audio.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. /**
  2. * Copyright (C) 2023 saybur
  3. *
  4. * This program is free software: you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation, either version 3 of the License, or
  7. * (at your option) any later version. 
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12. * GNU General Public License for more details. 
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  16. **/
  17. #ifdef ENABLE_AUDIO_OUTPUT
  18. #include <SdFat.h>
  19. #include <stdbool.h>
  20. #include <hardware/dma.h>
  21. #include <hardware/irq.h>
  22. #include <hardware/spi.h>
  23. #include <pico/multicore.h>
  24. #include "audio.h"
  25. #include "BlueSCSI_audio.h"
  26. #include "BlueSCSI_config.h"
  27. #include "BlueSCSI_log.h"
  28. #include "BlueSCSI_platform.h"
  29. extern SdFs SD;
  30. // Table with the number of '1' bits for each index.
  31. // Used for SP/DIF parity calculations.
  32. // Placed in SRAM5 for the second core to use with reduced contention.
  33. const uint8_t snd_parity[256] __attribute__((aligned(256), section(".scratch_y.snd_parity"))) = {
  34. 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
  35. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  36. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  37. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  38. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  39. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  40. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  41. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  42. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  43. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  44. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  45. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  46. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  47. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  48. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  49. 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, };
  50. /*
  51. * Precomputed biphase-mark patterns for data. For an 8-bit value this has
  52. * 16-bits in MSB-first order for the correct high/low transitions to
  53. * represent the data, given an output clocking rate twice the bitrate (so the
  54. * bits '11' or '00' reflect a zero and '10' or '01' represent a one). Each
  55. * value below starts with a '1' and will need to be inverted if the last bit
  56. * of the previous mask was also a '1'. These values can be written to an
  57. * appropriately configured SPI peripheral to blast biphase data at a
  58. * receiver.
  59. *
  60. * To facilitate fast lookups this table should be put in SRAM with low
  61. * contention, aligned to an apppropriate boundry.
  62. */
  63. const uint16_t biphase[256] __attribute__((aligned(512), section(".scratch_y.biphase"))) = {
  64. 0xCCCC, 0xB333, 0xD333, 0xACCC, 0xCB33, 0xB4CC, 0xD4CC, 0xAB33,
  65. 0xCD33, 0xB2CC, 0xD2CC, 0xAD33, 0xCACC, 0xB533, 0xD533, 0xAACC,
  66. 0xCCB3, 0xB34C, 0xD34C, 0xACB3, 0xCB4C, 0xB4B3, 0xD4B3, 0xAB4C,
  67. 0xCD4C, 0xB2B3, 0xD2B3, 0xAD4C, 0xCAB3, 0xB54C, 0xD54C, 0xAAB3,
  68. 0xCCD3, 0xB32C, 0xD32C, 0xACD3, 0xCB2C, 0xB4D3, 0xD4D3, 0xAB2C,
  69. 0xCD2C, 0xB2D3, 0xD2D3, 0xAD2C, 0xCAD3, 0xB52C, 0xD52C, 0xAAD3,
  70. 0xCCAC, 0xB353, 0xD353, 0xACAC, 0xCB53, 0xB4AC, 0xD4AC, 0xAB53,
  71. 0xCD53, 0xB2AC, 0xD2AC, 0xAD53, 0xCAAC, 0xB553, 0xD553, 0xAAAC,
  72. 0xCCCB, 0xB334, 0xD334, 0xACCB, 0xCB34, 0xB4CB, 0xD4CB, 0xAB34,
  73. 0xCD34, 0xB2CB, 0xD2CB, 0xAD34, 0xCACB, 0xB534, 0xD534, 0xAACB,
  74. 0xCCB4, 0xB34B, 0xD34B, 0xACB4, 0xCB4B, 0xB4B4, 0xD4B4, 0xAB4B,
  75. 0xCD4B, 0xB2B4, 0xD2B4, 0xAD4B, 0xCAB4, 0xB54B, 0xD54B, 0xAAB4,
  76. 0xCCD4, 0xB32B, 0xD32B, 0xACD4, 0xCB2B, 0xB4D4, 0xD4D4, 0xAB2B,
  77. 0xCD2B, 0xB2D4, 0xD2D4, 0xAD2B, 0xCAD4, 0xB52B, 0xD52B, 0xAAD4,
