSI_DMA_PIO->txf[SCSI_PARITY_SM], NULL, 1, false); // DMA channel C will copy addresses from data PIO to DMA channel B read address register. // It is triggered by the data SM RX FIFO request. // This triggers channel B by writing to READ_ADDR_TRIG // Channel B chaining re-enables this channel. dma_channel_configure(SCSI_DMA_CH_C, &g_scsi_dma.dmacfg_read_chC, &dma_hw->ch[SCSI_DMA_CH_B].al3_read_addr_trig, &SCSI_DMA_PIO->rxf[SCSI_DATA_SM], 1, true); if (g_scsi_dma.syncOffset == 0) { // DMA channel D will copy dummy words to scsi_accel_read PIO to set the number // of bytes to transfer. static const uint32_t dummy = 0; dma_channel_configure(SCSI_DMA_CH_D, &g_scsi_dma.dmacfg_read_chD, &SCSI_DMA_PIO->txf[SCSI_DATA_SM], &dummy, 0, false); } else { pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_read_pacer, &g_scsi_dma.pio_cfg_sync_read_pacer); // DMA channel D will copy words from scsi_sync_read_pacer to scsi_accel_read PIO // to control the offset between REQ pulses sent and ACK pulses received. dma_channel_configure(SCSI_DMA_CH_D, &g_scsi_dma.dmacfg_read_chD, &SCSI_DMA_PIO->txf[SCSI_DATA_SM], &SCSI_DMA_PIO->rxf[SCSI_SYNC_SM], 0, false); } // Clear PIO IRQ flag that is used to detect parity error SCSI_DMA_PIO->irq = 1; } static void start_dma_read() { pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false); pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_PARITY_SM); pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_DATA_SM); if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes) { // Buffer has been fully processed, swap it g_scsi_dma.dma_bytes = 0; g_scsi_dma.app_buf = g_scsi_dma.next_app_buf; g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes; g_scsi_dma.next_app_buf = 0; g_scsi_dma.next_app_bytes = 0; } // Check if we are all done. // From SCSIDMA_READ_DONE state we can either go to IDLE in stopRead() // or back to READ in startWrite(). uint32_t bytes_to_read = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes; if (bytes_to_read == 0) { g_scsi_dma_state = SCSIDMA_READ_DONE; return; } if (g_scsi_dma.syncOffset == 0) { // Start sending dummy words to scsi_accel_read state machine dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true); } else { // Set number of bytes to receive to the scsi_sync_read_pacer state machine register X pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false); hw_clear_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS); pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, bytes_to_read - 1); pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1)); pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_mov(pio_x, pio_osr) | pio_encode_sideset(1, 1)); hw_set_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS); // Prefill FIFOs to get correct syncOffset int prefill = 12 - g_scsi_dma.syncOffset; // Always at least 1 word to avoid race condition between REQ and ACK pulses if (prefill < 1) prefill = 1; // Up to 4 words in SCSI_DATA_SM TX fifo for (int i = 0; i < 4 && prefill > 0; i++) { pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, 0); prefill--; } // Up to 8 words in SCSI_SYNC_SM RX fifo for (int i = 0; i < 8 && prefill > 0; i++) { pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_push(false, false) | pio_encode_sideset(1, 1)); prefill--; } pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_jmp(g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_sideset(1, 1)); // Start transfers dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true); } // Start DMA to fill the destination buffer uint8_t *dest_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes]; g_scsi_dma.dma_bytes += bytes_to_read; dma_channel_configure(SCSI_DMA_CH_A, &g_scsi_dma.dmacfg_read_chA, dest_buf, &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM], bytes_to_read, true ); // Ready to start the data and parity check state machines pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true); if (g_scsi_dma.syncOffset > 0) { // Start sending REQ pulses pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true); } } void scsi_accel_rp2040_startRead(uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag) { // Any write requests should be matched with a stopWrite() assert(g_scsi_dma_state != SCSIDMA_WRITE && g_scsi_dma_state != SCSIDMA_WRITE_DONE); uint32_t status = save_and_disable_interrupts(); if (g_scsi_dma_state == SCSIDMA_READ) { if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes) { // Combine with currently running request g_scsi_dma.app_bytes += count; count = 