// Implements the low level interface to SCSI bus // Partially derived from scsiPhy.c from SCSI2SD-V6 #include "scsiPhy.h" #include "BlueSCSI_platform.h" #include "BlueSCSI_log.h" #include "BlueSCSI_log_trace.h" #include "BlueSCSI_config.h" #include extern "C" { #include #include } /***********************/ /* SCSI status signals */ /***********************/ extern "C" bool scsiStatusATN() { return SCSI_IN(ATN); } extern "C" bool scsiStatusBSY() { return SCSI_IN(BSY); } /************************/ /* SCSI selection logic */ /************************/ volatile uint8_t g_scsi_sts_selection; volatile uint8_t g_scsi_ctrl_bsy; void scsi_bsy_deassert_interrupt() { if (SCSI_IN(SEL) && !SCSI_IN(BSY)) { // Check if any of the targets we simulate is selected uint8_t sel_bits = SCSI_IN_DATA(); int sel_id = -1; for (int i = 0; i < S2S_MAX_TARGETS; i++) { if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg) { if (sel_bits & (1 << scsiDev.targets[i].targetId)) { sel_id = scsiDev.targets[i].targetId; break; } } } if (sel_id >= 0) { uint8_t atn_flag = SCSI_IN(ATN) ? SCSI_STS_SELECTION_ATN : 0; g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | atn_flag | sel_id; } // selFlag is required for Philips P2000C which releases it after 600ns // without waiting for BSY. // Also required for some early Mac Plus roms scsiDev.selFlag = *SCSI_STS_SELECTED; } } extern "C" bool scsiStatusSEL() { if (g_scsi_ctrl_bsy) { // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects. // Instead update the state here. // Releasing happens with bus release. g_scsi_ctrl_bsy = 0; SCSI_OUT(BSY, 1); } return SCSI_IN(SEL); } /************************/ /* SCSI bus reset logic */ /************************/ static void scsi_rst_assert_interrupt() { // Glitch filtering bool rst1 = SCSI_IN(RST); delay_ns(500); bool rst2 = SCSI_IN(RST); if (rst1 && rst2) { debuglog("BUS RESET"); scsiDev.resetFlag = 1; } } // This function is called to initialize the phy code. // It is called after power-on and after SCSI bus reset. extern "C" void scsiPhyReset(void) { SCSI_RELEASE_OUTPUTS(); g_scsi_sts_selection = 0; g_scsi_ctrl_bsy = 0; /* Implement here code to enable two interrupts: * scsi_bsy_deassert_interrupt() on rising edge of BSY pin * scsi_rst_assert_interrupt() on falling edge of RST pin * * For SCSI-1 single-initiator support, also call: * scsi_bsy_deassert_interrupt() on falling edge of SEL pin */ } /************************/ /* SCSI bus phase logic */ /************************/ static SCSI_PHASE g_scsi_phase; extern "C" void scsiEnterPhase(int phase) { int delay = scsiEnterPhaseImmediate(phase); if (delay > 0) { s2s_delay_ns(delay); } } // Change state and return nanosecond delay to wait extern "C" uint32_t scsiEnterPhaseImmediate(int phase) { if (phase != g_scsi_phase) { // ANSI INCITS 362-2002 SPI-3 10.7.1: // Phase changes are not allowed while REQ or ACK is asserted. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {} if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT)) { // Akai S1000/S3000 seems to need extra delay before changing to data phase // after a command. The code in BlueSCSI_disk.cpp tries to do this while waiting // for SD card, to avoid any extra latency. s2s_delay_ns(400000); } int oldphase = g_scsi_phase; g_scsi_phase = (SCSI_PHASE)phase; scsiLogPhaseChange(phase); if (phase < 0) { // Other communication on bus or reset state SCSI_RELEASE_OUTPUTS(); return 0; } else { SCSI_OUT(MSG, phase & __scsiphase_msg); SCSI_OUT(CD, phase & __scsiphase_cd); SCSI_OUT(IO, phase & __scsiphase_io); int delayNs = 400; // Bus settle delay if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io)) { delayNs += 400; // Data release delay } if (scsiDev.compatMode < COMPAT_SCSI2) { // EMU EMAX needs 100uS ! 10uS is not enough. delayNs += 100000; } return delayNs; } } else { return 0; } } // Release all signals void scsiEnterBusFree(void) { g_scsi_phase = BUS_FREE; g_scsi_sts_selection = 0; g_scsi_ctrl_bsy = 0; scsiDev.cdbLen = 0; SCSI_RELEASE_OUTPUTS(); } /********************/ /* Transmit to host */ /********************/ #define SCSI_WAIT_ACTIVE(pin) \ if (!SCSI_IN(pin)) { \ if (!SCSI_IN(pin)) { \ while(!SCSI_IN(pin) && !scsiDev.resetFlag); \ } \ } #define SCSI_WAIT_INACTIVE(pin) \ if (SCSI_IN(pin)) { \ if (SCSI_IN(pin)) { \ while(SCSI_IN(pin) && !scsiDev.resetFlag); \ } \ } // Write one byte to SCSI host using the handshake mechanism static inline void scsiWriteOneByte(uint8_t value) { SCSI_OUT_DATA(value); delay_100ns(); // DB setup time before REQ SCSI_OUT(REQ, 1); SCSI_WAIT_ACTIVE(ACK); SCSI_RELEASE_DATA_REQ(); SCSI_WAIT_INACTIVE(ACK); } extern "C" void scsiWriteByte(uint8_t value) { scsiLogDataIn(&value, 1); scsiWriteOneByte(value); } extern "C" void scsiWrite(const uint8_t* data, uint32_t count) { scsiLogDataIn(data, count); for (uint32_t i = 0; i < count; i++) { if (scsiDev.resetFlag) break; scsiWriteOneByte(data[i]); } } extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count) { // If the platform supports DMA for either SD card access or for SCSI bus, // this function can be used to execute SD card transfers in parallel with // SCSI transfers. This usually doubles the transfer speed. // // For simplicity, this example only implements blocking writes. scsiWrite(data, count); } extern "C" bool scsiIsWriteFinished(const uint8_t *data) { // Asynchronous writes are not implemented in this example. return true; } extern "C" void scsiFinishWrite() { // Asynchronous writes are not implemented in this example. } /*********************/ /* Receive from host */ /*********************/ // Read one byte from SCSI host using the handshake mechanism. static inline uint8_t scsiReadOneByte(void) { SCSI_OUT(REQ, 1); SCSI_WAIT_ACTIVE(ACK); delay_100ns(); uint8_t r = SCSI_IN_DATA(); SCSI_OUT(REQ, 0); SCSI_WAIT_INACTIVE(ACK); return r; } extern "C" uint8_t scsiReadByte(void) { uint8_t r = scsiReadOneByte(); scsiLogDataOut(&r, 1); return r; } extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError) { *parityError = 0; for (uint32_t i = 0; i < count; i++) { if (scsiDev.resetFlag) break; data[i] = scsiReadOneByte(); } scsiLogDataOut(data, count); }