  78. 0xCCAB, 0xB354, 0xD354, 0xACAB, 0xCB54, 0xB4AB, 0xD4AB, 0xAB54,
  79. 0xCD54, 0xB2AB, 0xD2AB, 0xAD54, 0xCAAB, 0xB554, 0xD554, 0xAAAB,
  80. 0xCCCD, 0xB332, 0xD332, 0xACCD, 0xCB32, 0xB4CD, 0xD4CD, 0xAB32,
  81. 0xCD32, 0xB2CD, 0xD2CD, 0xAD32, 0xCACD, 0xB532, 0xD532, 0xAACD,
  82. 0xCCB2, 0xB34D, 0xD34D, 0xACB2, 0xCB4D, 0xB4B2, 0xD4B2, 0xAB4D,
  83. 0xCD4D, 0xB2B2, 0xD2B2, 0xAD4D, 0xCAB2, 0xB54D, 0xD54D, 0xAAB2,
  84. 0xCCD2, 0xB32D, 0xD32D, 0xACD2, 0xCB2D, 0xB4D2, 0xD4D2, 0xAB2D,
  85. 0xCD2D, 0xB2D2, 0xD2D2, 0xAD2D, 0xCAD2, 0xB52D, 0xD52D, 0xAAD2,
  86. 0xCCAD, 0xB352, 0xD352, 0xACAD, 0xCB52, 0xB4AD, 0xD4AD, 0xAB52,
  87. 0xCD52, 0xB2AD, 0xD2AD, 0xAD52, 0xCAAD, 0xB552, 0xD552, 0xAAAD,
  88. 0xCCCA, 0xB335, 0xD335, 0xACCA, 0xCB35, 0xB4CA, 0xD4CA, 0xAB35,
  89. 0xCD35, 0xB2CA, 0xD2CA, 0xAD35, 0xCACA, 0xB535, 0xD535, 0xAACA,
  90. 0xCCB5, 0xB34A, 0xD34A, 0xACB5, 0xCB4A, 0xB4B5, 0xD4B5, 0xAB4A,
  91. 0xCD4A, 0xB2B5, 0xD2B5, 0xAD4A, 0xCAB5, 0xB54A, 0xD54A, 0xAAB5,
  92. 0xCCD5, 0xB32A, 0xD32A, 0xACD5, 0xCB2A, 0xB4D5, 0xD4D5, 0xAB2A,
  93. 0xCD2A, 0xB2D5, 0xD2D5, 0xAD2A, 0xCAD5, 0xB52A, 0xD52A, 0xAAD5,
  94. 0xCCAA, 0xB355, 0xD355, 0xACAA, 0xCB55, 0xB4AA, 0xD4AA, 0xAB55,
  95. 0xCD55, 0xB2AA, 0xD2AA, 0xAD55, 0xCAAA, 0xB555, 0xD555, 0xAAAA };
  96. /*
  97. * Biphase frame headers for SP/DIF, including the special bit framing
  98. * errors used to detect (sub)frame start conditions. See above table
  99. * for details.
  100. */
  101. const uint16_t x_preamble = 0xE2CC;
  102. const uint16_t y_preamble = 0xE4CC;
  103. const uint16_t z_preamble = 0xE8CC;
  104. // DMA configuration info
  105. static dma_channel_config snd_dma_a_cfg;
  106. static dma_channel_config snd_dma_b_cfg;
  107. // some chonky buffers to store audio samples
  108. static uint8_t sample_buf_a[AUDIO_BUFFER_SIZE];
  109. static uint8_t sample_buf_b[AUDIO_BUFFER_SIZE];
  110. // tracking for the state of the above buffers
  111. enum bufstate { STALE, FILLING, READY };
  112. static volatile bufstate sbufst_a = STALE;
  113. static volatile bufstate sbufst_b = STALE;
  114. enum bufselect { A, B };
  115. static bufselect sbufsel = A;
  116. static uint16_t sbufpos = 0;
  117. static uint8_t sbufswap = 0;
  118. // buffers for storing biphase patterns
  119. #define SAMPLE_CHUNK_SIZE 1024 // ~5.8ms
  120. #define WIRE_BUFFER_SIZE (SAMPLE_CHUNK_SIZE * 2)
  121. static uint16_t wire_buf_a[WIRE_BUFFER_SIZE];
  122. static uint16_t wire_buf_b[WIRE_BUFFER_SIZE];
  123. // tracking for audio playback
  124. static uint8_t audio_owner; // SCSI ID or 0xFF when idle
  125. static volatile bool audio_paused = false;
  126. static ImageBackingStore* audio_file;
  127. static uint64_t fpos;
  128. static uint32_t fleft;
  129. // historical playback status information
  130. static audio_status_code audio_last_status[8] = {ASC_NO_STATUS};
  131. // volume information for targets
  132. static volatile uint8_t volumes[8] = {
  133. DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL,
  134. DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL
  135. };
  136. // mechanism for cleanly stopping DMA units
  137. static volatile bool audio_stopping = false;
  138. // trackers for the below function call
  139. static uint16_t sfcnt = 0; // sub-frame count; 2 per frame, 192 frames/block
  140. static uint8_t invert = 0; // biphase encode help: set if last wire bit was '1'
  141. /*
  142. * Translates 16-bit stereo sound samples to biphase wire patterns for the
  143. * SPI peripheral. Produces 8 patterns (128 bits, or 1 SP/DIF frame) per pair
  144. * of input samples. Provided length is the total number of sample bytes present,
  145. * _twice_ the number of samples (little-endian order assumed)
  146. *
  147. * This function operates with side-effects and is not safe to call from both
  148. * cores. It must also be called in the same order data is intended to be
  149. * output.