0; } else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes) { // Combine with queued request g_scsi_dma.next_app_bytes += count; count = 0; } else if (!g_scsi_dma.next_app_buf) { // Add as queued request g_scsi_dma.next_app_buf = (uint8_t*)data; g_scsi_dma.next_app_bytes = count; count = 0; } } restore_interrupts_from_disabled(status); // Check if the request was combined if (count == 0) return; if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_READ_DONE) { // Wait for previous request to finish scsi_accel_rp2040_finishRead(NULL, 0, parityError, resetFlag); if (*resetFlag) { return; } } bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE); g_scsi_dma_state = SCSIDMA_READ; g_scsi_dma.app_buf = (uint8_t*)data; g_scsi_dma.app_bytes = count; g_scsi_dma.dma_bytes = 0; g_scsi_dma.next_app_buf = 0; g_scsi_dma.next_app_bytes = 0; if (must_reconfig_gpio) { config_parity_sm_for_read(); scsidma_config_gpio(); dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true); } start_dma_read(); } bool scsi_accel_rp2040_isReadFinished(const uint8_t* data) { // Check if everything has completed if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_READ_DONE) { return true; } if (!data) return false; // Check if this data item is still in queue. bool finished = true; uint32_t status = save_and_disable_interrupts(); if (data >= g_scsi_dma.app_buf && data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes && (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].write_addr) { finished = false; // In current transfer } else if (data >= g_scsi_dma.next_app_buf && data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes) { finished = false; // In queued transfer } restore_interrupts_from_disabled(status); return finished; } static void scsi_accel_rp2040_stopRead() { dma_channel_abort(SCSI_DMA_CH_A); dma_channel_abort(SCSI_DMA_CH_B); dma_channel_abort(SCSI_DMA_CH_C); dma_channel_abort(SCSI_DMA_CH_D); dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false); g_scsi_dma_state = SCSIDMA_IDLE; SCSI_RELEASE_DATA_REQ(); scsidma_config_gpio(); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false); pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false); } void scsi_accel_rp2040_finishRead(const uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag) { uint32_t start = millis(); const uint8_t *query_addr = (data ? (data + count - 1) : NULL); while (!scsi_accel_rp2040_isReadFinished(query_addr) && !*resetFlag) { if ((uint32_t)(millis() - start) > 5000) { log("scsi_accel_rp2040_finishRead timeout"); scsi_accel_log_state(); *resetFlag = 1; break; } } if (g_scsi_dma_state == SCSIDMA_READ_DONE || *resetFlag) { // This was last buffer, release bus scsi_accel_rp2040_stopRead(); } // Check if any parity errors have been detected during the transfer so far if (SCSI_DMA_PIO->irq & 1) { debuglog("scsi_accel_rp2040_finishRead(", bytearray(data, count), ") detected parity error"); *parityError = true; } } /*******************************************************/ /* Initialization functions common to read/write */ /*******************************************************/ static void scsi_dma_irq() { #ifndef ENABLE_AUDIO_OUTPUT dma_hw->ints0 = (1 << SCSI_DMA_CH_A); #else // see audio.h for whats going on here if (dma_hw->intr & (1 << SCSI_DMA_CH_A)) { dma_hw->ints0 = (1 << SCSI_DMA_CH_A); } else { audio_dma_irq(); return; } #endif scsidma_state_t state = g_scsi_dma_state; if (state == SCSIDMA_WRITE) { // Start writing from next buffer, if any, or set state to SCSIDMA_WRITE_DONE start_dma_write(); } else if (state == SCSIDMA_READ) { // Start reading into next buffer, if any, or set state to SCSIDMA_READ_DONE start_dma_read(); } } // Select GPIO from PIO peripheral or from software controlled SIO static void scsidma_config_gpio() { if (g_scsi_dma_state == SCSIDMA_IDLE) { iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[scsi_pins.OUT_REQ].ctrl = GPIO_FUNC_SIO; } else if (g_scsi_dma_state == SCSIDMA_WRITE) { // Make sure the initial state of all pins is high and output pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.SCSI_ACCEL_PINMASK); // Binary of 0x3FF is is 0 0 1 1 11111111 // ? A R P DBP // A = ACK, R = REQ, DBP are the data pins // REQ internal state needs to be set 'high' // 100000010000000000111111111 // Probably right to left here, so 0 - 9 are set 'high' and 10/11 are set 'low' pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, true); pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.OUT_REQ, 