| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 | /* * This program is a simple binary write/read benchmark. */#include "SdFat.h"#include "sdios.h"#include "FreeStack.h"// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h,// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT.#define SD_FAT_TYPE 0/*  Change the value of SD_CS_PIN if you are using SPI and  your hardware does not use the default value, SS.  Common values are:  Arduino Ethernet shield: pin 4  Sparkfun SD shield: pin 8  Adafruit SD shields and modules: pin 10*/// SDCARD_SS_PIN is defined for the built-in SD on some boards.#ifndef SDCARD_SS_PINconst uint8_t SD_CS_PIN = SS;#else  // SDCARD_SS_PIN// Assume built-in SD is used.const uint8_t SD_CS_PIN = SDCARD_SS_PIN;#endif  // SDCARD_SS_PIN// Try max SPI clock for an SD. Reduce SPI_CLOCK if errors occur.#define SPI_CLOCK SD_SCK_MHZ(50)// Try to select the best SD card configuration.#if HAS_SDIO_CLASS#define SD_CONFIG SdioConfig(FIFO_SDIO)#elif ENABLE_DEDICATED_SPI#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI, SPI_CLOCK)#else  // HAS_SDIO_CLASS#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI, SPI_CLOCK)#endif  // HAS_SDIO_CLASS// Set PRE_ALLOCATE true to pre-allocate file clusters.const bool PRE_ALLOCATE = true;// Set SKIP_FIRST_LATENCY true if the first read/write to the SD can// be avoid by writing a file header or reading the first record.const bool SKIP_FIRST_LATENCY = true;// Size of read/write.const size_t BUF_SIZE = 512;// File size in MB where MB = 1,000,000 bytes.const uint32_t FILE_SIZE_MB = 5;// Write pass count.const uint8_t WRITE_COUNT = 2;// Read pass count.const uint8_t READ_COUNT = 2;//==============================================================================// End of configuration constants.//------------------------------------------------------------------------------// File size in bytes.const uint32_t FILE_SIZE = 1000000UL*FILE_SIZE_MB;// Insure 4-byte alignment.uint32_t buf32[(BUF_SIZE + 3)/4];uint8_t* buf = (uint8_t*)buf32;#if SD_FAT_TYPE == 0SdFat sd;File file;#elif SD_FAT_TYPE == 1SdFat32 sd;File32 file;#elif SD_FAT_TYPE == 2SdExFat sd;ExFile file;#elif SD_FAT_TYPE == 3SdFs sd;FsFile file;#else  // SD_FAT_TYPE#error Invalid SD_FAT_TYPE#endif  // SD_FAT_TYPE// Serial output streamArduinoOutStream cout(Serial);//------------------------------------------------------------------------------// Store error strings in flash to save RAM.#define error(s) sd.errorHalt(&Serial, F(s))//------------------------------------------------------------------------------void cidDmp() {  cid_t cid;  if (!sd.card()->readCID(&cid)) {    error("readCID failed");  }  cout << F("\nManufacturer ID: ");  cout << hex << int(cid.mid) << dec << endl;  cout << F("OEM ID: ") << cid.oid[0] << cid.oid[1] << endl;  cout << F("Product: ");  for (uint8_t i = 0; i < 5; i++) {    cout << cid.pnm[i];  }  cout << F("\nVersion: ");  cout << int(cid.prv_n) << '.' << int(cid.prv_m) << endl;  cout << F("Serial number: ") << hex << cid.psn << dec << endl;  cout << F("Manufacturing date: ");  cout << int(cid.mdt_month) << '/';  cout << (2000 + cid.mdt_year_low + 10 * cid.mdt_year_high) << endl;  cout << endl;}//------------------------------------------------------------------------------void clearSerialInput() {  uint32_t m = micros();  do {    if (Serial.read() >= 0) {      m = micros();    }  } while (micros() - m < 10000);}//------------------------------------------------------------------------------void setup() {  Serial.begin(9600);  // Wait for USB Serial  while (!Serial) {    yield();  }  delay(1000);  cout << F("\nUse a freshly formatted SD for best performance.\n");  if (!ENABLE_DEDICATED_SPI) {    cout << F(      "\nSet ENABLE_DEDICATED_SPI nonzero in\n"      "SdFatConfig.h for best SPI performance.