  150. */
  151. static void snd_encode(uint8_t* samples, uint16_t* wire_patterns, uint16_t len, uint8_t swap) {
  152. uint8_t vol = volumes[audio_owner & 7];
  153. // limit maximum volume; with my DACs I've had persistent issues
  154. // with signal clipping when sending data in the highest bit position
  155. vol = vol >> 2;
  156. uint16_t widx = 0;
  157. for (uint16_t i = 0; i < len; i += 2) {
  158. uint32_t sample = 0;
  159. uint8_t parity = 0;
  160. if (samples != NULL) {
  161. int32_t rsamp;
  162. if (swap) {
  163. rsamp = (int16_t)(samples[i + 1] + (samples[i] << 8));
  164. } else {
  165. rsamp = (int16_t)(samples[i] + (samples[i + 1] << 8));
  166. }
  167. // linear scale to requested audio value
  168. rsamp *= vol;
  169. // use 20 bits of value only, which allows ignoring the lowest 8
  170. // bits during biphase conversion (after including sample shift)
  171. sample = ((uint32_t)rsamp) & 0xFFFFF0;
  172. // determine parity, simplified to one lookup via XOR
  173. parity = ((sample >> 16) ^ (sample >> 8)) ^ sample;
  174. parity = snd_parity[parity];
  175. // shift sample into the correct bit positions of the sub-frame.
  176. sample = sample << 4;
  177. }
  178. // if needed, establish even parity with P bit
  179. if (parity % 2) sample |= 0x80000000;
  180. // translate sample into biphase encoding
  181. // first is low 8 bits: preamble and 4 least-significant bits of
  182. // 24-bit audio, pre-encoded as all '0' due to 16-bit samples
  183. uint16_t wp;
  184. if (sfcnt == 0) {
  185. wp = z_preamble; // left channel, block start
  186. } else if (sfcnt % 2) {
  187. wp = y_preamble; // right channel
  188. } else {
  189. wp = x_preamble; // left channel, not block start
  190. }
  191. if (invert) wp = ~wp;
  192. invert = wp & 1;
  193. wire_patterns[widx++] = wp;
  194. // next 8 bits
  195. wp = biphase[(uint8_t) (sample >> 8)];
  196. if (invert) wp = ~wp;
  197. invert = wp & 1;
  198. wire_patterns[widx++] = wp;
  199. // next 8 again, all audio data
  200. wp = biphase[(uint8_t) (sample >> 16)];
  201. if (invert) wp = ~wp;
  202. invert = wp & 1;
  203. wire_patterns[widx++] = wp;
  204. // final 8, low 4 audio data and high 4 control bits
  205. wp = biphase[(uint8_t) (sample >> 24)];
  206. if (invert) wp = ~wp;
  207. invert = wp & 1;
  208. wire_patterns[widx++] = wp;
  209. // increment subframe counter for next pass
  210. sfcnt++;
  211. if (sfcnt == 384) sfcnt = 0; // if true, block complete
  212. }
  213. }
  214. // functions for passing to Core1
  215. static void snd_process_a() {
  216. if (sbufsel == A) {
  217. if (sbufst_a == READY) {
  218. snd_encode(sample_buf_a + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  219. sbufpos += SAMPLE_CHUNK_SIZE;
  220. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  221. sbufsel = B;
  222. sbufpos = 0;
  223. sbufst_a = STALE;
  224. }
  225. } else {
  226. snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  227. }
  228. } else {
  229. if (sbufst_b == READY) {
  230. snd_encode(sample_buf_b + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  231. sbufpos += SAMPLE_CHUNK_SIZE;
  232. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  233. sbufsel = A;
  234. sbufpos = 0;
  235. sbufst_b = STALE;
  236. }
  237. } else {
  238. snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  239. }
  240. }
  241. }
  242. static void snd_process_b() {
  243. // clone of above for the other wire buffer
  244. if (sbufsel == A) {