1, true); iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_PIO0; iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_PIO0; iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_PIO0; iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_PIO0; iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_PIO0; iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_PIO0; iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_PIO0; iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_PIO0; iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_PIO0; iobank0_hw->io[scsi_pins.OUT_REQ].ctrl = GPIO_FUNC_PIO0; } else if (g_scsi_dma_state == SCSIDMA_READ) { if (g_scsi_dma.syncOffset == 0) { // Asynchronous read // Data bus as input, REQ pin as output pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.SCSI_ACCEL_PINMASK); pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false); pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.OUT_REQ, 1, true); } else { // Synchronous read, REQ pin is written by SYNC_SM pio_sm_set_pins(SCSI_DMA_PIO, SCSI_SYNC_SM, scsi_pins.SCSI_ACCEL_PINMASK); pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false); pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_SYNC_SM, scsi_pins.OUT_REQ, 1, true); } iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO; iobank0_hw->io[scsi_pins.OUT_REQ].ctrl = GPIO_FUNC_PIO0; } } void scsi_accel_rp2040_init() { g_scsi_dma_state = SCSIDMA_IDLE; scsidma_config_gpio(); if (g_channels_claimed) { // Un-claim all SCSI state machines pio_sm_unclaim(SCSI_DMA_PIO, SCSI_PARITY_SM); pio_sm_unclaim(SCSI_DMA_PIO, SCSI_DATA_SM); pio_sm_unclaim(SCSI_DMA_PIO, SCSI_SYNC_SM); // Remove all SCSI programs pio_remove_program(SCSI_DMA_PIO, &scsi_parity_program, g_scsi_dma.pio_offset_parity); pio_remove_program(SCSI_DMA_PIO, &scsi_accel_async_write_program, g_scsi_dma.pio_offset_async_write); pio_remove_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program, g_scsi_dma.pio_offset_sync_write_pacer); pio_remove_program(SCSI_DMA_PIO, &scsi_sync_write_program, g_scsi_dma.pio_offset_sync_write); pio_remove_program(SCSI_DMA_PIO, &scsi_accel_read_program, g_scsi_dma.pio_offset_read); pio_remove_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program, g_scsi_dma.pio_offset_sync_read_pacer); pio_remove_program(SCSI_DMA_PIO, &scsi_read_parity_program, g_scsi_dma.pio_offset_read_parity); // Un-claim all SCSI DMA channels dma_channel_unclaim(SCSI_DMA_CH_A); dma_channel_unclaim(SCSI_DMA_CH_B); dma_channel_unclaim(SCSI_DMA_CH_C); dma_channel_unclaim(SCSI_DMA_CH_D); // Set flag to re-initialize SCSI PIO system g_channels_claimed = false; } if (!g_channels_claimed) { // Mark channels as being in use, unless it has been done already pio_sm_claim(SCSI_DMA_PIO, SCSI_PARITY_SM); pio_sm_claim(SCSI_DMA_PIO, SCSI_DATA_SM); pio_sm_claim(SCSI_DMA_PIO, SCSI_SYNC_SM); dma_channel_claim(SCSI_DMA_CH_A); dma_channel_claim(SCSI_DMA_CH_B); dma_channel_claim(SCSI_DMA_CH_C); dma_channel_claim(SCSI_DMA_CH_D); g_channels_claimed = true; } // Parity lookup generator g_scsi_dma.pio_offset_parity = pio_add_program(SCSI_DMA_PIO, &scsi_parity_program); g_scsi_dma.pio_cfg_parity = scsi_parity_program_get_default_config(g_scsi_dma.pio_offset_parity); sm_config_set_out_shift(&g_scsi_dma.pio_cfg_parity, true, false, 32); sm_config_set_in_shift(&g_scsi_dma.pio_cfg_parity, true, true, 32); // Asynchronous SCSI write g_scsi_dma.pio_offset_async_write = pio_add_program(SCSI_DMA_PIO, &scsi_accel_async_write_program); g_scsi_dma.pio_cfg_async_write = scsi_accel_async_write_program_get_default_config(g_scsi_dma.pio_offset_async_write); sm_config_set_out_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_IO_DB0, 9); sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_write, scsi_pins.OUT_REQ); sm_config_set_fifo_join(&g_scsi_dma.pio_cfg_async_write, PIO_FIFO_JOIN_TX); sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32); // Synchronous SCSI write pacer / ACK handler g_scsi_dma.pio_offset_sync_write_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program); g_scsi_dma.pio_cfg_sync_write_pacer = scsi_sync_write_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_write_pacer); sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, 1); // Synchronous SCSI data writer g_scsi_dma.pio_offset_sync_write = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_program); g_scsi_dma.pio_cfg_sync_write = scsi_sync_write_program_get_default_config(g_scsi_dma.pio_offset_sync_write); sm_config_set_out_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_IO_DB0, 9); sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_write, scsi_pins.OUT_REQ); sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 32); sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 1); // Asynchronous / synchronous SCSI read g_scsi_dma.pio_offset_read = pio_add_program(SCSI_DMA_PIO, &scsi_accel_read_program); g_scsi_dma.pio_cfg_read = scsi_accel_read_program_get_default_config(g_scsi_dma.pio_offset_read); sm_config_set_in_pins(&g_scsi_dma.pio_cfg_read, SCSI_IO_DB0); sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_read, scsi_pins.OUT_REQ); sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read, true, false, 32); sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read, true, true, 32); // Synchronous SCSI read pacer g_scsi_dma.pio_offset_sync_read_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program); g_scsi_dma.pio_cfg_sync_read_pacer = scsi_sync_read_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_read_pacer); sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_read_pacer, scsi_pins.OUT_REQ); // Read parity check g_scsi_dma.pio_offset_read_parity = pio_add_program(SCSI_DMA_PIO, &scsi_read_parity_program); g_scsi_dma.pio_cfg_read_parity = scsi_read_parity_program_get_default_config(g_scsi_dma.pio_offset_read_parity); sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read_parity, true, true, 32); sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read_parity, true, false, 32); // Create DMA channel configurations so they can be applied quickly later // For write to SCSI BUS: // Channel A: Bytes from RAM to scsi_parity PIO dma_channel_config cfg = dma_channel_get_default_config(SCSI_DMA_CH_A); channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8); channel_config_set_read_increment(&cfg, true); channel_config_set_write_increment(&cfg, false); channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, true)); g_scsi_dma.dmacfg_write_chA = cfg; // Channel B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register cfg = dma_channel_get_default_config(SCSI_DMA_CH_B); channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32); channel_config_set_read_increment(&cfg, false); channel_config_set_write_increment(&cfg, false); channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false)); g_scsi_dma.dmacfg_write_chB = cfg; // Channel C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO // When done, chain to channel B cfg = dma_channel_get_default_config(SCSI_DMA_CH_C); channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16); channel_config_set_read_increment(&cfg, false); channel_config_set_write_increment(&cfg, false); channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true)); channel_config_set_chain_to(&cfg, SCSI_DMA_CH_B); g_scsi_dma.dmacfg_write_chC = cfg; // Channel D: In synchronous mode a second DMA channel is used to transfer dummy bits // from first state machine to second one. cfg = dma_channel_get_default_config(SCSI_DMA_CH_D); channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32); channel_config_set_read_increment(&cfg, false); channel_config_set_write_increment(&cfg, false); channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_SYNC_SM, true)); g_scsi_dma.dmacfg_write_chD = cfg; // For read from SCSI BUS: // Channel A: Bytes from scsi_read_parity PIO to destination memory buffer // This takes the bottom 8 bits which is the data without parity bit. // Triggered by scsi_read_parity RX FIFO. cfg = dma_channel_get_default_config(SCSI_DMA_CH_A); channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8); channel_config_set_read_increment(&cfg, false); channel_config_set_write_increment(&cfg, true); channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false)); g_scsi_dma.dmacfg_read_chA = cfg; // Channel B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO // Triggered by channel C writing to READ_ADDR_TRIG // Re-enables channel C by chaining after done. cfg = dma_channel_get_default_config(SCSI_DMA_CH_B); channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16); channel_config_set_read_increment(&cfg, false); channel_config_set_write_increment(&cfg, false); channel_config_set_dreq(&cfg, DREQ_FORCE); channel_config_set_chain_to(&cfg, SCSI_DMA_CH_C); cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS; g_scsi_dma.dmacfg_read_chB = cfg; // Channel C: Addresses from scsi_read PIO to channel B READ_ADDR register // A single transfer starts when PIO RX FIFO has data. // The DMA channel is re-enabled by channel B chaining. cfg = dma_channel_get_default_config(SCSI_DMA_CH_C); channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32); channel_config_set_read_increment(&cfg, false); channel_config_set_write_increment(&cfg, false); channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, false)); g_scsi_dma.dmacfg_read_chC = cfg; // Channel D: In synchronous mode a second DMA channel is used to transfer dummy words // from first state machine to second one to control the pace of data transfer. // In asynchronous mode this just transfers words to control the number of bytes. cfg = dma_channel_get_default_config(SCSI_DMA_CH_D); channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32); channel_config_set_read_increment(&cfg, false); channel_config_set_write_increment(&cfg, false); channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true)); g_scsi_dma.dmacfg_read_chD = cfg; // Interrupts are used for data buffer swapping irq_set_exclusive_handler(DMA_IRQ_0, scsi_dma_irq); irq_set_enabled(DMA_IRQ_0, true); } bool scsi_accel_rp2040_setSyncMode(int syncOffset, int syncPeriod) { if (g_scsi_dma_state != SCSIDMA_IDLE) { log("ERROR: SCSI DMA was in state ", (int)g_scsi_dma_state, " when changing sync mode, forcing bus reset"); scsi_accel_log_state(); return false; } if (syncOffset != g_scsi_dma.syncOffset || syncPeriod != g_scsi_dma.syncPeriod) { g_scsi_dma.syncOffset = syncOffset; g_scsi_dma.syncPeriod = syncPeriod; if (syncOffset > 0) { // Set up offset amount to PIO state machine configs. // The RX fifo of scsi_sync_write has 4 slots. // We can preload it with 0-3 items and set the autopush threshold 1, 2, 4 ... 32 // to act as a divider. This allows offsets 1 to 128 bytes. // SCSI2SD code currently only uses offsets up to 15. if (syncOffset <= 4) { g_scsi_dma.syncOffsetDivider = 1; g_scsi_dma.syncOffsetPreload = 5 - syncOffset; } else if (syncOffset <= 8) { g_scsi_dma.syncOffsetDivider = 2; g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 2; } else if (syncOffset <= 16) { g_scsi_dma.syncOffsetDivider = 4; g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 4; } else { g_scsi_dma.syncOffsetDivider = 4; g_scsi_dma.syncOffsetPreload = 0; } // To properly detect when all bytes have been ACKed, // we need at least one vacant slot in the FIFO. if (g_scsi_dma.syncOffsetPreload > 3) g_scsi_dma.syncOffsetPreload = 3; sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, g_scsi_dma.syncOffsetDivider); sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, g_scsi_dma.syncOffsetDivider); // Set up the timing parameters to PIO program // The scsi_sync_write PIO program consists of three instructions. // The delays are in clock cycles, each taking 8 ns. // delay0: Delay from data write to REQ assertion // delay1: Delay from REQ assert to REQ deassert // delay2: Delay from REQ deassert to data write int delay0, delay1, delay2; int totalDelay = syncPeriod * 4 / 8; if (syncPeriod <= 25) { // Fast SCSI timing: 30 ns assertion period, 25 ns skew delay // The hardware rise and fall time require some extra delay, // the values below are tuned based on oscilloscope measurements. delay0 = 3; delay1 = 5; delay2 = totalDelay - delay0 - delay1 - 3; if (delay2 < 0) delay2 = 0; if (delay2 > 15) delay2 = 15; } else { // Slow SCSI timing: 90 ns assertion period, 55 ns skew delay delay0 = 6; delay1 = 12; delay2 = totalDelay - delay0 - delay1 - 3; if (delay2 < 0) delay2 = 0; if (delay2 > 15) delay2 = 15; } // Patch the delay values into the instructions in scsi_sync_write. // The code in scsi_accel.pio must have delay set to 0 for this to work correctly. uint16_t instr0 = scsi_sync_write_program_instructions[0] | pio_encode_delay(delay0); uint16_t instr1 = scsi_sync_write_program_instructions[1] | pio_encode_delay(delay1); uint16_t instr2 = scsi_sync_write_program_instructions[2] | pio_encode_delay(delay2); SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 0] = instr0; SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 1] = instr1; SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 2] = instr2; // And similar patching for scsi_sync_read_pacer int rdelay2 = totalDelay - delay1 - 2; if (rdelay2 > 15) rdelay2 = 15; if (rdelay2 < 5) rdelay2 = 5; uint16_t rinstr0 = scsi_sync_read_pacer_program_instructions[0] | pio_encode_delay(rdelay2); uint16_t rinstr1 = (scsi_sync_read_pacer_program_instructions[1] + g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_delay(delay1); SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 0] = rinstr0; SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 1] = rinstr1; } } return true; }