\n");  }  // use uppercase in hex and use 0X base prefix  cout << uppercase << showbase << endl;}//------------------------------------------------------------------------------void loop() {  float s;  uint32_t t;  uint32_t maxLatency;  uint32_t minLatency;  uint32_t totalLatency;  bool skipLatency;  // Discard any input.  clearSerialInput();  // F() stores strings in flash to save RAM  cout << F("Type any character to start\n");  while (!Serial.available()) {    yield();  }#if HAS_UNUSED_STACK  cout << F("FreeStack: ") << FreeStack() << endl;#endif  // HAS_UNUSED_STACK  if (!sd.begin(SD_CONFIG)) {    sd.initErrorHalt(&Serial);  }  if (sd.fatType() == FAT_TYPE_EXFAT) {    cout << F("Type is exFAT") << endl;  } else {    cout << F("Type is FAT") << int(sd.fatType()) << endl;  }  cout << F("Card size: ") << sd.card()->sectorCount()*512E-9;  cout << F(" GB (GB = 1E9 bytes)") << endl;  cidDmp();  // open or create file - truncate existing file.  if (!file.open("bench.dat", O_RDWR | O_CREAT | O_TRUNC)) {    error("open failed");  }  // fill buf with known data  if (BUF_SIZE > 1) {    for (size_t i = 0; i < (BUF_SIZE - 2); i++) {      buf[i] = 'A' + (i % 26);    }    buf[BUF_SIZE-2] = '\r';  }  buf[BUF_SIZE-1] = '\n';  cout << F("FILE_SIZE_MB = ") << FILE_SIZE_MB << endl;  cout << F("BUF_SIZE = ") << BUF_SIZE << F(" bytes\n");  cout << F("Starting write test, please wait.") << endl << endl;  // do write test  uint32_t n = FILE_SIZE/BUF_SIZE;  cout <<F("write speed and latency") << endl;  cout << F("speed,max,min,avg") << endl;  cout << F("KB/Sec,usec,usec,usec") << endl;  for (uint8_t nTest = 0; nTest < WRITE_COUNT; nTest++) {    file.truncate(0);    if (PRE_ALLOCATE) {      if (!file.preAllocate(FILE_SIZE)) {        error("preAllocate failed");      }    }    maxLatency = 0;    minLatency = 9999999;    totalLatency = 0;    skipLatency = SKIP_FIRST_LATENCY;    t = millis();    for (uint32_t i = 0; i < n; i++) {      uint32_t m = micros();      if (file.write(buf, BUF_SIZE) != BUF_SIZE) {        error("write failed");      }      m = micros() - m;      totalLatency += m;      if (skipLatency) {        // Wait until first write to SD, not just a copy to the cache.        skipLatency = file.curPosition() < 512;      } else {        if (maxLatency < m) {          maxLatency = m;        }        if (minLatency > m) {          minLatency = m;        }      }    }    file.sync();    t = millis() - t;    s = file.fileSize();    cout << s/t <<',' << maxLatency << ',' << minLatency;    cout << ',' << totalLatency/n << endl;  }  cout << endl << F("Starting read test, please wait.") << endl;  cout << endl <<F("read speed and latency") << endl;  cout << F("speed,max,min,avg") << endl;  cout << F("KB/Sec,usec,usec,usec") << endl;  // do read test  for (uint8_t nTest = 0; nTest < READ_COUNT; nTest++) {    file.rewind();    maxLatency = 0;    minLatency = 9999999;    totalLatency = 0;    skipLatency = SKIP_FIRST_LATENCY;    t = millis();    for (uint32_t i = 0; i < n; i++) {      buf[BUF_SIZE-1] = 0;      uint32_t m = micros();      int32_t nr = file.read(buf, BUF_SIZE);      if (nr != BUF_SIZE) {        error("read failed");      }      m = micros() - m;      totalLatency += m;      if (buf[BUF_SIZE-1] != '\n') {        error("data check error");      }      if (skipLatency) {        skipLatency = false;      } else {        if (maxLatency < m) {          maxLatency = m;        }        if (minLatency > m) {          minLatency = m;        }      }    }    s = file.fileSize();    t = millis() - t;    cout << s/t <<',' << maxLatency << ',' << minLatency;    cout << ',' << totalLatency/n << endl;  }  cout << endl << F("Done") << endl;  file.close();}
 |