  245. if (sbufst_a == READY) {
  246. snd_encode(sample_buf_a + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  247. sbufpos += SAMPLE_CHUNK_SIZE;
  248. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  249. sbufsel = B;
  250. sbufpos = 0;
  251. sbufst_a = STALE;
  252. }
  253. } else {
  254. snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  255. }
  256. } else {
  257. if (sbufst_b == READY) {
  258. snd_encode(sample_buf_b + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  259. sbufpos += SAMPLE_CHUNK_SIZE;
  260. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  261. sbufsel = A;
  262. sbufpos = 0;
  263. sbufst_b = STALE;
  264. }
  265. } else {
  266. snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  267. }
  268. }
  269. }
  270. // Allows execution on Core1 via function pointers. Each function can take
  271. // no parameters and should return nothing, operating via side-effects only.
  272. static void core1_handler() {
  273. while (1) {
  274. void (*function)() = (void (*)()) multicore_fifo_pop_blocking();
  275. (*function)();
  276. }
  277. }
  278. /* ------------------------------------------------------------------------ */
  279. /* ---------- VISIBLE FUNCTIONS ------------------------------------------- */
  280. /* ------------------------------------------------------------------------ */
  281. void audio_dma_irq() {
  282. if (dma_hw->intr & (1 << SOUND_DMA_CHA)) {
  283. dma_hw->ints0 = (1 << SOUND_DMA_CHA);
  284. multicore_fifo_push_blocking((uintptr_t) &snd_process_a);
  285. if (audio_stopping) {
  286. channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHA);
  287. }
  288. dma_channel_configure(SOUND_DMA_CHA,
  289. &snd_dma_a_cfg,
  290. &(spi_get_hw(AUDIO_SPI)->dr),
  291. &wire_buf_a,
  292. WIRE_BUFFER_SIZE,
  293. false);
  294. } else if (dma_hw->intr & (1 << SOUND_DMA_CHB)) {
  295. dma_hw->ints0 = (1 << SOUND_DMA_CHB);
  296. multicore_fifo_push_blocking((uintptr_t) &snd_process_b);
  297. if (audio_stopping) {
  298. channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHB);
  299. }
  300. dma_channel_configure(SOUND_DMA_CHB,
  301. &snd_dma_b_cfg,
  302. &(spi_get_hw(AUDIO_SPI)->dr),
  303. &wire_buf_b,
  304. WIRE_BUFFER_SIZE,
  305. false);
  306. }
  307. }
  308. bool audio_is_active() {
  309. return audio_owner != 0xFF;
  310. }
  311. bool audio_is_playing(uint8_t id) {
  312. return audio_owner == (id & 7);
  313. }
  314. void audio_setup() {
  315. // setup SPI to blast SP/DIF data over the TX pin
  316. spi_set_baudrate(AUDIO_SPI, 5644800); // will be slightly wrong, ~0.03% slow
  317. hw_write_masked(&spi_get_hw(AUDIO_SPI)->cr0,
  318. 0x1F, // TI mode with 16 bits
  319. SPI_SSPCR0_DSS_BITS | SPI_SSPCR0_FRF_BITS);
  320. spi_get_hw(AUDIO_SPI)->dmacr = SPI_SSPDMACR_TXDMAE_BITS;
  321. hw_set_bits(&spi_get_hw(AUDIO_SPI)->cr1, SPI_SSPCR1_SSE_BITS);
  322. dma_channel_claim(SOUND_DMA_CHA);
  323. dma_channel_claim(SOUND_DMA_CHB);
  324. log("Starting Core1 for audio");
  325. multicore_launch_core1(core1_handler);
  326. }
  327. void audio_poll() {
  328. if (!audio_is_active()) return;
  329. if (audio_paused) return;
  330. if (fleft == 0 && sbufst_a == STALE && sbufst_b == STALE) {
  331. // out of data and ready to stop
  332. audio_stop(audio_owner);
  333. return;
  334. } else if (fleft == 0) {
  335. // out of data to read but still working on remainder
  336. return;
  337. } else if (!audio_file->isOpen()) {
  338. // closed elsewhere, maybe disk ejected?
  339. debuglog("------ Playback stop due to closed file");
  340. audio_stop(audio_owner);
  341. return;
  342. }
  343. // are new audio samples needed from the memory card?
  344. uint8_t* audiobuf;
  345. if (sbufst_a == STALE) {
  346. sbufst_a = FILLING;
  347. audiobuf = sample_buf_a;
  348. } else if (sbufst_b == STALE) {
  349. sbufst_b = FILLING;
  350. audiobuf = sample_buf_b;
  351. } else {
  352. // no data needed this time
  353. return;
  354. }
  355. platform_set_sd_callback(NULL, NULL);
  356. uint16_t toRead = AUDIO_BUFFER_SIZE;
  357. if (fleft < toRead) toRead = fleft;
  358. if (audio_file->position() != fpos) {
  359. // should be uncommon due to SCSI command restrictions on devices
  360. // playing audio; if this is showing up in logs a different approach
  361. // will be needed to avoid seek performance issues on FAT32 vols
  362. debuglog("------ Audio seek required on ", audio_owner);
  363. if (!audio_file->seek(fpos)) {
  364. log("Audio error, unable to seek to ", fpos, ", ID:", audio_owner);
  365. }
  366. }
  367. if (audio_file->read(audiobuf, toRead) != toRead) {
  368. log("Audio sample data underrun");
  369. }
  370. fpos += toRead;
  371. fleft -= toRead;
  372. if (sbufst_a == FILLING) {
  373. sbufst_a = READY;
  374. } else if (sbufst_b == FILLING) {
  375. sbufst_b = READY;
  376. }
  377. }
  378. bool audio_play(uint8_t owner, ImageBackingStore* img, uint64_t start, uint64_t end, bool swap) {
  379. // stop any existing playback first
  380. if (audio_is_active()) audio_stop(audio_owner);
  381. // debuglog("Request to play ('", file, "':", start, ":", end, ")");
  382. // verify audio file is present and inputs are (somewhat) sane
  383. if (owner == 0xFF) {
  384. log("Illegal audio owner");
  385. return false;
  386. }
  387. if (start >= end) {
  388. log("Invalid range for audio (", start, ":", end, ")");
  389. return false;
  390. }
  391. platform_set_sd_callback(NULL, NULL);
  392. audio_file = img;
  393. if (!audio_file->isOpen()) {
  394. log("File not open for audio playback, ", owner);
  395. return false;
  396. }
  397. uint64_t len = audio_file->size();
  398. if (start > len) {
  399. log("File playback request start (", start, ":", len, ") outside file bounds");
  400. return false;
  401. }
  402. // truncate playback end to end of file
  403. // we will not consider this to be an error at the moment
  404. if (end > len) {
  405. debuglog("------ Truncate audio play request end ", end, " to file size ", len);
  406. end = len;
  407. }
  408. fleft = end - start;
  409. if (fleft <= 2 * AUDIO_BUFFER_SIZE) {
  410. log("File playback request (", start, ":", end, ") too short");
  411. return false;
  412. }
  413. // read in initial sample buffers
  414. if (!audio_file->seek(start)) {
  415. log("Sample file failed start seek to ", start);
  416. return false;
  417. }
  418. if (audio_file->read(sample_buf_a, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) {
  419. log("File playback start returned fewer bytes than allowed");
  420. return false;
  421. }
  422. if (audio_file->read(sample_buf_b, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) {
  423. log("File playback start returned fewer bytes than allowed");
  424. return false;
  425. }
  426. // prepare initial tracking state
  427. fpos = audio_file->position();
  428. fleft -= AUDIO_BUFFER_SIZE * 2;
  429. sbufsel = A;
  430. sbufpos = 0;
  431. sbufswap = swap;
  432. sbufst_a = READY;
  433. sbufst_b = READY;
  434. audio_owner = owner & 7;
  435. audio_last_status[audio_owner] = ASC_PLAYING;
  436. audio_paused = false;
  437. // prepare the wire buffers
  438. for (uint16_t i = 0; i < WIRE_BUFFER_SIZE; i++) {
  439. wire_buf_a[i] = 0;
  440. wire_buf_b[i] = 0;
  441. }
  442. sfcnt = 0;
  443. invert = 0;
  444. // setup the two DMA units to hand-off to each other
  445. // to maintain a stable bitstream these need to run without interruption
  446. snd_dma_a_cfg = dma_channel_get_default_config(SOUND_DMA_CHA);
  447. channel_config_set_transfer_data_size(&snd_dma_a_cfg, DMA_SIZE_16);
  448. channel_config_set_dreq(&snd_dma_a_cfg, spi_get_dreq(AUDIO_SPI, true));
  449. channel_config_set_read_increment(&snd_dma_a_cfg, true);
  450. channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHB);
  451. // version of pico-sdk lacks channel_config_set_high_priority()
  452. snd_dma_a_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  453. dma_channel_configure(SOUND_DMA_CHA, &snd_dma_a_cfg, &(spi_get_hw(AUDIO_SPI)->dr),
  454. &wire_buf_a, WIRE_BUFFER_SIZE, false);
  455. dma_channel_set_irq0_enabled(SOUND_DMA_CHA, true);
  456. snd_dma_b_cfg = dma_channel_get_default_config(SOUND_DMA_CHB);
  457. channel_config_set_transfer_data_size(&snd_dma_b_cfg, DMA_SIZE_16);
  458. channel_config_set_dreq(&snd_dma_b_cfg, spi_get_dreq(AUDIO_SPI, true));
  459. channel_config_set_read_increment(&snd_dma_b_cfg, true);
  460. channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHA);
  461. snd_dma_b_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  462. dma_channel_configure(SOUND_DMA_CHB, &snd_dma_b_cfg, &(spi_get_hw(AUDIO_SPI)->dr),
  463. &wire_buf_b, WIRE_BUFFER_SIZE, false);
  464. dma_channel_set_irq0_enabled(SOUND_DMA_CHB, true);
  465. // ready to go
  466. dma_channel_start(SOUND_DMA_CHA);
  467. return true;
  468. }
  469. bool audio_set_paused(uint8_t id, bool paused) {
  470. if (audio_owner != (id & 7)) return false;
  471. else if (audio_paused && paused) return false;
  472. else if (!audio_paused && !paused) return false;
  473. audio_paused = paused;
  474. if (paused) {
  475. audio_last_status[audio_owner] = ASC_PAUSED;
  476. } else {
  477. audio_last_status[audio_owner] = ASC_PLAYING;
  478. }
  479. return true;
  480. }
  481. void audio_stop(uint8_t id) {
  482. if (audio_owner != (id & 7)) return;
  483. // to help mute external hardware, send a bunch of '0' samples prior to
  484. // halting the datastream; easiest way to do this is invalidating the
  485. // sample buffers, same as if there was a sample data underrun
  486. sbufst_a = STALE;
  487. sbufst_b = STALE;
  488. // then indicate that the streams should no longer chain to one another
  489. // and wait for them to shut down naturally
  490. audio_stopping = true;
  491. while (dma_channel_is_busy(SOUND_DMA_CHA)) tight_loop_contents();
  492. while (dma_channel_is_busy(SOUND_DMA_CHB)) tight_loop_contents();
  493. while (spi_is_busy(AUDIO_SPI)) tight_loop_contents();
  494. audio_stopping = false;
  495. // idle the subsystem
  496. audio_last_status[audio_owner] = ASC_COMPLETED;
  497. audio_paused = false;
  498. audio_owner = 0xFF;
  499. }
  500. audio_status_code audio_get_status_code(uint8_t id) {
  501. audio_status_code tmp = audio_last_status[id & 7];
  502. if (tmp == ASC_COMPLETED || tmp == ASC_ERRORED) {
  503. audio_last_status[id & 7] = ASC_NO_STATUS;
  504. }
  505. return tmp;
  506. }
  507. uint8_t audio_get_volume(uint8_t id) {
  508. return volumes[id & 7];
  509. }
  510. void audio_set_volume(uint8_t id, uint8_t vol) {
  511. volumes[id & 7] = vol;
  512. }
  513. #endif // ENABLE_AUDIO_OUTPUT